JPS6191571A - Continuous automatic analysis method and apparatus using test piece - Google Patents
Continuous automatic analysis method and apparatus using test pieceInfo
- Publication number
- JPS6191571A JPS6191571A JP21359284A JP21359284A JPS6191571A JP S6191571 A JPS6191571 A JP S6191571A JP 21359284 A JP21359284 A JP 21359284A JP 21359284 A JP21359284 A JP 21359284A JP S6191571 A JPS6191571 A JP S6191571A
- Authority
- JP
- Japan
- Prior art keywords
- test piece
- automatic
- test
- holder
- photometry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
- G01N2035/00039—Transport arrangements specific to flat sample substrates, e.g. pusher blade
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
- G01N2035/00039—Transport arrangements specific to flat sample substrates, e.g. pusher blade
- G01N2035/00049—Transport arrangements specific to flat sample substrates, e.g. pusher blade for loading/unloading a carousel
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
- G01N2035/00089—Magazines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
- G01N2035/00099—Characterised by type of test elements
- G01N2035/00108—Test strips, e.g. paper
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
- G01N2035/00099—Characterised by type of test elements
- G01N2035/00108—Test strips, e.g. paper
- G01N2035/00118—Test strips, e.g. paper for multiple tests
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1009—Characterised by arrangements for controlling the aspiration or dispense of liquids
- G01N2035/1025—Fluid level sensing
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、Dipand Read式の試験片を用いて
、試験片の取り出し、被検液への浸漬、測光、演算。DETAILED DESCRIPTION OF THE INVENTION The present invention uses a Dipand Read type test piece to take out the test piece, immerse it in a test liquid, perform photometry, and perform calculations.
廃棄等全てを自動で行なう連続自動分析方法及び装置に
関するものである。This invention relates to a continuous automatic analysis method and device that automatically performs all processes such as disposal.
現在、血液や尿等の分析に最も多く用いられる試験片(
2)は、第3図に示すように透明なプラスチック製スト
リップの一方の端から試薬面(2A)・・・を設は他端
部を把持部(2B)とするものである。Currently, the test piece (
In 2), as shown in FIG. 3, a reagent surface (2A) is provided from one end of a transparent plastic strip, and the other end is used as a grip portion (2B).
尚、試薬面(2八)は測定項目数に応じた個数だけ設け
られるが、更に標準反射片を設けてもよい。Note that the number of reagent surfaces (28) corresponding to the number of measurement items is provided, but standard reflective pieces may also be provided.
また、図示のものは試薬面(2A)として試薬を含浸さ
せた濾紙の小片を両面粘着テープで貼着したものである
が、その他試薬を基材とともに塗布してフィルム化した
ものもある。そしてこれらの試験片は、本来被検試料に
浸漬した後比色用見本と比較して被検物質の濃度を測定
するいわゆるDipand Read式検査に用いるも
のであるが、現在ではこのReadの段階が装置化され
て定量乃至半定量が可能となり、また測光から演算、濃
度の表示、試験片の排出まで自動化されたものもある。In addition, although the illustrated one has a small piece of filter paper impregnated with a reagent attached to it with double-sided adhesive tape as the reagent surface (2A), there are also others in which the reagent is applied together with the base material to form a film. These test pieces are originally used for the so-called Dip and Read type test, in which the concentration of the test substance is measured by immersing it in the test sample and comparing it with a colorimetric sample, but currently this read stage is Some devices have become capable of quantitative or semi-quantitative measurements, and some have automated everything from photometry to calculation, concentration display, and test piece discharge.
しかしDipの段階を人手に頼っている現状では、検体
数が増えると試験片を密閉容器から1本ずつ取り出し、
被検液に浸して色表と見比べたり、または光学的測定装
置の測定部にセットし、測定が終了した試験片を廃棄す
るという作業の繰り返しは、操作者に多大な負担を課す
るものである。しかも、一定の反応時間を必要とするの
で操作者は測定中完全に拘束される。また、人手だと浸
漬時間や浸漬後測定開始までの時間がどうしてもバラつ
きやすく測定誤差を生じ易い。従って、このDip段階
を含めて完全な自動化を行なうことが望まれる。However, in the current situation, where the Dip stage relies on manual labor, when the number of specimens increases, the test pieces are taken out one by one from the sealed container.
Repeated tasks such as immersing a test piece in a test liquid and comparing it with a color chart, or setting it in the measuring section of an optical measuring device and discarding the test piece after measurement place a great burden on the operator. be. Moreover, since a certain reaction time is required, the operator is completely restrained during the measurement. Furthermore, if the measurement is carried out manually, the immersion time and the time from immersion to the start of measurement tend to vary and measurement errors are likely to occur. Therefore, it is desirable to perform complete automation including this Dip step.
