JPS6146097A - Multilayer circuit board - Google Patents
Multilayer circuit boardInfo
- Publication number
- JPS6146097A JPS6146097A JP59168362A JP16836284A JPS6146097A JP S6146097 A JPS6146097 A JP S6146097A JP 59168362 A JP59168362 A JP 59168362A JP 16836284 A JP16836284 A JP 16836284A JP S6146097 A JPS6146097 A JP S6146097A
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- layer
- tungsten
- circuit board
- multilayer circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は厚膜部品、IC,LSIなどの高密度実装に好
適な多層回路基板に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a multilayer circuit board suitable for high-density mounting of thick film components, ICs, LSIs, and the like.
従来例の構成とその問題点
近年、機器の小型化や多機能の要望が年を追って強くな
ってきているが、これらの要望に応えるため、回路部品
の高密度実装が重要な技術となっている。特に、rc、
LSIの発達や抵抗器、コンデンサ等の厚膜化技術の発
達に伴い、回路部品の実装が益々高密度化へと移行しつ
つある。部品の高密度実装を実現するには、部品を小さ
くすることと同時に基板の配線密度を高くすることが重
要である。基板の配線密度を高めるには、基板を多層構
造とし、配線層を基板内部に形成する方法が最も効果が
大きい。Conventional configurations and their problems In recent years, demands for smaller devices and multi-functionality have become stronger over the years.In order to meet these demands, high-density mounting of circuit components has become an important technology. There is. In particular, rc,
With the development of LSI and thick film technology for resistors, capacitors, etc., the mounting density of circuit components is becoming increasingly high. In order to realize high-density mounting of components, it is important to reduce the size of the components and simultaneously increase the wiring density of the board. The most effective way to increase the wiring density of a board is to make the board a multilayer structure and form the wiring layers inside the board.
従来の多層基板としては、アルミナとタングステン(W
)またはアルミナとモリブデン(Mo)による絶縁層、
導体層を交互に積層したものがある。Conventional multilayer substrates include alumina and tungsten (W).
) or an insulating layer made of alumina and molybdenum (Mo),
Some have conductor layers laminated alternately.
しかし、これには次のような問題点がある。However, this has the following problems.
■ 部品の半田付を可能にするために、多層基板表面の
タングステンまたはモリブデンの導体層上にニッケル、
金などのメッキを施す必要がある。■ To enable soldering of components, nickel, nickel, or
It is necessary to plate it with gold or other material.
■ 厚膜素子としてのグレーズ抵抗素子やコンデンサ素
子を形成するためには、空気中で高温(80Q〜900
’C)処理する必要があるが、タングステンやモリブデ
ンのような酸化され易い導体材料は酸素雰囲気中での処
理ができないため、厚膜素子を直接形成する回路基板と
して不向きである。■ In order to form glaze resistance elements and capacitor elements as thick film elements, high temperatures (80Q to 900Q) are required in air.
'C) Processing is required, but conductive materials that are easily oxidized such as tungsten and molybdenum cannot be processed in an oxygen atmosphere, making them unsuitable as circuit boards on which thick film elements are directly formed.
これらの理由から、アルミナ多層配線基板は、その利用
範囲が制限され、高密度実装用基板としての十分な条件
を備えていなかった。For these reasons, the range of use of the alumina multilayer wiring board is limited, and the alumina multilayer wiring board does not have sufficient conditions as a board for high-density mounting.
