Nothing Special   »   [go: up one dir, main page]

JPS6171539A - Irradiation system of electron beam equipment - Google Patents

Irradiation system of electron beam equipment

Info

Publication number
JPS6171539A
JPS6171539A JP59190500A JP19050084A JPS6171539A JP S6171539 A JPS6171539 A JP S6171539A JP 59190500 A JP59190500 A JP 59190500A JP 19050084 A JP19050084 A JP 19050084A JP S6171539 A JPS6171539 A JP S6171539A
Authority
JP
Japan
Prior art keywords
electron beam
stage
focusing lens
source image
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59190500A
Other languages
Japanese (ja)
Inventor
Takashi Yanaka
谷中 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTERNATL PRECISION Inc
Original Assignee
INTERNATL PRECISION Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTERNATL PRECISION Inc filed Critical INTERNATL PRECISION Inc
Priority to JP59190500A priority Critical patent/JPS6171539A/en
Publication of JPS6171539A publication Critical patent/JPS6171539A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は電子線装置のレンズ系、特に電子線装置におけ
る集束レンズ系の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an improvement in a lens system for an electron beam device, particularly a focusing lens system in an electron beam device.

(2)従来技術とその問題点 電子線装置、特に透過型電子顕微鏡において、集束レン
ズの基本的な役割りには、高倍率で照明強度が強く、干
渉性の高い照明を作ったり、試料の極微分析を行うため
にナノメートル程度の電子グローブを作ること、及び低
倍率広視野観察のための広くて平行性の良い照明を作る
こと等、種々の役割がある。このような役割を有する集
束レンズを組込んだ結像系の従来例としては、例えば第
1図に示すようなものがある。
(2) Prior art and its problems In electron beam equipment, especially transmission electron microscopes, the basic role of the focusing lens is to create illumination with high magnification, strong illumination intensity, and high coherence, and to illuminate the sample. It plays a variety of roles, including creating nanometer-sized electronic globes for performing microanalysis, and creating wide, well-parallel illumination for low-magnification, wide-field observation. A conventional example of an imaging system incorporating a focusing lens having such a role is shown in FIG. 1, for example.

これは1′fkL子線源(以下便宜上光源という)1と
、この光源1の後方に配置された第1段集束レンズ2及
び第2段集束レンズ3と、第2段集束レンズ3の後方に
配置された集束レンズ絞り(以下単に絞りという)4と
を有して成り、絞シ4の後方、対物レンズ部分には試料
5が配置される。光源1は照射系の′電子線軸(以下光
軸という)6上の位置Sに設置され、ここから電子線を
放射する。試料5に入射する電子線の照明径は第2段集
束レンズ3の励磁を調節することによって変えられる。
This consists of a 1'fkL sub-ray source (hereinafter referred to as a light source for convenience) 1, a first-stage focusing lens 2 and a second-stage focusing lens 3 placed behind this light source 1, and a It has a focusing lens diaphragm (hereinafter simply referred to as diaphragm) 4 arranged therein, and a sample 5 is arranged behind the diaphragm 4 in the objective lens section. A light source 1 is installed at a position S on an electron beam axis (hereinafter referred to as optical axis) 6 of the irradiation system, and emits an electron beam from here. The illumination diameter of the electron beam incident on the sample 5 can be changed by adjusting the excitation of the second stage focusing lens 3.

即ち、第1図から明らかになるように試料5上の照明径
は、同図中Q1・・・Qnで示された第2段集束レンズ
3によって結像される光源像を定めると決定される。そ
して、上記照明径を可変するには、第2段集束レンズ3
の励磁を可変し、当該レンズ3によって結像される光源
像(これを特に第2光源像という)Qを光軸6上でQl
からQnまで移動させることによって行う。その間、第
1段集束レンズ2はその光源像PをPlからPnのうち
のいずれか一点の位置に保つように励磁固定される。第
1段集束レンズ2は、絞り4を通過して試料5に達する
電子流を制御する役割をもっている。
That is, as is clear from FIG. 1, the illumination diameter on the sample 5 is determined by determining the light source image formed by the second stage focusing lens 3, indicated by Q1...Qn in the same figure. . In order to vary the illumination diameter, the second stage focusing lens 3
The light source image (this is especially referred to as the second light source image) Q formed by the lens 3 is changed to Ql on the optical axis 6.
This is done by moving from to Qn. During this time, the first stage focusing lens 2 is excited and fixed so as to keep its light source image P at one of the positions Pl to Pn. The first stage focusing lens 2 has the role of controlling the flow of electrons passing through the aperture 4 and reaching the sample 5.