しかし、Dip段階までを含めて完全な自動化を図るた
めには、試験片を規則的に取り出す機構、及び該取り出
した試験片を被検液に浸漬しこれを測光部に正しくセッ
トする試験片自動操作機構が必要となる。しかもこれら
は、正確に作動しまた好ましくは小型で且つ安価である
ことが必要である。However, in order to fully automate the process up to the Dip stage, it is necessary to develop a mechanism to take out the test pieces regularly, and a test piece automatic system that immerses the taken out test pieces in the test liquid and sets them correctly in the photometer. An operating mechanism is required. Moreover, they need to operate accurately and preferably be small and inexpensive.
本発明は、上記要請のもとに開発されたものであり、試
験片自動操作機構と試験片の自動供給機構及び従来公知
の測光機構等を有機的に組合せてDip及びReadの
全ての工程を自動的連続的に行なうものである。以下、
本発明を図面に示す実施例に基づいて詳細に説明する。The present invention was developed based on the above request, and organically combines an automatic test piece operation mechanism, an automatic test piece supply mechanism, a conventionally known photometry mechanism, etc., to perform all Dip and Read processes. This is done automatically and continuously. below,
The present invention will be explained in detail based on embodiments shown in the drawings.
第1図は、本発明装置の一例でその作動状態を示す概略
斜視図、第2図はそのブロック図である。FIG. 1 is a schematic perspective view showing an example of the device of the present invention in its operating state, and FIG. 2 is a block diagram thereof.
この試験片を用いる連続自動分析装置(1)は、試験片
自動操作機構(3)の周囲に試験片自動供給機構(4)
。The continuous automatic analyzer (1) using this test piece has an automatic test piece supply mechanism (4) surrounding the automatic test piece operation mechanism (3).
.
試料容器供給機構(5)及び測光機構(6)等を配置し
たものである。また、第2図中符号(7)は制御部、(
8)は入力部、(9)は出力部である。A sample container supply mechanism (5), a photometry mechanism (6), etc. are arranged. In addition, symbol (7) in FIG. 2 is a control unit, (
8) is an input section, and (9) is an output section.
試験片自動操作機構(3)は、先端に試験片保持具(1
1) ヲ設けたアーム(12)とアーム駆動用シャフト
(I3)及びシャフト回転用モータ(14)からなる回
転部(15)を、縦方向のシャツ)(1?)で支承する
とともに上下駆動用モータ(18)の軸に巻係されたワ
イヤ(18)で上下動可能に吊持する。またアーム駆動
用シャツ)(13)の一端部を支えて振り止めするスラ
イダー(16)を、左右駆動用モータ(2のの軸に巻係
したワイヤ(21)で左右方向に駆動する。このスライ
ダー(16)は左右駆動用シャフト(22)に支持され
ており、これら全体はの枠体(23)に組み込まれてい
る。The test piece automatic operation mechanism (3) has a test piece holder (1
1) A rotary part (15) consisting of an arm (12), an arm drive shaft (I3), and a shaft rotation motor (14) is supported by a vertical shirt (1?) and is also used for vertical drive. It is suspended by a wire (18) wound around the shaft of a motor (18) so as to be able to move up and down. In addition, a slider (16) that supports one end of the arm drive shirt (13) to prevent it from swinging is driven in the left-right direction by a wire (21) wound around the shaft of the left-right drive motor (2).This slider (16) is supported by the left and right drive shaft (22), and the whole is incorporated in the frame (23).
また、本例の試験片保持具(11)はレリーズ(24)
の押し引きにより開閉するハサミ機構(嘴機構)で、本
例ではこのレリーズ(24)の操作はソレノイド(25
)で行なっているがエアシリンダーで行なってもよく、
或いはハサミ機構の開閉を直接ソレノイドやエアシリン
ダーで行なってもよい。またハサミ機構に替えて空気吸
引により直接保持する方式を採用してもよい。このうち
レリーズ式のものが軽量で力強く望ましい。これらのレ
リーズやエアパイプはアーム(12)の中を通す他空間
に浮かしてもよい。更に、前記各モータ(14)・(1
8)・(2o)は正確な位置決めをするためパルスモー
タが好ましい。In addition, the test piece holder (11) of this example has a release (24).
It is a scissor mechanism (beak mechanism) that opens and closes by pushing and pulling the release (24).
), but you can also use an air cylinder.
Alternatively, the scissor mechanism may be opened and closed directly using a solenoid or an air cylinder. Further, instead of the scissor mechanism, a method of directly holding the device by air suction may be adopted. Among these, the release type is desirable because it is lightweight and strong. These releases and air pipes may be floating in other spaces passing through the arm (12). Furthermore, each of the motors (14) and (1
For 8) and (2o), a pulse motor is preferable for accurate positioning.
もっとも、試験片自動操作機構(3)としては図示のも
のに限らず、アーム(■2)をモータとワイヤや螺条、
シリンダー等を用いて後述の如く上下・左右の移動及び
回転駆動させるものであれば如何なる構造のものも使用
可能である。However, the test piece automatic operation mechanism (3) is not limited to the one shown in the figure; the arm (■2) may be connected to a motor, wire, screw,
Any structure can be used as long as it uses a cylinder or the like to move vertically, horizontally, and rotate as described later.