一方、上記のようなアルミナとタングステンあるいはモ
リブデンとからなる多層基板上への、空気中、高温での
厚膜の形成を可能にするために、多層基板最上層の必要
箇所に小孔を設け、その中にタングステンに還元されな
い低融点ガラス及び貴金属からなる導電性充填材を形成
させた構造が提案されている。この多層回路基板では、
導電性充填材のガラス成分としてタングステンに還元さ
れない低融点のガラスを用いるため、空気中の高温下で
も導体焼結層が酸化されずに良好な電気導通性が得られ
るものである。この充填材を弁子ることによって、以降
抵抗やコンデンサの厚膜素子を最上層に空気中にて形成
できたシ、また厚膜抵抗のレーザによるトリミングも下
地が高アルミナであるところから安定に行なえるなどの
大きな特徴が得られるものであった。On the other hand, in order to enable the formation of a thick film in air at high temperatures on a multilayer substrate made of alumina and tungsten or molybdenum as described above, small holes are provided at necessary locations on the top layer of the multilayer substrate. A structure has been proposed in which a conductive filler made of a low-melting glass and a noble metal that is not reduced to tungsten is formed. In this multilayer circuit board,
Since a low melting point glass that is not reduced to tungsten is used as the glass component of the conductive filler, the conductive sintered layer is not oxidized even at high temperatures in the air, and good electrical conductivity can be obtained. By using this filler material, thick film elements such as resistors and capacitors can be formed on the top layer in air, and trimming of thick film resistors using a laser is also stable because the base is made of high alumina. It offered great features such as the ability to perform
しかし、この導電性充填材は、焼結されたタングステン
またはモリブデン導体の露出面に厚膜状にペーストの形
で印刷し、空気中、860°C前後の高温で焼成される
が一般的であるが、この焼成時に次の様な点が大きな問
題が生じていた。つまり、この被覆材(充填剤と同義)
の空気しゃ断の原理からして、これに含まれるガラス成
分は焼成時に出来る限シ低温で早く軟化して導体表面を
覆わなければならないが、ペースト中に多量に含まれる
有機バインダーは低温では飛びにくいばか9か残存量が
多ければ高温でのガラスの流動性をもさまたげ、結果と
して被覆材の被覆効果をおとすことになる。このため、
現実的には、バインダ燃焼を優先させた形となり、焼結
導体層の表面は幾分酸化されてしまうのが実情である。However, this conductive filler is generally printed in the form of a thick paste on the exposed surface of a sintered tungsten or molybdenum conductor and fired in air at a high temperature of around 860°C. However, the following major problems arose during firing. In other words, this coating material (synonymous with filler)
Due to the principle of air-blocking, the glass component contained in the paste must soften quickly and cover the conductor surface at as low a temperature as possible during firing, but the large amount of organic binder contained in the paste is difficult to fly away at low temperatures. If there is a large amount of Baka9 remaining, it will hinder the fluidity of the glass at high temperatures, and as a result, the coating effect of the coating material will be reduced. For this reason,
In reality, priority is given to binder combustion, and the surface of the sintered conductor layer is oxidized to some extent.
この酸化層(WO2)なζ〜は電気的には半導体性を示
すため、輔頻導通は確保されるものの、次第に酸化は進
み、W○ →WO→WO3
22〜3
究極的には内部電極と上層電極間の導通は得られなくな
ってしまう。この傾向は、特に苛酷カ条件下(湿中、高
温雰囲気中)で加速される。This oxidized layer (WO2) ζ~ exhibits semiconducting properties electrically, so although frequent conduction is ensured, oxidation gradually progresses and ultimately becomes the internal electrode. Conductivity between the upper layer electrodes will no longer be obtained. This tendency is particularly accelerated under harsh conditions (humidity, high temperature atmosphere).
以上述べてきたように、多層基板は部品実装用の基板と
しては非常に重要なものであるが、従来のアルミナとタ
ングステンまたはモリブデンから構成される多層基板の
表面層孔部にタングステンを酸化させないガラス及び貴
金属からなる導電性充填材を形成させる方法では内部導
体層の酸化を十分防止することはできないため、高信頼
性な多層回路基板は得られないのが実情であった。As mentioned above, multilayer substrates are very important as substrates for mounting components, but conventional multilayer substrates made of alumina and tungsten or molybdenum are filled with glass that does not oxidize tungsten. However, the method of forming a conductive filler made of a noble metal cannot sufficiently prevent oxidation of the internal conductor layer, and therefore a highly reliable multilayer circuit board cannot be obtained.
発明の目的
本発明の目的は、高密度部品実装用基板とじて半田付用
電極パッドへのメッキ処理を必要とせず、グレーズ抵抗
素子のような厚膜素子の形成も可能な構造を実現し、か
つ製造工程の簡略化、コストダウンを可能にする高信頼
性な多層回路基板を提供することにある。OBJECTS OF THE INVENTION The purpose of the present invention is to realize a structure that does not require plating on soldering electrode pads as well as high-density component mounting boards, and allows the formation of thick film elements such as glaze resistor elements. Another object of the present invention is to provide a highly reliable multilayer circuit board that simplifies the manufacturing process and reduces costs.