そして、第1段集束レンズ2によって結像される光源像
(これを特に第1光源像という)Pの位置がPlからP
nへと上記第1段集束レンズ2から離れるにしたがって
光源1がら放出される電子流の絞り4によるカットは低
下し、電子流は増大する。電子線の照明強度は、試料5
面に到達する全電子流を照明面積で除して求められる。
Then, the position of the light source image (hereinafter referred to as the first light source image) P formed by the first stage focusing lens 2 changes from Pl to P.
As the distance from the first-stage focusing lens 2 to n is increased, the cut of the electron flow emitted from the light source 1 by the aperture 4 decreases, and the electron flow increases. The illumination intensity of the electron beam was
It is calculated by dividing the total electron flow reaching the surface by the illuminated area.

通常、照明強度の変化は、第1段集束レンズ2の励磁強
度を不変としく即ち電子流は一定)、第2段集束レンズ
3の励磁のみを変えることにより試料5面上の照射面積
を変化させて行なつ射系にあっては、観察視野に対応し
た部分だけを限定して照明することは不可能で、照明強
度が強過ぎる場合は照明径を大幅に増大させる必要があ
る。このような照明径の増大により試料5面上では観察
視野を超えて試料5の照射が行なわれることになるが、
非観察部への照射は極力避けるべきである。何故なら、
特に生物や高分子材料など、電子線の照射により損傷を
受は易い試料では、非観察部に予め電子線照射を受け、
矢に観察部位を変えることにより観察視野内に上記非観
察部が入った場合は、この部分が損傷していることがあ
るからである。
Normally, the illumination intensity is changed by keeping the excitation intensity of the first stage focusing lens 2 unchanged (that is, the electron flow is constant), and by changing only the excitation of the second stage focusing lens 3, the irradiation area on the surface of the sample 5 is changed. In the case of an illumination system that performs continuous illumination, it is impossible to limit the illumination to only a portion corresponding to the observation field, and if the illumination intensity is too strong, it is necessary to significantly increase the illumination diameter. Due to this increase in the illumination diameter, the sample 5 is irradiated beyond the observation field of view on the sample 5 surface.
Irradiation of unobserved areas should be avoided as much as possible. Because,
In particular, for specimens that are easily damaged by electron beam irradiation, such as living organisms and polymeric materials, the non-observation area should be irradiated with the electron beam in advance.
This is because if the non-observation part comes into the observation field by changing the observation part to the arrow, this part may be damaged.

このように、電子線の照射に対して極めて鋭敏な試料5
を観察する時は、電子銃の輝度を調節することにょシ、
電子線の照明径を殆ど変えずに照射強度を変えられるが
、電子銃の輝度調節のために高電圧部分の回路の定数を
変える必要かあり、頻繁な操作が必要となる。
In this way, the sample 5 is extremely sensitive to electron beam irradiation.
When observing, please adjust the brightness of the electron gun.
Although the irradiation intensity can be changed without changing the illumination diameter of the electron beam, it is necessary to change the constants of the high-voltage circuit in order to adjust the brightness of the electron gun, which requires frequent operations.

これに代る照明強度の調節方法としては、第2段集束レ
ンズ3で照明径を広げる一方、観察視野の外への照射は
、絞り4の径を小に切換えて極力防止する方法がある。
An alternative method for adjusting the illumination intensity is to widen the illumination diameter using the second stage focusing lens 3, while minimizing irradiation outside the observation field of view by reducing the diameter of the aperture 4.

しかし、通常、絞シ4は最大4種類程度の絞シ径が用意
しであるに過ぎず何段階にもわたる照明強度の変化に対
応するのは難がしい。また、絞り4の切換え操作ごとに
絞り穴の正確な軸合せが必要であり、操作上の煩わしさ
がある。
However, the diaphragm 4 is usually only available in a maximum of four different diameters, and it is difficult to accommodate changes in illumination intensity over many stages. Furthermore, accurate alignment of the aperture holes is required each time the aperture 4 is switched, which is troublesome in operation.

更に池の調節方法としては、第1図に示された照射系に
おいて、第1光源像Pt−P1位置に結像し、42光源
像Q′t−91位置に結像した状態で照明残灰を増すべ
く、第1光源像Pの結像位置をPnに変えると、第2光
源像Qの結像位置はQnたままの照明強度の可変は不可
能である。
Furthermore, as a method for adjusting the pond, in the irradiation system shown in FIG. If the imaging position of the first light source image P is changed to Pn in order to increase the imaging position, it is impossible to change the illumination intensity while the imaging position of the second light source image Q remains Qn.

こf′L、までの照射系の調節を見てみると、電子銃の
輝度設定、絞り4の穴径の選択、第1集束束レンズ2の
励磁設定はいずれも、観察条件の初期設定としてしか行
なわれておらず、一度数適値にしてから後はあまり設定
変更は行なわれない。そのため、通常は、第2段集束レ
ンズ3の励磁可変だけで照明径を変え、照明強度を制御
しているのである。これは、試料5を観察するに当って
、操作をスピードアップすることに重点が置かれている
ために生じるもので、その結果、試料の保全(蜘傷防止
)までは手が回らないというのが実情である。
Looking at the adjustment of the irradiation system up to f'L, the brightness setting of the electron gun, the selection of the hole diameter of the aperture 4, and the excitation setting of the first focusing lens 2 are all set as the initial settings of the observation conditions. Once the appropriate value has been set, the settings are not changed much. Therefore, normally, the illumination diameter is changed only by variable excitation of the second stage focusing lens 3, and the illumination intensity is controlled. This occurs because when observing sample 5, emphasis is placed on speeding up the operation, and as a result, they are unable to take care of the preservation of the sample (preventing spider damage). is the reality.