次に試験片自動供給機構(4)は、試験片(2)を一枚
ずつ供給するもので、種々な構造のものが考えられる。Next, the test piece automatic feeding mechanism (4) feeds the test pieces (2) one by one, and various structures can be considered.
本例では、試験片を投入するホッパー(2G)が試験片
嵌入溝(27)を備えた底部(28)と該溝(27)に
平行な2つの内壁面(29a ) ・ (30a )
を含む壁部(29)・(30)を有し底部(28)をス
ライドさせて試験片嵌入溝(27)をホッパー外に移動
させるスライドベース方式のものを用いている。In this example, the hopper (2G) into which the test piece is loaded has a bottom (28) with a test piece insertion groove (27) and two inner wall surfaces (29a) and (30a) parallel to the groove (27).
A slide base type is used in which the test piece insertion groove (27) is moved out of the hopper by sliding the bottom part (28) and has wall parts (29) and (30) including walls (29) and (30).
尚、第4図(a)、 (blはその詳細を示すもので、
底部(28)がう・7り(31)とピニオンギヤ(32
)を介してモータ(33)により内壁面(29a )
・ (30a )間(第4図(bl■〜■の間)を左
右に移動させられているうちに、ホッパー(26)内に
投入された試験片(2)の内一枚が、ホッパー内の■の
位置で溝(27)に嵌る。検知器(34)・・・が溝(
27)内の試験片(2)を検知すると、底部(28)は
更に外方に移動して、溝(27)が試験片(2)の取り
出し位置■(第1図の状態)に停止する。また試験片(
2)が裏向きで溝(27)に嵌入している場合、検知器
(34)でその旨を検知して底部(28)を更に進行さ
せ(溝(37)の位置■)、反転機構のレバー(35)
で試験片(2)を壁部(29)側に反転させつつ押し出
す。そして底部(28)が逆行する際壁部の外壁面下端
で溝(27)に嵌入させ、■の位置で表面を向いている
か否かを再度チェックして、正しければ逆転して■の位
置で停止する。In addition, Fig. 4(a), (bl shows the details,
The bottom (28) is connected to the bottom (31) and the pinion gear (32).
) to the inner wall surface (29a) by the motor (33).
- While being moved left and right between (30a) (Fig. 4 (between bl) and ■), one of the test pieces (2) placed in the hopper (26) It fits into the groove (27) at the position marked ■.The detector (34)... is inserted into the groove (
27) When the test piece (2) inside is detected, the bottom part (28) moves further outward and the groove (27) stops at the test piece (2) removal position ■ (state shown in Figure 1). . In addition, the test piece (
2) is inserted face down into the groove (27), the detector (34) detects this and advances the bottom (28) further (position ■ of the groove (37)), and the reversing mechanism Lever (35)
Invert the test piece (2) toward the wall (29) and extrude it. Then, when the bottom part (28) is going backwards, fit it into the groove (27) at the lower end of the outer wall surface of the wall part, check again whether it is facing the surface at the position (■), and if it is correct, reverse it and move it to the position (■). Stop.
ここに検知器(3◇としては、試験片(2)の有無を検
知する透過型のホトインタラプタ、表裏判定用の反射型
ホトインタラプタ等の光センサーを1 (II或いは適
宜組み合わせて用いるが、その他例えば近接センサーで
溝(37)の部分の高低を検知して試験片(2)の有無
や表裏判定を行なうようにしてもよい。更に、試薬面(
2A)の夫々に対応する検知器(34)を複数設けて試
験片の種類の判定や試験片の破損等のチェックを行ない
、別の種類のものや不良品は系外に除去するようにして
もよい。Here, the detector (3◇) is a light sensor such as a transmission type photointerrupter for detecting the presence or absence of the test piece (2), a reflection type photointerrupter for determining front and back sides, etc. 1 (II or used in appropriate combination, but other For example, a proximity sensor may be used to detect the height of the groove (37) to determine the presence or absence of the test piece (2) and whether it is front or back.Furthermore, the reagent surface (
A plurality of detectors (34) corresponding to each of 2A) are installed to determine the type of test piece and check for damage to the test piece, and to remove other types or defective items from the system. Good too.
尚、反転機構を省略して試験片(2)が表裏反対の場合
試験片保持具(11)が上下逆になるようにしてもよい
、この取り出し機構(4)も底部(28)を固定して壁
部を可動にするなどの変形が種々考えられる。Incidentally, the reversing mechanism may be omitted and the test piece holder (11) may be turned upside down when the test piece (2) is upside down; this ejection mechanism (4) also fixes the bottom part (28). Various modifications are possible, such as making the wall movable.