発明の構成
本発明の多層回路基板は、アルミナを主成分とする電気
絶縁層と、タングステンまたはモリブデン金属からなる
導体層を交互に積層し、最上層の絶縁層に、平均粒径が
3〜70μの内部導体層の必要部分が露出するように形
成された部分に、タングステンまたはモリブデンに還元
されない低融点ガラスと貴金属とからなる材料を形成す
るとともに同材料で最上層の配線層を形成し、その配線
層、にはグレーズ抵抗素子を形成し、又、部品実装、リ
ードフレーム取付のための銀−パラジウム系の導体パッ
ドを形成したものである。これにより半田付用のメッキ
処理を必要とせず、かつ厚膜素子を備えた高信頼性の多
層回路基板を提供することができ、高密度実装回路モジ
ュールの作製を可能にするものである。Structure of the Invention The multilayer circuit board of the present invention has electrical insulating layers mainly composed of alumina and conductive layers made of tungsten or molybdenum metal alternately laminated, and the uppermost insulating layer has an average grain size of 3 to 70 μm. A material consisting of a low-melting glass that cannot be reduced to tungsten or molybdenum and a noble metal is formed on the exposed part of the internal conductor layer, and the uppermost wiring layer is formed using the same material. A glaze resistance element is formed on the wiring layer, and silver-palladium conductor pads for mounting components and attaching a lead frame are formed. This makes it possible to provide a highly reliable multilayer circuit board that does not require plating for soldering and is equipped with thick film elements, making it possible to produce a high-density packaging circuit module.
実施例の説明
以下本発明の実施例について、図面を参照、しながら説
明する。DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例を示したものであシ、1.2
及び3はアルミナ絶縁層、4及び6はタングステンまた
はモリブデン導体層、6はタングステンまたはモリブデ
ンに還元されない低融点ガラスと貴金属とからなる被覆
材、7,9は銀−パラジウム導体、8はルテニウム系厚
膜抵抗素子である。FIG. 1 shows an embodiment of the present invention. 1.2
and 3 is an alumina insulating layer, 4 and 6 are tungsten or molybdenum conductor layers, 6 is a coating material made of a low-melting glass and noble metal that cannot be reduced to tungsten or molybdenum, 7 and 9 are silver-palladium conductors, and 8 is a ruthenium-based thickness It is a membrane resistance element.
次に具体例を示す。A specific example is shown next.
アルミナを主成分とし、それに焼結助剤を添加した無機
粉末と、PVB (ポリビニルブチラール)と、可塑剤
とからなるグリーンシートをドクタブレード法で作製し
た。これに、タングステンまたはモリブデンを主成分と
し導体焼結助剤を含む導体混合物に適量のエトセル系ビ
ークルを加えて混した。この工程で最上層のアルミナ層
には下部タングステン導体層の一部f:露出するように
300μm径の孔を設けた。これ’11660〜166
0°Cの還元雰囲気中で焼成した。焼結後の基板の収縮
率は約16%で、タングステンおよびモリブデン導体露
出部のSEM写真から焼結平均粒径をプラニメトリック
法によって測ったところ、3〜70μmであり、焼結状
態は非常に緻密であった。。A green sheet consisting of an inorganic powder containing alumina as a main component and a sintering aid added thereto, PVB (polyvinyl butyral), and a plasticizer was produced by a doctor blade method. To this, an appropriate amount of ethcel-based vehicle was added and mixed into a conductor mixture containing tungsten or molybdenum as a main component and a conductor sintering aid. In this step, a hole with a diameter of 300 μm was provided in the uppermost alumina layer so as to expose a portion of the lower tungsten conductor layer. This'11660-166
It was fired in a reducing atmosphere at 0°C. The shrinkage rate of the substrate after sintering is approximately 16%, and the average sintered grain size measured by planimetric method from SEM photographs of exposed parts of tungsten and molybdenum conductors is 3 to 70 μm, indicating that the sintered state is very good. It was very detailed. .
次に、焼結多層構造体の表面孔部に、軟化点が約640
°CでB2O3とBaO’i主成分とするガラス粉末と
銀粉末からなるペーストラスフ!J −ン印刷し、最上
層アルミナ層の孔部を被覆するとともに抵抗素子用の電
極となる延設部を有するパターンを形成した。これを釣
鐘状の温度プロファイルを有し、ピーク温度が850′
Cの厚膜焼成炉に通した。次いで、ルテニウム系グレー
ズ抵抗膜とAq−Pd導体膜を必要パターンに印刷、形
成し、上記と同じ厚膜焼成炉に通した。Next, the surface pores of the sintered multilayer structure have a softening point of about 640.