(3)発明の目的 本発明性、かかる従来の不具合に鑑みてなさ九たもので
、その目的社、試料面における電子線の照明径及び照明
強度を円滑に、しかも不要な試料の損傷を伴わずに行な
い得る電子線装置の照射系を提供することによシ、上記
従来の問題点を解決することである。
(3) Purpose of the Invention The present invention has been made in view of the above-mentioned problems in the past, and the purpose is to smoothly adjust the illumination diameter and illumination intensity of the electron beam on the sample surface without causing unnecessary damage to the sample. The object of the present invention is to solve the above-mentioned conventional problems by providing an irradiation system for an electron beam device that can be used without any problems.

(4)発明の構成 不発明は、上記目的を達成するため、集束レンズ系とし
て少なくとも二段の集束レンズを備え、第1集束束レン
ズは、電子線軸上の位置Sにある電子線源の像を任意の
故nの位置PI、P2゜・・・、PnK第L′し子線源
像として結ぶべく、SPI 、SPz、・*・”、SP
n が醒子元学的に共役関係を満すように励磁可変し得る一
方、第2集束束レンズは、上記第1電子線源像を任意の
数mの定まった位1fQ1.Qz。
(4) Structure of the invention In order to achieve the above object, the invention includes at least two stages of focusing lenses as a focusing lens system, and the first focusing lens has an image of the electron beam source located at a position S on the electron beam axis. In order to form the L′-th sclerotic source image at arbitrary n positions PI, P2゜..., PnK, SPI, SPz,...*・'', SP
While the excitation can be varied so that n satisfies a conjugate relationship in terms of the element theory, the second focusing lens converts the first electron beam source image to a predetermined position 1fQ1 . Qz.

・・・+QmK第2′社り線源像として結ぶべく、上記
第1電子線源像の変化に対応して励磁可変し得るように
したことを一要旨とするものでめる。
. . . +QmK 2' The main purpose of this article is to make it possible to vary the excitation in response to changes in the first electron beam source image in order to obtain a second electron beam source image.

(5)実施例の説明 第2図乃至第4図は本発明の一実施例を示す図である。(5) Description of examples FIGS. 2 to 4 are diagrams showing one embodiment of the present invention.

この宥施例(に係為′d+ぬ林首の照射系は、上記従来
例に挙げた照射系と同様、光源1と、この光源1の後方
に配置された第1集束束レンズ2及び第2段集束レンズ
3と、第2段集束レンズ3の後方VC配置された絞り4
とを有して成り、絞り4の後方、対物レンズ部分には試
料5が配置される。光源1は、照射系の光軸G上の位置
Sに設置され、ここから電子aを放射する。
Similar to the irradiation system mentioned in the conventional example above, the irradiation system at the head of the forest in this example includes a light source 1, a first converging lens 2 arranged behind the light source 1, and a first focusing lens 2 disposed behind the light source 1. A two-stage focusing lens 3 and an aperture 4 located behind the second-stage focusing lens 3
A sample 5 is placed behind the aperture 4 and in the objective lens portion. The light source 1 is installed at a position S on the optical axis G of the irradiation system, and emits electrons a from here.

本実施例において、第2段集束レンズ3によって結像さ
れる光源像は、従来の如く連続的に設定できるものでは
なく、図中、 Qiv Q21 −e−−−、Qm というようにm個の定まった位置のみをとらせるように
励磁調節される。そして、第2図に示す例では、先ず最
初に第1集束束レンズ2によって第1光源像PをPt位
置に結像させ、このPlに対応して第2段集束レンズ3
が第2光源像QをQ1位置に結像させる。次に第1集束
束レンズ2の励磁を、第1光源像の結鍬位【ばが順次P
2゜P3.・・・、 Pnとなるように励FI!1を変
える一方、このように第1集束束レンズ2の励5gを変
えても第2光源像の結像位置は91点のままであるよ像
Pと第2光源像Qとの間では、最初PIQ1が共役関係
にあったものが、次からは PzQl、 P3Q1 、 1″″″@、 PnQlと
いうような共役関係が成シ立つ。
In this embodiment, the light source image formed by the second stage focusing lens 3 cannot be set continuously as in the conventional case, but is set in m pieces as Qiv Q21 -e---, Qm in the figure. The excitation is adjusted so that it takes only a fixed position. In the example shown in FIG. 2, the first light source image P is first formed at the position Pt by the first focusing lens 2, and the second stage focusing lens 3
forms the second light source image Q at the Q1 position. Next, the excitation of the first focusing lens 2 is changed to the position of the first light source image.
2゜P3. ..., encourage FI to become Pn! 1, and even if the excitation 5g of the first focusing lens 2 is changed in this way, the imaging position of the second light source image remains at 91 points. Between the image P and the second light source image Q, Initially, PIQ1 was in a conjugate relationship, but from then on, conjugate relationships such as PzQl, P3Q1, 1''''@, and PnQl are established.