或いは、試験片自動供給機構(4)としてカセット式の
ものを用いることもできる。第5図はこの一例で、カセ
ット(4の内に多数詰め込まれた試験片(2)を、スラ
イダー(47)で下から1枚宛順次押し出して取り出し
位置に置き、検知器(48)で確認しておく。そして、
この位置で試験片保持具(11)により取り出される。Alternatively, a cassette-type automatic test piece supply mechanism (4) can also be used. Figure 5 shows an example of this, in which a large number of test specimens (2) packed in a cassette (4) are pushed out one by one from the bottom with a slider (47), placed in the take-out position, and checked with a detector (48). Keep it.And,
At this position, the specimen is taken out by the specimen holder (11).
ところで、本例における試“料容器供給機構(5)や測
光機構(6)は従来公知のものを組み込んでいるが、そ
の他種々な変形例が考えられる。本例の試料容器供給機
構(5)はターンテーブル方式のもので、該試料ターン
テーブル(3G)はその円周部分に試料容器(37)を
受は入れるポー)(38)を多数設けており、モータ(
38)で正逆方向に回転駆動される。この試料ターンテ
ーブル(3G)を脱着可能にし順次交換しうるようにす
ると、大量の試料を手際よく処理することができる。一
方測光機構(6)は、測光部(40)と該測光部(40
)に試験片(2)・・・を導く担持台としての反応ター
ンテーブル(41)からなり、反応ターンテーブル(4
1)には試験片載置個所として複数の溝(42)が放射
状に設けられていてモータ(43)で一定方向に間欠回
転される。測光部(4のは溝(42)が停止する或位置
の上方に置かれている。測光部(40)は、光学系(4
4)と試験片(2)を移動させる引張機構(45)から
なる。By the way, although the sample container supply mechanism (5) and the photometry mechanism (6) in this example incorporate conventionally known ones, various other modifications can be considered.The sample container supply mechanism (5) in this example is of a turntable type, and the sample turntable (3G) is provided with a number of ports (38) on its circumference for receiving sample containers (37), and a motor (3G).
38), it is rotated in forward and reverse directions. If this sample turntable (3G) is made detachable so that it can be replaced sequentially, a large amount of samples can be processed efficiently. On the other hand, the photometric mechanism (6) includes a photometric section (40) and a photometric section (40).
), the reaction turntable (41) serves as a support for guiding the test piece (2)...
1) is provided with a plurality of radial grooves (42) as test piece mounting locations, and is intermittently rotated in a fixed direction by a motor (43). The photometering section (4) is placed above a certain position where the groove (42) stops.The photometering section (40)
4) and a tension mechanism (45) for moving the test piece (2).
次に、上記例装置(1)による測定動作を説明する。Next, the measurement operation by the above example device (1) will be explained.
まず、試験片自動操作機構(3)のアーム(I2)がモ
ータ(20)の回転により外方(図では左方)に移動し
同時に回転部(15)がモータ(18)の回転により降
下して、試験片保持具(11)は試験片自動供給機構(
4)の試験片(2)取り出し位置(A)にくる。この際
試験片保持具(11)は開いており、試験片(2)の把
持部をくわえた後間じる。次いで各モータ(18)・(
20)が逆回転し、その後シャフト回転用モータ(14
)が回転して、試験片保持具(11)は試験片浸漬位置
(B)にくる。試験片保持具(11)はそのまま降下し
て所定時間試薬面(2八)を被検液中に浸漬しておく。First, the arm (I2) of the automatic test piece operation mechanism (3) moves outward (leftward in the figure) by the rotation of the motor (20), and at the same time, the rotating part (15) descends by the rotation of the motor (18). The test piece holder (11) is equipped with a test piece automatic supply mechanism (
4) Come to the test piece (2) take-out position (A). At this time, the test piece holder (11) is open and closed after holding the grip part of the test piece (2) in its mouth. Next, each motor (18) (
20) rotates in the reverse direction, and then the shaft rotation motor (14
) rotates, and the test piece holder (11) comes to the test piece immersion position (B). The test piece holder (11) is lowered as it is, and the reagent surface (28) is immersed in the test liquid for a predetermined time.
次いでモータ(18)が回転して試験片(2)を引き揚
げ、更にモータ(18)・(10が回転して試験片保持
具(11)を測光機構(6)のターンテーブル溝(42
)の位置(C)に移動させ、ここで試験片(2)を離し
て溝(42)内に載置する。試験片(2)はターンテー
ブル(41)の回転に伴って測光部(4のに送られ、測
定される。続いて試験片保持具(11)はAの位置に戻
り、同様の操作を繰り返す。Next, the motor (18) rotates to pull up the test piece (2), and then the motors (18) and (10) rotate to move the test piece holder (11) into the turntable groove (42) of the photometry mechanism (6).
) to position (C), and here the test piece (2) is released and placed in the groove (42). The test piece (2) is sent to the photometry section (4) as the turntable (41) rotates and is measured.The test piece holder (11) then returns to position A and repeats the same operation. .