Paste foam consisting of glass powder and silver powder with B2O3 and BaO'i as main components at °C! J-printing was carried out to form a pattern that covered the holes in the uppermost alumina layer and had extended portions that would serve as electrodes for resistive elements. This has a bell-shaped temperature profile with a peak temperature of 850'
It was passed through a thick film firing furnace of C. Next, a ruthenium-based glaze resistive film and an Aq-Pd conductive film were printed and formed into the required pattern, and passed through the same thick film firing furnace as above.
このようにして得られた回路基板では、銀−ガラス材料
から構成された被覆材の導体層が基板表面に強固に密着
し更に下部導体層との電気的導通が十分確保されていた
。下部導体層と上部電極との間(図2における4−7間
)の電気抵抗(Rc)全評価したところ3〜6mΩ程度
であった。また、被覆材の延設部を電極として形成した
ルテニウム系抵抗素子は、従来のAq−Pdを電極とし
たものとほぼ同じ抵抗値を示し、極めて良いマツチング
性を示した。また、被覆材と部品マウント用Aq−Pd
電極界面の電気的導通においても唖めて良好な特性を示
し、その界面で抵抗が大きくなるような現象はみられな
かった。In the circuit board thus obtained, the conductive layer of the covering material made of silver-glass material adhered firmly to the surface of the board, and electrical continuity with the lower conductive layer was sufficiently ensured. When the electric resistance (Rc) between the lower conductor layer and the upper electrode (between 4 and 7 in FIG. 2) was completely evaluated, it was about 3 to 6 mΩ. Furthermore, a ruthenium-based resistance element formed using the extended portion of the covering material as an electrode showed approximately the same resistance value as a conventional one using Aq-Pd as an electrode, and exhibited extremely good matching properties. In addition, Aq-Pd for covering material and component mounting
The electrical conductivity at the electrode interface also showed excellent characteristics, and no phenomenon of increased resistance at the interface was observed.
さらに、この回路基板の被覆部の安定性を調べるために
、86°C1相対湿度86%の雰囲気中にioo時間放
置した後の電気抵抗Rcをも測定した。第1表には、従
来の回路基板と本発明による回路基板の代表的な値を比
較のために示す。また、第2表には具体例でえられた試
料の導体露出部の平均粒径、および電極層間の電気抵抗
Rc(Ω)全それぞれ示す。Furthermore, in order to examine the stability of the coating portion of this circuit board, the electrical resistance Rc was also measured after being left in an atmosphere of 86° C. and 86% relative humidity for an ioo period of time. Table 1 shows typical values for a conventional circuit board and a circuit board according to the present invention for comparison. Further, Table 2 shows the average particle size of the exposed conductor portion of the sample obtained in the specific example and the electric resistance Rc (Ω) between the electrode layers.
第1表
第2表
ト
[−
「
第1表に示される様に、従来の多層基板では初期値的に
は低抵抗な導通が得られるが湿中放置によって大きく変
化し、時には断線状態となる。これは、粒子径の小さ−
な焼結導体層はタングステンまたはモリブデン粒子間の
ネックが小さく、特に露出導体の表面は粗れているため
低軟化点ガラスによる被覆効率が悪く、導体酸化層が厚
くなるためであると考えられる。これに反して、本発に
よる多層回路基板の導体層の粒子は大きく、ガラスの被
覆効果も高いばかりか、導体粒子自身も微粒子に比べて
酸化されにぐい。このため、湿中放置などの苛酷な条件
下でも被覆層は良好な導通性を保てる。Table 1 Table 2 [- "As shown in Table 1, conventional multilayer boards initially provide low-resistance conduction, but this changes greatly when left in humidity, sometimes resulting in disconnection. .This is because the particle size is small.
This is thought to be because the neck between the tungsten or molybdenum particles is small in the sintered conductor layer, and the surface of the exposed conductor is especially rough, so the coating efficiency with low softening point glass is poor and the conductor oxide layer becomes thick. On the other hand, the particles in the conductor layer of the multilayer circuit board according to the present invention are not only large and have a high glass coating effect, but also the conductor particles themselves are less susceptible to oxidation than fine particles. Therefore, the coating layer can maintain good conductivity even under severe conditions such as being left in humidity.