第1図に示す従来例では、第2段集束レンズの励磁k、
PIQiとなるように固定状態に保ったままであるので
、第1光源像Pの結像位置をPlからPn K移動させ
た時、第2光源像Qの結像位置がQlからQllに移動
したのである。
In the conventional example shown in FIG. 1, the excitation k of the second stage focusing lens,
Since it remains fixed so that PIQi, when the imaging position of the first light source image P is moved from Pl to Pn K, the imaging position of the second light source image Q moves from Ql to Qll. be.

本実施例における上記の如き態様により、照明径が厳密
に一定に保たれた状態で照明強度のみが可変制御される
ことになる。照明強度は、第1光源像Pの結像位置がP
lからPnに移動するに従って増大する。これは、光源
1から放出される全電子流に対する絞り通過電子流の割
合が順次増大するからである。
With the above-described aspect of this embodiment, only the illumination intensity is variably controlled while the illumination diameter is kept strictly constant. The illumination intensity is such that the imaging position of the first light source image P is P
It increases as you move from l to Pn. This is because the ratio of the electron flow passing through the aperture to the total electron flow emitted from the light source 1 gradually increases.

第3図の例では、第2図の例とは逆に、第1光源像Pの
結像位置をPnに固定し、第2光源俄Qの結像位置がQ
lから伽へと順次可変するように第2段集束レンズの励
磁を可変している。
In the example of FIG. 3, contrary to the example of FIG. 2, the imaging position of the first light source image P is fixed to Pn, and the imaging position of the second light source Q is
The excitation of the second stage focusing lens is varied so as to vary sequentially from 1 to 2.

かかる電子線の照射態様によれば、第1段集束レンズ2
による第1光源像Pの結像位置が変化していないから、
絞シ4を通過する゛電子流は全く変化を受けず、第2光
源像の結像位置がQlからQmに移動するのに対応して
、試料5に当る電子線の照明径が順次減少している。
According to this electron beam irradiation mode, the first stage focusing lens 2
Since the imaging position of the first light source image P has not changed,
The electron flow passing through the diaphragm 4 does not change at all, and as the imaging position of the second light source image moves from Ql to Qm, the illumination diameter of the electron beam hitting the sample 5 gradually decreases. ing.

したがって、この第3図の例では、第1段集束レンズ2
は、(S、Pn)を共役とする励磁にPnQl、PnQ
21・・・・・、PnQmというような共役関係が成り
立つように順次励磁変化せしめられる。
Therefore, in the example of FIG. 3, the first stage focusing lens 2
are PnQl, PnQ for the excitation with (S, Pn) conjugated.
21..., PnQm, the excitation is sequentially changed so that a conjugate relationship such as PnQm is established.

第2図の例では第2光源像Qの結像位置をQlに固定し
第1光源像Pの結像位置を任意に動かして照射強度を変
化させ、また第3図の例では第1光源像Pの結像位置を
Pnに固定し第2光源像の結像位置を任意に動かして照
明径を変えているが、Q結像点をQI I Qz +・
・・+ QmO中の任意の一つに選んで固定してP結像
点を移動したり、また逆にP結像点をPl、Pz、・・
・、Pnの中の任意の一つに選んで固定してQ結像点を
移動するには次の様にして行う。
In the example of FIG. 2, the imaging position of the second light source image Q is fixed at Ql, and the imaging position of the first light source image P is moved arbitrarily to change the irradiation intensity, and in the example of FIG. The imaging position of the image P is fixed at Pn, and the imaging position of the second light source image is moved arbitrarily to change the illumination diameter, but the Q imaging point is changed to QI I Qz +・
...+ Select any one of QmO and fix it and move the P imaging point, or conversely, move the P imaging point to Pl, Pz,...
・To select and fix any one of Pn and move the Q imaging point, proceed as follows.