これら各機構(3)・(4)・(5)・(6)の動作は
、夫々制御部(7)のマイクロコンピュータで制御され
る。またこのマイクロコンピュータは、反射率から夫々
の被検物質の濃度等を演算し、その結果を表示部(48
)に出力する。また第2図中符号(5のはプリンター、
(51)は外部出力、 (52)はキーボードで
ある。The operations of these mechanisms (3), (4), (5), and (6) are respectively controlled by a microcomputer in a control section (7). This microcomputer also calculates the concentration of each test substance from the reflectance and displays the results on the display section (48
). Also, the symbols in Figure 2 (5 is a printer,
(51) is an external output, and (52) is a keyboard.
次に、液面検知機構(lのについて説明する。これは、
試験片(2)を自動で試料容器(37)中に挿入するの
で、被検液が少ない場合試薬面(2人)が浸漬されない
し、多すぎると浸漬時間が長くなり正確な測定が出来な
くなる虞があるので、浸漬前に予め液面を検知しておき
試験片(2)の挿入の程度を調節したり被検液の不足を
予告したりするためのものである。そして、この液面検
知は、ノズルアーム(53)の先端に支持された長短2
本の電極(54)・(55)で行なう。尚、ノズルアー
ム(53)はノズルモータ(56)により駆動され、各
電極(54)・(55)は測定毎に洗浄槽(57)で洗
浄される。尚、長い方の電極(54)は吸引ノズルを兼
ねており、ここから吸引された被検液は比重ユニット(
58)に導かれて比重の測定がなされる。ただ、試験片
(2)の浸漬に先立って吸引を行なうと液面が低下する
ので、その分を予め予測するか或いは一旦液面検知を行
い次いで浸漬してから後に吸引を行なうようにしてもよ
いこれらの操作はターンテーブル(3のの回転を制御し
て行なう。面この液面検知は反射光を用いた光センサー
等で行ってもよい。Next, we will explain the liquid level detection mechanism (l).
Since the test piece (2) is automatically inserted into the sample container (37), if there is not enough sample liquid, the reagent surface (two people) will not be immersed, and if there is too much, the immersion time will be longer and accurate measurement will not be possible. Therefore, the liquid level is detected in advance before immersion in order to adjust the degree of insertion of the test piece (2) or to warn of a shortage of the test liquid. This liquid level detection is carried out by a long and short two
This is done using book electrodes (54) and (55). Note that the nozzle arm (53) is driven by a nozzle motor (56), and each electrode (54) and (55) is cleaned in a cleaning tank (57) after each measurement. The longer electrode (54) also serves as a suction nozzle, and the sample liquid sucked from here is transferred to the specific gravity unit (
58), the specific gravity is measured. However, if suction is performed prior to immersing the test piece (2), the liquid level will drop, so it is possible to predict this amount in advance, or to detect the liquid level first, then immerse it, and then perform suction afterwards. These operations are preferably performed by controlling the rotation of the turntable (No. 3).The liquid level may also be detected by an optical sensor using reflected light.
以上詳述したように、本発明は供給装置から1枚ずつ供
給される試験片の把持部を保持して持ち上げ、順次送ら
れてくる試料容器中の試料液に試験片の試薬面を挿入し
て所定時間浸漬した後、引き上げた試験片を試験片担持
台にセットし、次いで所定時間後払薬面を測光する、試
験片を用いる連続自動分析方法及び装置である。従って
、Dipand Read式の試験片を用いて、試験片
の取り出し。As described in detail above, the present invention holds and lifts the gripping portions of the test strips supplied one by one from the supply device, and inserts the reagent side of the test strip into the sample liquid in the sample containers that are sequentially fed. This is a continuous automatic analysis method and apparatus using a test piece, in which the lifted test piece is set on a test piece support table after being immersed in the test piece for a predetermined time, and then photometry is performed on the drug surface for a predetermined time. Therefore, the test piece was taken out using a Dipand Read type test piece.
被検液への浸漬、測光、演算、廃棄等全てを自動で行な
うことができるので、Dipの段階が人手に委ねられて
いる従来方法と比べて操作者の負担が大幅に軽減される
と共に、浸漬時間や浸漬後測定開始までの時間がバラつ
かないので測定誤差を生じることもなく、また操作者は
試料容器に被検液を注入するだけでよいため省力化が図
れる。また、特別の自動分析装置用試験片を用いずとも
、目視で使用できる試験片をそのまま本連続自動分析装
置に流用することもでき、汎用性が高い。Since immersion in the test liquid, photometry, calculation, disposal, etc. can all be performed automatically, the burden on the operator is greatly reduced compared to the conventional method where the dipping step is left to the human hands. Since the immersion time and the time from immersion to the start of measurement do not vary, measurement errors do not occur, and the operator only needs to inject the test liquid into the sample container, resulting in labor savings. Further, without using a special test piece for an automatic analyzer, a test piece that can be used for visual inspection can be used as is in this continuous automatic analyzer, which is highly versatile.