この事は第2表からも確かめられる。タングステン粒子
あるいはモリブデン粒子の粒成長を促すため、焼結助剤
を数種添加させる方法と(試料番号1〜7)と、高温度
で長時間保持の焼成を行なう方法(試料番号8〜10〕
でも、被覆材の安定性に対して大差ない事がわかる。平
均粒径が3μm以上あれば被覆材は安定化されるが、7
0μmよシ大きいと、導体とアルミナ基板との焼結性の
アンバランスが生じ、かえって導体の接着性の低下など
回路基板としてふされしくなくなる。This can also be confirmed from Table 2. In order to promote grain growth of tungsten particles or molybdenum particles, there is a method of adding several kinds of sintering aids (sample numbers 1 to 7), and a method of performing firing at high temperature for a long time (sample numbers 8 to 10).
However, it can be seen that there is no significant difference in the stability of the coating material. If the average particle size is 3 μm or more, the coating material will be stabilized, but 7
If it is larger than 0 μm, an imbalance in the sinterability between the conductor and the alumina substrate will occur, and the adhesion of the conductor will deteriorate, making it unsuitable for use as a circuit board.
導体の平均粒径と、86°C186%RH,100時間
後の電気抵抗Rc との関係を比較例、実施例での値
を斜線の範囲で第3図に示す。The relationship between the average particle diameter of the conductor and the electrical resistance Rc after 100 hours at 86 DEG C. and 186% RH is shown in FIG. 3 in the shaded range for Comparative Examples and Examples.
発明の詳細
な説明したように、本発明によれば、内部導体層として
、粒子径が大きく緻密なタングステンまたはモリブデン
を用い、層間絶縁層としてアルミナを使用した多層構造
を採用し、かつ内部導体層と、表面層に形成する抵抗素
子や導体層との間の電気的導通を、高温・空気中におい
ても安定な貴金属・ガラス材料で行ない、さらに、内部
導体層への空気の浸透を防止する構成となっているため
、空気中、高温(800−900°C)で焼成する厚膜
抵抗素子やコンデンサ素子を、最上層に形成することが
可能となる。しかも、内部配線層はタングステンで多層
化されているため、厚膜素子のみならずチップ部品やI
Cを高密度で実装することが可能である。特に、本発明
では内部導体層が安定化されたため高信頼性の多層回路
基板が提供できる。As described in detail, according to the present invention, a multilayer structure is adopted in which dense tungsten or molybdenum with a large particle size is used as the inner conductor layer, and alumina is used as the interlayer insulating layer. The electrical conduction between the resistive element and the conductive layer formed on the surface layer is made of precious metals and glass materials that are stable even at high temperatures and in the air, and the structure also prevents air from penetrating into the internal conductive layer. Therefore, it becomes possible to form a thick film resistance element or a capacitor element, which is fired in air at high temperature (800-900°C), on the top layer. Moreover, since the internal wiring layer is multilayered with tungsten, it can be used not only for thick film elements but also for chip parts and I/O.
It is possible to implement C at high density. In particular, in the present invention, since the internal conductor layer is stabilized, a highly reliable multilayer circuit board can be provided.
第1図は本発明の一実施例の多層回路基板の断面図、第
2図は同基板の要部拡大断面図である。
第3図は内部導体層の平均粒径と湿空寿命との関係全示
す特性図である。
1.2.3・・・・−・アルミナ絶縁層、4,5・−・
・・・タングステン導体層、6・・・・−タングステン
に還元されない低融点ガラスと貴金属とから構成された
被覆材、7,9・・・・・・Aq−Pd導体、8−・・
・・・ルテニウム系厚膜抵抗素子、1o・・・・・・タ
ングステンに還元されない低融点ガラス、11・・・・
・・貴金属粒子。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓
1 図
第2図FIG. 1 is a sectional view of a multilayer circuit board according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a main part of the same board. FIG. 3 is a characteristic diagram showing the relationship between the average grain size of the inner conductor layer and the humid air life. 1.2.3...Alumina insulating layer, 4,5...
...Tungsten conductor layer, 6...-Coating material composed of low melting point glass and noble metal that cannot be reduced to tungsten, 7,9...Aq-Pd conductor, 8-...
...Ruthenium-based thick film resistance element, 1o...Low melting point glass that is not reduced to tungsten, 11...