表−1 M I        M 2 表−1に示すような1行m列のマトリックスM2を形成
した記憶装置の中に保管し、また第1の集束レンズの励
磁′i電流値n行1列のマトリックスM1を形成した記
憶装置の中に保管しておく。そして、P結像点t−Pl
からPnへと変化させるときは、行を110次変える方
向にアドレス指定を行ない、第1段集束レンズ2及び第
2段集束レンズ3の励磁電流値を読出し、またQ結像点
をQlからQmへと変化させるときは、列を順次変える
方向にアドレス指定を行ない、第1段集束レンズ2及び
第2段集束レンズ3の励磁電流値を読出す。こうして読
出したそれぞ九の励磁電流値(基づいて第1段集束レン
ズ2及びW、2段集束レンズ3の励磁を制御するのであ
る。
Table 1 M I M 2 Stored in a storage device in which a matrix M2 of 1 row and m columns as shown in Table 1 was formed, and a matrix of n rows and 1 column of the excitation 'i current value of the first focusing lens. Store it in the storage device where M1 was created. Then, P imaging point t−Pl
When changing from Pn to Pn, address is specified in the direction of changing the row by 110th, the excitation current values of the first-stage focusing lens 2 and the second-stage focusing lens 3 are read, and the Q imaging point is changed from Ql to Qm. When changing to , addresses are specified in the direction of sequentially changing the columns, and the excitation current values of the first stage focusing lens 2 and the second stage focusing lens 3 are read out. Based on the nine excitation current values thus read out, the excitation of the first-stage focusing lenses 2 and W and the second-stage focusing lens 3 is controlled.

こうして、照明径の調節或は照明強度の調節全効率よく
行なうことができる。
In this way, the illumination diameter or illumination intensity can be adjusted with full efficiency.

第4図は、第2図、第3図に示す電子線装置の照射系の
変形例を示す図である。この変形例では、上記実施例に
おける第1段集束レンズ2よすも更に上段に追加集束レ
ンズ1oを設けである。この追加集束レンズ10は、S
位置にある光源1の像を、前段光源像として定めらnた
位置R1,Rz、”・、  Rnに結ぶように、SR1
,SRz 、 SR3,・・・・・、 SRnがそれぞ
れ共役な組となるよう励磁可変となっている。
FIG. 4 is a diagram showing a modification of the irradiation system of the electron beam apparatus shown in FIGS. 2 and 3. In this modification, an additional focusing lens 1o is provided above the first stage focusing lens 2 in the above embodiment. This additional focusing lens 10 is S
SR1 so as to connect the image of the light source 1 at the position R1, Rz, "., Rn determined as the front stage light source image.
, SRz, SR3, . . . , SRn are variable in excitation so that they form a conjugate pair.

一方、第1段集束レンズ2は、上記前段光源像の結像位
置がいずれの点をとろうと、RIP、 RzP、 R3
P、・・・―・、RnPがそれぞれ共役な組となるよう
励磁が同期可変となっている。
On the other hand, the first stage focusing lens 2 has RIP, RzP, R3 regardless of which point the front stage light source image is formed at.
Excitation is synchronously variable so that P, . . . , RnP form a conjugate pair.

この方法を採ると、第2段集束レンズ3の励磁と第2光
源像Qの結像位置はP結像点が動かないから1対1の対
応関係にすることができる。
If this method is adopted, the excitation of the second stage focusing lens 3 and the imaging position of the second light source image Q can have a one-to-one correspondence relationship since the imaging point P does not move.

第2図及び第3図に示す例では、照明強度を変えるため
にはP結像点を前後に動かさなけnばならないのでQ結
像点の位置の他にP結像点の位置も指定しないと第2レ
ンズの励磁値が決らない。即ち、例えばQ1位置に対し
てPIQI 、 P2 Ql、 ”・、 PnQsのn
flistの励磁値が対応し、l対lの単純な関係にな
らない。
In the examples shown in Figures 2 and 3, in order to change the illumination intensity, the P imaging point must be moved back and forth, so the position of the P imaging point is not specified in addition to the position of the Q imaging point. Therefore, the excitation value of the second lens cannot be determined. That is, for example, for the Q1 position, PIQI, P2 Ql, ”・, n of PnQs
The excitation values of flist correspond to each other and do not have a simple relationship of l to l.

ところが、第4図の例ではP結像点を固定としているに
もかかわらず、照明強度を自由に変化させることができ
る。この例ではR結像点が前段集束レンズ10に近づく
程絞り4で遮られる電子流が増加し、逆に通過する電子
流が減少する。このため照明強度を低下させることがで
きる。また第2段集束レンズ3は、前段集束レンズ10
或は第1段集束レンズ2のいずれとも関連した励磁作動
を行わないので、その励磁を自由に可変することができ
る。このため、第2段集束レンズ3によって結像される
第2光源像Qの結像位置を上の例の如< Ql、Q2.
・・・+ Qmのようにm個に制限する必要はなく、極
限状態に細かく移動させることができる。その結果、照
ワ」径を連続的に可変することができる。また、照明径
を任意の大きさにしておいて、この径を全く変化させず
に強度をn段にスピーディに切換えるということも行な
い得る。
However, in the example of FIG. 4, although the P imaging point is fixed, the illumination intensity can be changed freely. In this example, the closer the R imaging point is to the front-stage focusing lens 10, the more the electron flow that is blocked by the aperture 4 increases, and the more the electron flow that passes through it decreases. Therefore, the illumination intensity can be reduced. Further, the second stage focusing lens 3 is connected to the front stage focusing lens 10.
Alternatively, since no excitation operation is performed in relation to any of the first stage focusing lenses 2, the excitation can be freely varied. Therefore, the imaging position of the second light source image Q formed by the second stage focusing lens 3 is set as in the above example <Ql, Q2.
...+ It is not necessary to limit the number to m as in Qm, and it is possible to move it finely to the extreme state. As a result, the diameter of the beam can be varied continuously. It is also possible to set the illumination diameter to an arbitrary size and quickly switch the intensity in n steps without changing the diameter at all.