第1図は本発明装置の一例を示す概略斜視図、第2図は
そのブロック図、第3図は試験片の側面図、第4図(a
lは試験片自動供給機構を示す斜視図(b)は同じく部
分縦断面図、第5図はカセット式試験片自動供給装置の
一例を示す斜視図である。
1・・・連続自動分析装置
2・・・試験片 2A・・・試薬面 2B・・・把持部
3・・・試験片自動操作機構
4・・・試験片自動供給機構
5・・・試料容器供給機構
6・・・測光機構
7・・・制御部
10・・・液面検知機構
11試験片保持具
12・・・アーム
13・・・アーム駆動用シャフト
14・・・シャフト回転用モータ
17・・・シャフト
18・・・上下駆動用モータ
20・・・左右駆動用モータ
22・・・左右駆動用シャフト
24・・・レリーズ
25・・・ソレノイド
26・・・ホッパー
27・・・試験片嵌入溝
2日・・・底部
29・・・壁面 29a・・・内壁面
30・・・壁面 30a・・・内壁面
34・・・検知器
35・・・反転機構のレバー
36・・・試料ターンテーブル
40・・・測光部(6の)
41・・・反応ターンテーブル(6の)44・・・光学
系
46・・・カセット
53・・・ノズルアーム
54・・・長電極(吸引ノズル)
55・・・短電極
56・・・ノズルモータ
58・・・比重ユニットFig. 1 is a schematic perspective view showing an example of the device of the present invention, Fig. 2 is a block diagram thereof, Fig. 3 is a side view of a test piece, and Fig. 4 (a
1 is a perspective view showing an automatic test strip supply mechanism; FIG. 5B is a partial vertical cross-sectional view, and FIG. 1... Continuous automatic analyzer 2... Test piece 2A... Reagent surface 2B... Gripping part 3... Test piece automatic operation mechanism 4... Test piece automatic supply mechanism 5... Sample container Supply mechanism 6...Photometry mechanism 7...Control unit 10...Liquid level detection mechanism 11 Test piece holder 12...Arm 13...Arm drive shaft 14...Shaft rotation motor 17. ... Shaft 18 ... Vertical drive motor 20 ... Left and right drive motor 22 ... Left and right drive shaft 24 ... Release 25 ... Solenoid 26 ... Hopper 27 ... Test piece insertion groove 2nd...Bottom 29...Wall surface 29a...Inner wall surface 30...Wall surface 30a...Inner wall surface 34...Detector 35...Lever 36 of the reversing mechanism...Sample turntable 40 ... Photometry section (6) 41 ... Reaction turntable (6) 44 ... Optical system 46 ... Cassette 53 ... Nozzle arm 54 ... Long electrode (suction nozzle) 55 ...・Short electrode 56... Nozzle motor 58... Specific gravity unit
Claims (1)
、該試験片を試験片自動操作機構により保持し、順次送
られてくる試料容器の上部へ移送し、該試料容器中の被
検液に浸漬して所定時間後に引き上げ、試験片担持台の
上部へ移送し、次いで該試験片担持台にセットして試験
片の保持を開放し、所定時間後に試薬面を自動測光する
ことを特徴とする試験片を用いる連続自動分析方法。 2、試験片の保持は、駆動アーム先端のハサミ機構で行
なうものである特許請求の範囲第1項記載の試験片を用
いる連続自動分析方法。 3、試薬面の浸漬に先立って、試料容器中の試料液の液
面の高さを測定し、その高さに応じて試験片の挿入深さ
を決定するものである特許請求の範囲第1項記載の試験
片を用いる連続自動分析方法。 4、試験片の自動供給機構と、該機構から取り出された
試験片を保持し被検液に浸漬し且つ試験片担持台にセッ
トする試験片自動操作機構を備えて成ることを特徴とす
る試験片を用いる連続自動分析装置。 5、モータの回転により左右・上下及び回転駆動される
アームの先端に試験片保持具を設けた試験片自動操作機
構の周囲に、試験片自動供給機構、試料容器供給機構及
び測光機構を配置し、且つ試験片保持具が試験片自動供
給機構の試験片取り出し位置、試料容器供給機構の試験
片浸漬位置、測光機構の担持台の試験片載置位置に順次
移動するようモータの回転を制御するとともに、試験片
自動操作機構の駆動、試料容器供給機構の駆動、測光機
構の担持台と測光部の駆動を制御する制御部、及び制御
部に入出力する操作部を備えてなる特許請求の範囲第4
項記載の試験片を用いる連続自動分析装置。 6、試験片自動供給機構は、試験片を投入するホッパー
が試験片嵌入溝を備えた底部と該溝に平行な2つの内壁
面を含む壁部を有し底部をスライドさせて試験片嵌入溝
をホッパー外に移動させるものである特許請求の範囲第
4項又は第5項記載の試験片を用いる連続自動分析装置
。 7、試料容器供給機構の側部に、液面検知機構を設けて
なる特許請求の範囲第4項又は第5項記載の試験片を用
いる連続自動分析装置。 8、液面検知機構は、2本の電極と電極駆動用モータか
らなる特許請求の範囲第7項記載の試験片を用いる連続
自動分析装置。 9、電極の内1本を吸引ノズルとする特許請求の範囲第
8項記載の試験片を用いる連続自動分析装置。[Claims] 1. Take out the test pieces one by one from the test piece automatic supply mechanism, hold the test pieces by the test piece automatic operation mechanism, transfer them to the upper part of the sample containers that are sent sequentially, and remove the test pieces one by one from the test piece automatic supply mechanism. It is immersed in the test liquid in the container, pulled up after a predetermined time, transferred to the upper part of the test piece holder, then set on the test piece holder, released from holding the test piece, and after a predetermined time, the reagent surface is automatically removed. A continuous automatic analysis method using a test piece characterized by photometry. 2. A continuous automatic analysis method using a test piece according to claim 1, wherein the test piece is held by a scissor mechanism at the tip of the drive arm. 3. Prior to immersion of the reagent surface, the height of the sample liquid level in the sample container is measured, and the insertion depth of the test piece is determined according to the measured height. Continuous automatic analysis method using the test piece described in Section 1. 4. A test characterized by comprising an automatic test piece supply mechanism and an automatic test piece operation mechanism that holds the test piece taken out from the mechanism, immerses it in the test liquid, and sets it on a test piece support stand. Continuous automatic analyzer using pieces. 