...Precious metal particles. Name of agent: Patent attorney Toshio Nakao and one other name
1 Figure 2
Claims (2)
属からなる導体層とを交互に積層してなる積層部と、該
積層部の最上層絶縁層に設けられた導体露出部上に形成
され、内部導体層と導通するタングステンに還元されな
い低融点ガラス及び貴金属からなる導電性被覆材と、前
記最上層絶縁層上に設けられ、前記被覆材の延設部を電
極とする厚膜抵抗素子及び前記延設部に電気的に接続さ
れた電子部品装着用の銀−パラジムラ系導体パッドとか
らなり、前記導体露出部のタングステン焼結層の平均粒
径が、3〜70μmの範囲にあることを特徴とする多層
回路基板。(1) formed on a laminated part formed by alternately laminating an insulating layer mainly composed of alumina and a conductor layer made of tungsten metal, and an exposed conductor part provided in the uppermost insulating layer of the laminated part, a conductive coating material made of a low-melting glass and noble metal that is not reduced to tungsten and conductive to the internal conductor layer; a thick film resistance element provided on the uppermost insulating layer and having an extended portion of the coating material as an electrode; It consists of a silver-palladium-based conductor pad for mounting electronic components electrically connected to the extension part, and is characterized in that the average grain size of the tungsten sintered layer in the exposed part of the conductor is in the range of 3 to 70 μm. Multilayer circuit board.
記載の多層回路基板。(2) The multilayer circuit board according to claim 1, wherein the conductor layer is molybdenum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59168362A JPS6146097A (en) | 1984-08-10 | 1984-08-10 | Multilayer circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59168362A JPS6146097A (en) | 1984-08-10 | 1984-08-10 | Multilayer circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6146097A true JPS6146097A (en) | 1986-03-06 |
JPH0137878B2 JPH0137878B2 (en) | 1989-08-09 |
Family
ID=15866674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59168362A Granted JPS6146097A (en) | 1984-08-10 | 1984-08-10 | Multilayer circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6146097A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63283558A (en) * | 1987-05-13 | 1988-11-21 | Shoei Pack:Kk | Production of shell retort food |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5873195A (en) * | 1981-10-28 | 1983-05-02 | 株式会社日立製作所 | Ceramic multilayer circuit board |
JPS58133826A (en) * | 1982-01-28 | 1983-08-09 | ロレアル | Novel emulsifier system based on fatty acid or protein concentrate, polyoxyethylene sterol and phosphatide and obtaining of cosmetics or drug composition by using same |
-
1984
- 1984-08-10 JP JP59168362A patent/JPS6146097A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5873195A (en) * | 1981-10-28 | 1983-05-02 | 株式会社日立製作所 | Ceramic multilayer circuit board |
JPS58133826A (en) * | 1982-01-28 | 1983-08-09 | ロレアル | Novel emulsifier system based on fatty acid or protein concentrate, polyoxyethylene sterol and phosphatide and obtaining of cosmetics or drug composition by using same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63283558A (en) * | 1987-05-13 | 1988-11-21 | Shoei Pack:Kk | Production of shell retort food |
Also Published As
Publication number | Publication date |
---|---|
JPH0137878B2 (en) | 1989-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63107087A (en) | Hybrid integrated circuit board | |
JP4038602B2 (en) | Conductive paste and ceramic multilayer substrate | |
JP3093601B2 (en) | Ceramic circuit board | |
JPS6146097A (en) | Multilayer circuit board | |
JPS61108192A (en) | Low temperature sintered multilayer ceramic substrate | |
JP2002076609A (en) | Circuit board | |
JP2002084051A (en) | Metallized copper composition, low-temperature sintered ceramic wiring board, and method of manufacturing the same | |
JP4587617B2 (en) | Ceramic wiring board | |
JP3934910B2 (en) | Circuit board | |
JP2010010394A (en) | Ceramic wiring board | |
JPH0432297A (en) | Multilayer interconnection board and manufacture thereof | |
JPH0544838B2 (en) | ||
JPH0544200B2 (en) | ||
JPS625693A (en) | Multilayer circuit board | |
JP2615970B2 (en) | Method for manufacturing an ANN multilayer substrate in which conductors and resistors are wired inside | |
JP4593817B2 (en) | Low temperature fired ceramic circuit board | |
JPS6025290A (en) | Method of producing hybrid integrated circuit board | |
JPS60176297A (en) | Multilayer substrate for hybrid ic | |
JP3934811B2 (en) | High thermal expansion glass ceramic sintered body and manufacturing method thereof, wiring board and mounting structure thereof | |
JPS60165795A (en) | Multilayer board and method of producing same | |
JP2001156412A (en) | Circuit board | |
JPS628595A (en) | Multilayer circuit board | |
JPH10341067A (en) | Inorganic multilayered substrate and conductor paste for via holes | |
JP3450111B2 (en) | Metallized composition and wiring board using the same | |
JPS60175495A (en) | Multilayer board |