更に、もう一つの大きな利点は、試料上に正確にQ結像
点を一致させることができるということが挙げられる。
Furthermore, another great advantage is that the Q imaging point can be precisely aligned on the sample.

この点に関して、第2図、第3図に挙げた例では、Q結
像点の移kJJを比較的粗くとっでいるため、Qti像
点全試料面上に一致させるということは極めて難しいこ
ととなる。
Regarding this point, in the examples shown in Figures 2 and 3, the shift kJJ of the Q imaging point is relatively rough, so it is extremely difficult to make the Qti imaging point coincident on the entire sample surface. Become.

表−2 M3        M4 上記表−2は、第4図に示す電子線照射系の励磁制御方
法を示すもので、M3は前段集束レンズ10制御用の記
憶装置マ) IJソックスM4は第1段集束レンズ2制
御用の記憶装置マトリックスを表わす。いずれもn行1
列のマトリックス形の記憶装置にしておけばよく、照明
強度の可変操作はM3及びM4マトリックスを同時に縦
方向に読出し、その指示を電源部に与えることによって
前段集束レンズ10、第1段集束レンズ2の励磁を調節
すればよく、記憶装置の構成がよシ一層簡素化される。
Table 2 M3 M4 Table 2 above shows the excitation control method for the electron beam irradiation system shown in Fig. 4, where M3 is a storage device for controlling the front-stage focusing lens 10. IJ sock M4 is the first-stage focusing lens. Represents a storage matrix for lens 2 control. Both are n rows 1
The illumination intensity can be changed by reading out the M3 and M4 matrices simultaneously in the vertical direction and giving the instruction to the power supply unit to control the front-stage focusing lens 10 and the first-stage focusing lens 2. The configuration of the storage device is further simplified.

(6)発明の詳細 な説明したように、本発明によれば、電子線装置に少な
くとも二段の集束レンズを備えると共に、これらの集束
レンズを連動して励磁可変し、各集束レンズによって結
像される光源像を複数位置に設定し得るようにしたため
、照明強度の調節、照明径の可変調整を極めて簡単な操
作で行うことができるという効果が得ら九る。
(6) As described in detail, according to the present invention, an electron beam device is provided with at least two stages of focusing lenses, and these focusing lenses are excitation-variable in conjunction with each other, and each focusing lens forms an image. Since the light source image can be set at a plurality of positions, it is possible to adjust the illumination intensity and the illumination diameter with extremely simple operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電子線装置の電子線照射系の一従来例を示す概
略構成図、第2図は本発明の一実施例に係る電子線照射
系の構成及びその作動例を示す概略図、第3図は第2図
と同様の構成における他の作動例を示す概略図、第4図
は本発明を適用した電子線照射系の他の構成及びその作
動例を示す概略図である。 1・−・光源(電Y楳瀝) 2・・・第1段集束レンズ
3・・・第2段集束レンズ 4・・・絞り5・・・試料
      P・・・第1光源像Q・・・第2光源像
FIG. 1 is a schematic configuration diagram showing a conventional example of an electron beam irradiation system of an electron beam device, and FIG. FIG. 3 is a schematic diagram showing another example of operation in a configuration similar to that of FIG. 2, and FIG. 4 is a schematic diagram showing another configuration of an electron beam irradiation system to which the present invention is applied and an example of its operation. 1.--Light source (electronic Y) 2.-1st stage focusing lens 3..2nd stage focusing lens 4..Aperture 5..Sample P..1st light source image Q..・Second light source image

Claims (1)