5. The automatic test piece supply mechanism, sample container supply mechanism, and photometry mechanism are arranged around the automatic test piece operation mechanism, which has a test piece holder at the tip of the arm that is driven horizontally, vertically, and rotationally by the rotation of the motor. , and controls the rotation of the motor so that the test piece holder sequentially moves to the test piece take-out position of the test piece automatic supply mechanism, the test piece immersion position of the sample container supply mechanism, and the test piece placement position of the support stand of the photometry mechanism. In addition, a control unit that controls driving of an automatic test piece operation mechanism, a drive of a sample container supply mechanism, a support stand of a photometry mechanism and a photometry unit, and an operation unit that inputs and outputs input and output from the control unit. Fourth
Continuous automatic analyzer using the test piece described in Section 1. 6. In the automatic test piece feeding mechanism, the hopper into which the test piece is fed has a bottom part with a test piece insertion groove and a wall part including two inner wall surfaces parallel to the groove, and the bottom part is slid to open the test piece insertion groove. A continuous automatic analyzer using the test piece according to claim 4 or 5, wherein the test piece is moved out of the hopper. 7. A continuous automatic analyzer using the test piece according to claim 4 or 5, which is provided with a liquid level detection mechanism on the side of the sample container supply mechanism. 8. A continuous automatic analyzer using the test piece according to claim 7, wherein the liquid level detection mechanism comprises two electrodes and an electrode drive motor. 9. A continuous automatic analyzer using the test piece according to claim 8, wherein one of the electrodes is a suction nozzle.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21359284A JPS6191571A (en) | 1984-10-11 | 1984-10-11 | Continuous automatic analysis method and apparatus using test piece |
US06/782,356 US4876204A (en) | 1984-10-11 | 1985-10-01 | Method and apparatus of automatic continuous analysis using analytical implement |
EP85112715A EP0180792B2 (en) | 1984-10-11 | 1985-10-08 | Method and apparatus of automatic continuous analysis using analytical implement |
DE8585112715T DE3576857D1 (en) | 1984-10-11 | 1985-10-08 | METHOD AND DEVICE FOR AUTOMATICALLY CONTINUOUS ANALYSIS USING AN ANALYZER. |
CN198585108392A CN85108392A (en) | 1984-10-11 | 1985-10-09 | The automatic continuous analysis method and the device of analytical implement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21359284A JPS6191571A (en) | 1984-10-11 | 1984-10-11 | Continuous automatic analysis method and apparatus using test piece |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6191571A true JPS6191571A (en) | 1986-05-09 |
JPH0426434B2 JPH0426434B2 (en) | 1992-05-07 |
Family
ID=16641746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21359284A Granted JPS6191571A (en) | 1984-10-11 | 1984-10-11 | Continuous automatic analysis method and apparatus using test piece |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6191571A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6453167A (en) * | 1987-04-11 | 1989-03-01 | Kyoto Daiichi Kagaku Kk | Method and apparatus for biochemical analysis using test piece |
JPH04115160A (en) * | 1990-09-05 | 1992-04-16 | Kyoto Daiichi Kagaku:Kk | Automatic analyzer for specimen |
JPH05133960A (en) * | 1991-11-14 | 1993-05-28 | Hitachi Ltd | Test piece feeder and analyzer using the same |
EP0594108A1 (en) * | 1992-10-19 | 1994-04-27 | Hitachi, Ltd. | liquid sample automatic analyzer |
US5460968A (en) * | 1991-10-21 | 1995-10-24 | Hitachi, Ltd. | Analytical method and analytical apparatus using test strips |
JP2009139364A (en) * | 2007-09-19 | 2009-06-25 | F Hoffmann-La Roche Ag | Marking method for reject marking of test element |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50106692A (en) * | 1974-01-29 | 1975-08-22 | ||