【特許請求の範囲】 1)試料に照射する電子線束を制限する集束レンズ絞り
の上側に隣接して光源側から順に第1段、第2段と、少
なくとも二段の励磁可変の集束レンズを有し、第1段集
束レンズは、電子線軸上の位置Sにある電子線源の像を
任意の数nの位置P_1、P_2、・・・、Pnに第1
電子線源像として結ぶべく、 SP_1、SP_2、SP_3、・・・・・、SPnが
電子光学的に共役関係を満すように励磁可変し得る一方
、第2段集束レンズは、上記第1電子線源像を任意の数
mの定まつた位置Q_1Q_2・・・Qmに第2電子線
源像として結ぶべく、第1電子線源像の結像位置がP_
1である時は、P_1Q_1、P_1Q_2、P_1Q
_3、・・・・・P_1Qmが電子光学的に共役関係を
満すように、また第1電子線源像の結像位置がP_2で
ある時は、P_2Q_1、P_2Q_2、P_2Q_3
、・・・・・P_2Qmが電子光学的に共役関係を満す
ように、そして、以下同様にして、第1電子線源像の結
像位置がPnである時は、 PnQ_1、PnQ_2、PnQ_3、・・・・・Pn
Qmが電子光学的に共役関係を満すように、上記第1電
子線源像の変化に対応して励磁可変し得ることを特徴と
する電子線装置の照射系。 2)第1段集束レンズは第1電子線源像をP_1、P_
2、・・・、Pnの位置のうち任意の一つに結ぶよう励
磁固定される一方、第2段集束レンズは第2電子線源像
をQ_1、Q_2、・・・、Qmの位置に任意に可変し
て結ぶよう励磁可変されることを特徴とする特許請求の
範囲第1項記載の電子線装置の照射系。 3)第1段集束レンズは第1電子線源像をP_1、P_
2、・・・、Pnの位置に任意に可変して結ぶよう励磁
可変される一方、第2段集束レンズは第2電子線源像を
Q_1、Q_2、・・・、Qmの位置のうちの任意の一
つの位置に結ぶよう対応して励磁可変されることを特徴
とする特許請求の範囲第1項記載の電子線装置の照射系
。 4)試料に照射する電子線束を制限する集束レンズ絞り
の上側に隣接して、光源側から順に前段、第1段、第2
段と、少なくとも三段の励磁可変の集束レンズを有し、
前段集束レンズは電子線軸上の位置Sにある電子線源の
像を任意の数nの位置R_1、R_2、・・・、Rnに
前段電子線源像として結ぶべく SR_1、SR_2、SR_3、・・・・・、SRnが
電子光学的に共役関係を満すように励磁可変し得る一方
、第1段集束レンズは、前段電子線源像のいずれの結像
位置に対しても第1電子線源像を定位置に結ぶべく R_1P、R_2P、R_3P、・・・・・、RnPが
電子光学的に共役関係を満すように励磁可変し得ること
を特徴とする電子線装置の照射系。
[Claims] 1) At least two stages of excitation variable focusing lenses, a first stage and a second stage adjacent to the upper side of the focusing lens aperture that limit the electron beam irradiated onto the sample, in order from the light source side. The first stage focusing lens first focuses an image of the electron beam source at a position S on the electron beam axis at an arbitrary number n of positions P_1, P_2, ..., Pn.
In order to form an electron beam source image, SP_1, SP_2, SP_3, . In order to focus the source image as a second electron beam source image at a predetermined position Q_1Q_2...Qm of an arbitrary number of meters, the imaging position of the first electron beam source image is set to P_
When it is 1, P_1Q_1, P_1Q_2, P_1Q
_3,...P_2Q_1, P_2Q_2, P_2Q_3 so that P_1Qm satisfies the electron-optical conjugate relationship, and when the imaging position of the first electron beam source image is P_2.
,...In such a way that P_2Qm satisfies the electron-optical conjugate relationship, and in the same manner, when the imaging position of the first electron beam source image is Pn, PnQ_1, PnQ_2, PnQ_3, ...Pn
An irradiation system for an electron beam apparatus, characterized in that excitation can be varied in response to changes in the first electron beam source image so that Qm satisfies an electron-optical conjugate relationship. 2) The first stage focusing lens converts the first electron beam source image into P_1, P_
2, ..., Pn, while the second stage focusing lens focuses the second electron beam source image at any position Q_1, Q_2, ..., Qm. 2. The irradiation system of an electron beam apparatus according to claim 1, wherein the irradiation system is variable in excitation so as to be connected in a variable manner. 3) The first stage focusing lens converts the first electron beam source image into P_1, P_
2, ..., Pn, while the second stage focusing lens focuses the second electron beam source image at any of the positions Q_1, Q_2, ..., Qm. 2. The irradiation system of an electron beam apparatus according to claim 1, wherein the irradiation system is variable in excitation so as to connect to any one position. 4) Adjacent to the upper side of the focusing lens aperture that limits the electron beam irradiated onto the sample, the front stage, first stage, and second stage are arranged in order from the light source side.
and at least three stages of variable excitation focusing lenses;
The front-stage focusing lens focuses an image of the electron beam source located at a position S on the electron beam axis at an arbitrary number of positions R_1, R_2, . . . , Rn as a front-stage electron beam source image SR_1, SR_2, SR_3,... ..., while the excitation can be varied so that SRn satisfies an electron-optical conjugate relationship, the first-stage focusing lens is capable of controlling the first-stage electron beam source at any imaging position of the previous-stage electron beam source image. An irradiation system for an electron beam apparatus, characterized in that excitation can be varied so that R_1P, R_2P, R_3P, .
JP59190500A 1984-09-13 1984-09-13 Irradiation system of electron beam equipment Pending JPS6171539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190500A JPS6171539A (en) 1984-09-13 1984-09-13 Irradiation system of electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190500A JPS6171539A (en) 1984-09-13 1984-09-13 Irradiation system of electron beam equipment

Publications (1)

Publication Number Publication Date
JPS6171539A true JPS6171539A (en) 1986-04-12

Family

ID=16259122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190500A Pending JPS6171539A (en) 1984-09-13 1984-09-13 Irradiation system of electron beam equipment

Country Status (1)

Country Link
JP (1) JPS6171539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605143A1 (en) * 1986-10-14 1988-04-15 Thomson Csf VARIABLE OPENING ELECTRONIC OPTICAL, ILLUMINATION AND LIMITATION DEVICE, AND ITS APPLICATION TO AN ELECTRON BEAM LITHOGRAPHY SYSTEM
JP2001126652A (en) * 1999-09-22 2001-05-11 Leo Elektronenmikroskopie Gmbh Particle-optical illumination/imaging system having single sight condenser-objective lens
US6472663B2 (en) 1997-10-30 2002-10-29 Hitachi, Ltd. Electron microscope
GB2404782A (en) * 2003-08-01 2005-02-09 Leica Microsys Lithography Ltd Pattern-writing equipment with lens sets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124371A (en) * 1975-04-23 1976-10-29 Jeol Ltd Scanning type electron microscope and similar equipment provided with means for controlling opening angle of electron beam for irradiating s amples
JPS55126951A (en) * 1979-03-23 1980-10-01 Hitachi Ltd Electron microscope
JPS55128243A (en) * 1979-03-28 1980-10-03 Hitachi Ltd Electron microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124371A (en) * 1975-04-23 1976-10-29 Jeol Ltd Scanning type electron microscope and similar equipment provided with means for controlling opening angle of electron beam for irradiating s amples
JPS55126951A (en) * 1979-03-23 1980-10-01 Hitachi Ltd Electron microscope
JPS55128243A (en) * 1979-03-28 1980-10-03 Hitachi Ltd Electron microscope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605143A1 (en) * 1986-10-14 1988-04-15 Thomson Csf VARIABLE OPENING ELECTRONIC OPTICAL, ILLUMINATION AND LIMITATION DEVICE, AND ITS APPLICATION TO AN ELECTRON BEAM LITHOGRAPHY SYSTEM
US4918318A (en) * 1986-10-14 1990-04-17 Thomson-Csf Electronic optics device with variable illumination and aperture limitation, and application thereof to an electron beam lithographic system
US6472663B2 (en) 1997-10-30 2002-10-29 Hitachi, Ltd. Electron microscope
JP2001126652A (en) * 1999-09-22 2001-05-11 Leo Elektronenmikroskopie Gmbh Particle-optical illumination/imaging system having single sight condenser-objective lens
GB2404782A (en) * 2003-08-01 2005-02-09 Leica Microsys Lithography Ltd Pattern-writing equipment with lens sets
JP2005057275A (en) * 2003-08-01 2005-03-03 Leica Microsystems Lithography Ltd Pattern writing apparatus
GB2404782B (en) * 2003-08-01 2005-12-07 Leica Microsys Lithography Ltd Pattern-writing equipment

Similar Documents

Publication Publication Date Title
US7468837B2 (en) Wide-field multi-photon microscope having simultaneous confocal imaging over at least two pixels
JP5100817B2 (en) Infinite focus zoom system
DE10244431A1 (en) microscope system
JP2017009778A (en) Illumination optical unit and illumination device
US4526443A (en) Telecentric illumination system
JPS6171539A (en) Irradiation system of electron beam equipment
CN110036456A (en) Method and system for the aberration correction in electron beam system
US4626689A (en) Electron beam focusing system for electron microscope
US11880965B2 (en) Smartphone for obtaining Fourier ptychography image and method for obtaining Fourier ptychography image using smartphone
DE102021126315A1 (en) Background Playback Facility
US6140645A (en) Transmission electron microscope having energy filter
US4316087A (en) Method of photographing electron microscope images on a single photographic plate and apparatus therefor
US4194116A (en) Electron microscope or the like and method of use
SE425838B (en) ELEKTRONSTRALE arrangement
US3660657A (en) Electron microscope with multi-focusing electron lens
US5373158A (en) Field-emission transmission electron microscope and operation method thereof
US3978338A (en) Illumination system in a scanning electron microscope
JP3861372B2 (en) microscope
JPS6199257A (en) Irradiation system of electron beam equipment
JPH11135046A (en) electronic microscope
CN112530349B (en) Display panel pixel repair optical path system and display panel pixel repair method
JP3869957B2 (en) Transmission electron microscope with energy filter
US4775790A (en) Transmission electron microscope
JPH0216517A (en) Lighting optical system for microscope
CN219144113U (en) Small deflection coil and scanning electron microscope