US4204610A (en) * | 1976-09-15 | 1980-05-27 | Jacob Schlaepfer & Co. Ag | Method of filling blind holes in a stencil |
JPS5631538A (en) * | 1979-08-20 | 1981-03-30 | Tokico Ltd | Method for filling gas in gas spring |
JPS5782769A (en) * | 1980-11-10 | 1982-05-24 | Hitachi Ltd | Automatic analyzing device |
JPS581387A (en) * | 1981-06-25 | 1983-01-06 | Sanyo Electric Co Ltd | Sampling clock regenerating circuit |
JPS59779A (en) * | 1982-06-28 | 1984-01-05 | Nec Corp | Data collating system |
-
1984
- 1984-10-11 JP JP21359284A patent/JPS6191571A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50106692A (en) * | 1974-01-29 | 1975-08-22 | ||
US4204610A (en) * | 1976-09-15 | 1980-05-27 | Jacob Schlaepfer & Co. Ag | Method of filling blind holes in a stencil |
JPS5631538A (en) * | 1979-08-20 | 1981-03-30 | Tokico Ltd | Method for filling gas in gas spring |
JPS5782769A (en) * | 1980-11-10 | 1982-05-24 | Hitachi Ltd | Automatic analyzing device |
JPS581387A (en) * | 1981-06-25 | 1983-01-06 | Sanyo Electric Co Ltd | Sampling clock regenerating circuit |
JPS59779A (en) * | 1982-06-28 | 1984-01-05 | Nec Corp | Data collating system |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2561509B2 (en) * | 1987-03-09 | 1996-12-11 | 株式会社京都第一科学 | Method and apparatus for biochemical analysis using test piece |
JPS6453167A (en) * | 1987-04-11 | 1989-03-01 | Kyoto Daiichi Kagaku Kk | Method and apparatus for biochemical analysis using test piece |
JPH04115160A (en) * | 1990-09-05 | 1992-04-16 | Kyoto Daiichi Kagaku:Kk | Automatic analyzer for specimen |
JP2543243B2 (en) * | 1990-09-05 | 1996-10-16 | 株式会社京都第一科学 | Automatic sample analyzer |
US5460968A (en) * | 1991-10-21 | 1995-10-24 | Hitachi, Ltd. | Analytical method and analytical apparatus using test strips |
JPH05133960A (en) * | 1991-11-14 | 1993-05-28 | Hitachi Ltd | Test piece feeder and analyzer using the same |
US5378630A (en) * | 1991-11-14 | 1995-01-03 | Hitachi, Ltd. | Test strip automatic supply device and analytical instrument using the same |
EP0542260B1 (en) * | 1991-11-14 | 1995-06-21 | Hitachi, Ltd. | Test strip automatic supply device and supply method using the same. |
EP0594108A1 (en) * | 1992-10-19 | 1994-04-27 | Hitachi, Ltd. | liquid sample automatic analyzer |
US5415840A (en) * | 1992-10-19 | 1995-05-16 | Hitachi, Ltd. | Liquid sample automatic analyzer |
JP2009139364A (en) * | 2007-09-19 | 2009-06-25 | F Hoffmann-La Roche Ag | Marking method for reject marking of test element |
Also Published As
Publication number | Publication date |
---|---|
JPH0426434B2 (en) | 1992-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2812625B2 (en) | Liquid sample automatic analyzer | |
JP2601075B2 (en) | Analysis method and analyzer using test piece | |
US4876204A (en) | Method and apparatus of automatic continuous analysis using analytical implement | |
JP3368985B2 (en) | Automatic feeding device | |
JP2561509B2 (en) | Method and apparatus for biochemical analysis using test piece | |
JP4861762B2 (en) | Automatic analyzer | |
JPS6350650B2 (en) | ||
JP2008026051A (en) | Biochemical autoanalyzer | |
JP2008020360A (en) | Autoanalyzer and reagent container | |
US4260580A (en) | Clinical analyzer | |
US5378630A (en) | Test strip automatic supply device and analytical instrument using the same | |
JPS6191571A (en) | Continuous automatic analysis method and apparatus using test piece | |
JP3036353B2 (en) | Test piece supply device | |
JP3600866B2 (en) | Analysis equipment | |
JP2774052B2 (en) | Liquid sample automatic analyzer | |
JP3246058B2 (en) | Test piece supply device | |
JPH07120475A (en) | Analysis device and wash water supply device | |
JPS6113160A (en) | Biochemical analyser | |
JPS61111445A (en) | Device and method for automatic supply of test piece | |
JP3715149B2 (en) | Biochemical analyzer | |
JPS6319520A (en) | Liquid level detector | |
JPH01304357A (en) | Method and device for adhering liquid to be inspected in dot | |
JPH05302926A (en) | Automatic analyzer | |
JPH0337568A (en) | Biochemical analyzer | |
JPS5861447A (en) | Laser type quantitatively determining apparatus of reaction product of antigen and antibody |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |