Nothing Special   »   [go: up one dir, main page]

JPS6145000B2 - - Google Patents

Info

Publication number
JPS6145000B2
JPS6145000B2 JP12798377A JP12798377A JPS6145000B2 JP S6145000 B2 JPS6145000 B2 JP S6145000B2 JP 12798377 A JP12798377 A JP 12798377A JP 12798377 A JP12798377 A JP 12798377A JP S6145000 B2 JPS6145000 B2 JP S6145000B2
Authority
JP
Japan
Prior art keywords
activated carbon
fibers
sheet
carbon fibers
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12798377A
Other languages
Japanese (ja)
Other versions
JPS5464105A (en
Inventor
Hideki Komagata
Yoichi Suzuki
Nobuo Ishizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP12798377A priority Critical patent/JPS5464105A/en
Publication of JPS5464105A publication Critical patent/JPS5464105A/en
Publication of JPS6145000B2 publication Critical patent/JPS6145000B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高い吸着能、高度の均質性、炭素質
の脱落が実質上なく、かつ優れた段加工性を有す
る吸着性シートの製造法に関するものである。 従来、粉末状あるいは粒状の活性炭を、紙や不
織布等に含有させた吸着性を有するシートが知ら
れているが、これらは粉末状あるいは粒状の活性
炭がシートを構成している繊維に充分に把持され
難く脱落しやすい。このために、吸着性シートの
有効性が持続している寿命が短かく、また脱落し
た活性炭が周囲を汚したり、ガスや液体等の通路
を閉鎖する等の欠点を有していた。さらにこのよ
うなシートは、例えばジグザグ状に賦形したり、
段ボールへ加工したりする等の加工を行う場合に
は、粉末状の活性炭の脱落がさらにひどくなる欠
点を有していた。 一方主として魚、野菜あるいはゴミなどの臭気
を発する品物の包装体として活性炭素繊維と他の
繊維材料よりなる吸着性を有する紙が提案されて
いる。しかしながら吸着材として活性炭素繊維を
使用すると繊維のからみ合いにより吸着剤の脱落
のない紙が得られることが開示されているのみで
あつて、本願出願人が開示された発明にもとづい
て活性炭素繊維を他の繊維材料と混抄して吸着性
紙を製造したが、得られた紙は均質性にかけかつ
ジグザグ状に賦形したりあるいは段ボールへ加工
する場合の加工性に優れたものではなかつた。又
密度の小さい紙しか得られず、紙の吸着容量は小
さく又紙を通しての通気を制限したい様な場合の
使用には問題を生じた。 本願発明者は上記した問題に鑑み高度の均質性
を有し、賦形加工性に優れかつ密度の高い活性炭
素繊維シートを得るべく鋭意研究を行なつた結果
本願発明に到達したものである。 直径が15μ以下、破断伸度(以下伸度という)
(%)/直径(μ)の比が0.1以上で平均長さが
0.1〜5mmの範囲にある活性炭素繊維及び他の繊
維材料を重量比で1:0.25〜1:1の比率で水中
に分散し抄紙することにより本発明の目的とする
賦形加工性に富む活性炭素繊維シートを得ること
が出来たのである。活性炭素繊維を含有するシー
トから炭素質の脱落がおこる現象は、主として次
の二つに大別できる。第一は活性炭素繊維同志、
あるいは混合用の他の繊維とのからみ合いが不充
分であるために、シートを振つたり、気体を通過
させたり、あるいはシート面をこすつたりすると
きに、シートから炭素質が素抜けて脱落してしま
う場合である。第二はシートを折り曲げたり、シ
ートは強く摩擦したりするときに、活性炭素繊維
が折れて、極く短い活性炭素繊維が脱落してくる
場合である。このような炭素質の脱落がないシー
トを作る方法の一つとして、いわゆるバインダー
を多量に加えて、活性炭素繊維同志あるいは混合
用繊維との接着を強固にすることが考えられた
が、この方法によれば、活性炭素繊維の表面の多
くがバインダーでおおわれてしまい、本願で目的
としている高い吸着能を有するシートが得られな
かつた。従つて、吸着能の保持率を良好にして炭
素質の脱落のないシートを作るには、活性炭素繊
維の均質なからみ合いが充分におこるような活性
炭素繊維を選び、さらに伸度変形や曲げ変形に破
壊し難い活性炭素繊維を選ぶことが不可欠である
ことが判明した。まず第一の脱落がおこらないよ
うに活性炭素繊維の均質なからみ合いが充分にお
こるようにするには、まず繊維が変形しやすいこ
とが必要であり、活性炭素繊維のように他の紙用
原料パルプにくらべて剛直性の大きいものでは、
特にこの点に留意することが重要であることが判
明した。即ち活性炭素繊維の直径及び伸度が、活
性炭素繊維同志あるいは混合繊維との均質なから
み合い発現に大きく影響し、活性炭素繊維の直径
が小さい程、また伸度が大きい程からみ合いがお
こりやすく、結果として得られる吸着性シートか
らの炭素質の脱落は発生し難くなるのである。次
に第二の脱落がおこらないようにするためには、
大きな変形をうけたときに活性炭素繊維が破壊し
難いことが好ましく、この場合活性炭素繊維の伸
度と直径の比が大きく影響していることが判明し
た。即ち伸度(%)/直径(μ)の比が小さい
程、大きな伸長変形や曲げ変形に対して破壊しや
すくなり、結果として炭素質の脱落のないシート
を作ることは困難になる。種々検討の結果、活性
炭素繊維の直径は15μ以下、好ましくは10μ以下
という一般の紙の原料となる天然あるいは合成パ
ルプとくらべてはるかに小さい値で、かつ伸度
(%)/直径(μ)の比が、0.1以上である活性炭
素繊維が必要であつた。なお、活性炭素繊維の伸
度は原料の種類や製造過程の条件によつ異なり最
大3%ぐらいのものまでつくれるが、本発明にお
いては1〜2%のものの使用が好ましい。 次の要件は、活性炭素繊維の平均の長さに関す
るものである。即ち活性炭素繊維の平均の長さが
長ければ長い程、繊維同志のからみ合いが多くな
り、一見有利なようであるが、平均長さが長くな
りすぎると極度に不均質なからみ合いである毛玉
状の集合体が発生し、結果として均質度の高い地
合いの良好なシートを得ることができないのであ
る。このような毛玉状の集合体がシート中に存在
すれば、種々の性質上の斑が極端に大きくなる。
例えば吸着能の斑、通気抵抗の斑、あるいは厚み
の斑などであり、このため種々の不都合が生じ
る。この毛玉状の集合体は、湿式抄紙プロセス中
の抄紙原液の調整段階で発生する。一端発生する
と、抄紙直前の抄紙原液の希釈工程でも容易に
は、消失せず均質化し得ないのである。このよう
な毛玉状集合体の発生は、本願で対象にしている
活性炭素繊維の場合には、他の一般の繊維あるい
は実質的に吸着能を有しない炭素繊維と比較して
特異的に発生しやすいのであつて、これは水分散
系で、活性炭素繊維表面同志の親和力が強いこと
に依る。この活性炭素繊維の毛玉状集合体の発生
は、紙料原料液中の濃度に多少は影響される。即
ち濃度が低い程、毛玉状集合体の発生がおこらな
いための活性炭素繊維の許容最大平均長さは、長
くなる傾向にある。さらに活性炭素繊維の直径が
大きい程伸度/直径が小さい程、従つて変形し難
い程、該許容最大平均長さは長くなる。 上記したような直径及び伸度/直径の比を有す
る活性炭素繊維の場合で、一般に常用されている
紙料濃度範囲で、実質的に毛玉状集合体の発生が
おこらないためには、平均長さは5mm以下である
ことが判明した。一方活性炭素繊維の長さが短か
くなりすぎると、炭素質の脱落を防止するに有効
な繊維同志のからみ合いが生し難くなり、さに湿
式抄紙のときスクリーンからの活性炭素繊維の逃
散がおこり、活性炭素繊維の重量収率の減少、白
水の汚染がおこり、さらに得られたシートの強度
も低下する傾向にある。検討の結果、活性炭素繊
維の平均長さが0.1mm以上が必要であることが判
名した。 次に該混合シートの加工性について説明する。
吸着能を有する活性炭を主として含有する混合シ
ートは、そろままで使用されるばかりでなく、例
えば片面段ボールに加工したり、ジグザグ状波形
に賦形したりすることによつて、その適用範囲が
さらに拡大することが知られている。この様な通
常の紙に対して行われている賦形操作を、活性炭
素繊維を主とする混合シートに対して行うとき、
炭素質の脱落がおこる可能性がある外に、活性炭
素繊維は一般に剛直性が大であるために、該シー
トに折り目をつけても、例えばエンボスローラー
を出てしまうと、混合シートははねかえつてしま
つて折り目がつき難く、結果として賦形の際の形
態保持性がわるいという傾向にある。混合用繊維
の含有率が高くなればなる程、当然該加工性は向
上するが、同一含有率であれば、活性炭素繊維の
平均長さが短かい程、加工性は良好であることが
判明した。さらに副次的ではあるが、活性炭素繊
維の直径が小さい程有利であつた。本願で目的と
している高吸着能の混合シートの場合には、主成
分は活性炭素繊維であり、活性炭素繊維の平均長
さは、5mm以下が必要である。なお、該加工性の
向上の点に関しては、本特許に提案する方法以外
に、熱可塑性のバインダーを混合しバインダーの
軟化点以上に混合シートを加熱して、強制的にシ
ートをプレスし該加工性の改良されたシートを得
ることを試みたが、この方法によると吸着能が極
端に低下してしまい、本願で目的としているよう
な高吸着能、高加工性のシートを得ることはでき
なかつた。本願発明の他の大きな目的は密度の大
きいシートを提供することである。活性炭素繊維
の比率の高くなる程密度が低下し、活性炭素繊維
と混合用の他の繊維の比率が1:0.25より大きく
なると密度は0.1g/cc以下となり吸着シートの
容積あたりの吸着容量は小さいものになる。シー
トの密度には活性炭素繊維の繊維長が大きく影響
し、たとえ活性炭素繊維の比率が1:0.25以下で
あつても活性炭素繊維の繊維長5mmを境にしてシ
ートの密度は急激に小さくなる。0.1g/c.c.以上
のシートを得るためには繊維長は5mm以下である
ことが必要である。 本願で使用する活性炭素繊維の吸着能について
は、ベンゼン平衡吸着量が300mg/g以上である
ことが好ましい。これによつて混合シートのベン
ゼン平衡吸着量が140mg/g以上という従来の吸
着性シートにくらべてはるかに高吸着能の混合シ
ートが得られる。このような吸着能を有する活性
炭素繊維は、綿、麻、木材パルプセルロース再生
繊維、ポリビニルアルコール繊維、アクリル系繊
維、芳香族ポリアミド繊維、リグニン繊維、石油
ピツチ繊維等の原料繊維を、適当な耐炎剤で耐炎
化処理を施し、さらに500℃以上の温度で賦活炭
化することにより製造される。原料繊維として得
られる活性炭素繊維の物性(伸度等)の高いこと
から、セルロース系繊維、特にポリノジツク繊維
が好ましい。該活性炭素繊維は、上記の範囲の長
さにあらかじめ調整されているものを使つても、
また抄紙プロセス中に切断工程を組み込んでも良
い。後者の場合、繊維の平均長さが上記した範囲
より大きい繊維を切断するには、例えば遊離状叩
解できるビーターで有利に達成できる。この場合
には、混合する繊維の存在しない状態で切断する
のが、活性炭素繊維の均質分散の点で好ましい。 次に該活性炭素繊維と混合する繊維としては、
天然繊維、合成繊維、有機繊維、無機繊維などが
挙げられる。即ち木材パルプ、麻パルプ、リシタ
ーパルプなどの天然繊維、レイヨンなどの半合成
繊維、ポリアクリロニトリル、ポリエチレン、ポ
リプロピレンなどの合成パルプ、及びアスベスト
繊維などの無機繊維などである。これらは1種又
は2種以上混合してもよい。これらの混合繊維
は、活性炭素繊維に対して重量比で0.25〜1.0倍
の範囲で混合する必要がある。これより混合繊維
が多量であれば、目的とする吸着能の高いシート
が得られず、またこれより混合繊維が少量であれ
ば、得られるシートの機械的強度が低くなつて実
用上不都合である。 さらに、抄紙プロセスに於いて、各種の抄紙操
作性を良好にするための助剤、例えば、湿紙の強
度を向上するためのバインダー、例えばポリビニ
ルアルコール繊維、紙の地合いを良好にするため
あるいは活性炭素繊維と混合繊維の分散を均質に
するための粘剤、例えばポリエチレンオキサイド
やポリアクリルアミド、ドライヤーからのシート
の離れを良好にするフツ素系の助剤などをシート
の原料液に添加することが好ましい場合もある。 該混合シートを得るには、通常の湿式抄紙法が
適用される。例えばホレンダー型ビーターで、あ
らかじめ上記した平均長さに整えられた活性炭素
繊維を、パルパーで離解し混合槽に入れる。 次に混合繊維を同じくパルパーで離解し混合槽
に入れる。混合槽中での繊維の濃度は、通常0.5
〜3%である。この混合槽に各種の助剤を加えた
後、通常の抄紙金網、例えば円網や長網で濾別し
た後、ヤンキー型あるいは多筒式乾燥機のような
もので乾燥すればよい。 以下本発明に用いる用語について説明する。 ベンゼン平衡吸着量 JIS K−1412に従つて平衡吸着量を測定する
JISではベンゼン吸着力(%)となつているが、
表現を変えてmg/gで表示する。ただし、試料は
0.1〜0.2gを用いる。 実施例 1 平均長さ2mm、直径8μ、伸度(%)/直径
(μ)の比が0.25で、ベンゼン平衡吸着量が480
mg/gである活性炭素繊維70Kgを、通常の離解機
で1%の濃度の水分散状態で離解し、混合槽に入
れた。次にまえもつて叩解度SR30゜に叩解した
針葉樹晒クラフトパルプを絶乾重量で30Kg、離解
機を経て混合槽へ入れた。この混合槽へポリビニ
ルアルコール繊維7Kg、弗素系サイズ剤、シリコ
ン系消泡剤を少量加えて、全繊維濃度が1%であ
る紙料原液を調整した。次に常法に従つて、円鋼
式湿式抄紙装置を使い、ポリエチレンオキサイド
を粘剤として使い抄紙を行い、坪量50g/m2の混
合シートを得た。 この混合シートの平衡ベンゼン吸着量は、270
mg/g活性炭素繊維の混合シートへの収率は98%
であつた。さらにこの混合シート中には、活性炭
素繊維の毛玉状集合体は全く認められず、このシ
ートを通して空気を、例えば50cm/秒の速度で流
しても炭素質の脱落は認められず、さらに片面段
ボール加工を行つても炭素質の脱落は認められな
かつた。なお、炭素質の脱落テストは次の様にし
て評価した。即ち、吸着シートに接着テープを貼
りつけた後、これをはがしてテープに付着した黒
色の活性炭素繊維の量を観察する。別に見本サン
プルを用意してテスト品を比較することにより脱
落性を評価した。 実施例2〜3、比較例1〜4 実施例1に於いて用いる活性炭素繊維の形状及
び伸度のみを変えて、他は実施例1と同様な方法
で種々の混合シートを得た。各々の混合シートに
ついて、10cm×10cmの面積中に存在する毛玉状集
合体の平均数、混合シートを通して50cm/秒の速
度で空気を流したときの炭素質の脱落の有無、通
常の片面段ボールを加工したときの炭素質の脱落
の有無及び混合シート中への活性炭素繊維の重量
収率を測定した。結果を表−1に示す。
The present invention relates to a method for producing an adsorbent sheet having high adsorption capacity, high degree of homogeneity, substantially no shedding of carbonaceous material, and excellent corrugation processability. Conventionally, sheets with adsorption properties have been known in which powdered or granular activated carbon is contained in paper, nonwoven fabric, etc.; It is hard to get wet and easy to fall off. For this reason, the effective life of the adsorbent sheet is short, and the activated carbon that falls off pollutes the surrounding area and closes the passage for gas, liquid, etc. Furthermore, such a sheet can be shaped into a zigzag shape, for example,
When processing such as processing into corrugated cardboard, the powdered activated carbon has the disadvantage that it becomes even more difficult to fall off. On the other hand, absorbent papers made of activated carbon fibers and other fibrous materials have been proposed as packaging materials for products that emit odors, such as fish, vegetables, or garbage. However, it is only disclosed that when activated carbon fiber is used as an adsorbent, a paper without the adsorbent falling off is obtained due to the intertwining of the fibers, and the applicant of the present application has developed an activated carbon fiber based on the disclosed invention. Adsorbent paper was produced by mixing it with other fiber materials, but the resulting paper was not very homogeneous and did not have excellent workability when it was shaped into a zigzag shape or processed into corrugated board. Moreover, only a paper with a low density can be obtained, and the adsorption capacity of the paper is small, causing problems in use in cases where it is desired to restrict air flow through the paper. In view of the above-mentioned problems, the inventors of the present application have conducted extensive research to obtain an activated carbon fiber sheet that has a high degree of homogeneity, excellent shaping processability, and high density, and as a result has arrived at the present invention. Diameter is 15μ or less, elongation at break (hereinafter referred to as elongation)
(%)/diameter (μ) ratio is 0.1 or more and the average length is
By dispersing activated carbon fibers and other fiber materials in the range of 0.1 to 5 mm in weight ratio in water at a ratio of 1:0.25 to 1:1 and making paper, the activated carbon fibers with excellent shaping processability as the object of the present invention can be obtained. We were able to obtain a carbon fiber sheet. The phenomenon in which carbonaceous material falls off from a sheet containing activated carbon fibers can be broadly classified into the following two types. The first is activated carbon fiber comrades,
Or, because the intertwining with other fibers for mixing is insufficient, carbonaceous material is easily removed from the sheet when the sheet is shaken, gas is passed through it, or the sheet surface is rubbed. This is a case where it falls off. The second case is when the sheet is folded or subjected to strong friction, the activated carbon fibers break and extremely short activated carbon fibers fall off. One way to make such a sheet without shedding of carbonaceous material was to add a large amount of a so-called binder to strengthen the bond between activated carbon fibers or with mixed fibers, but this method According to the method, most of the surface of the activated carbon fibers was covered with the binder, making it impossible to obtain a sheet with the high adsorption capacity aimed at in the present application. Therefore, in order to make a sheet with good adsorption capacity retention and no carbon shedding, activated carbon fibers should be selected so that homogeneous intertwining of activated carbon fibers will occur sufficiently, and the activated carbon fibers should be It has been found that it is essential to choose activated carbon fibers that are resistant to deformation and breakage. In order to ensure that the activated carbon fibers are sufficiently homogeneously intertwined to prevent the first shedding, the fibers must first be easily deformed, and unlike activated carbon fibers, For materials with greater rigidity than raw material pulp,
It has been found that it is particularly important to pay attention to this point. In other words, the diameter and elongation of the activated carbon fibers have a large influence on the appearance of homogeneous entanglement with other activated carbon fibers or mixed fibers, and the smaller the diameter of the activated carbon fibers and the greater the elongation, the more likely entanglement will occur. As a result, carbonaceous material is less likely to fall off from the resulting adsorbent sheet. Next, in order to prevent the second dropout from occurring,
It is preferable that activated carbon fibers are difficult to break when subjected to large deformations, and it has been found that in this case, the ratio of elongation to diameter of activated carbon fibers has a large effect. That is, the smaller the ratio of elongation (%)/diameter (μ), the easier it is to break due to large elongation deformation or bending deformation, and as a result, it becomes difficult to produce a sheet without shedding of carbonaceous material. As a result of various studies, the diameter of activated carbon fibers is 15μ or less, preferably 10μ or less, which is a much smaller value than the natural or synthetic pulp that is the raw material for general paper, and the elongation (%) / diameter (μ) Activated carbon fibers with a ratio of 0.1 or more were required. The elongation of the activated carbon fiber varies depending on the type of raw material and the conditions of the manufacturing process, and can be made up to a maximum of about 3%, but in the present invention, it is preferable to use an elongation of 1 to 2%. The next requirement concerns the average length of the activated carbon fibers. In other words, the longer the average length of the activated carbon fibers, the more intertwining the fibers will have, which may seem advantageous at first glance, but if the average length is too long, the fibers will become entangled with each other, creating a pill-like appearance. As a result, a sheet with a high degree of homogeneity and good texture cannot be obtained. If such pill-like aggregates are present in the sheet, spots of various properties will become extremely large.
For example, there may be unevenness in adsorption capacity, unevenness in ventilation resistance, unevenness in thickness, etc., resulting in various inconveniences. This fluff-like aggregate is generated during the preparation stage of the papermaking stock solution during the wet papermaking process. Once generated, it does not easily disappear and cannot be homogenized even during the dilution process of the papermaking stock solution immediately before papermaking. The occurrence of such fluff-like aggregates is particularly likely to occur in the case of activated carbon fibers, which are the subject of this application, compared to other general fibers or carbon fibers that do not have substantial adsorption ability. This is due to the strong affinity between activated carbon fiber surfaces in an aqueous dispersion system. The occurrence of this fluff-like aggregate of activated carbon fibers is influenced to some extent by the concentration in the paper stock raw material liquid. That is, the lower the concentration, the longer the maximum allowable average length of activated carbon fibers for preventing the formation of pill-like aggregates tends to become longer. Furthermore, the larger the diameter of the activated carbon fibers, the smaller the elongation/diameter, and therefore the harder it is to deform, the longer the allowable maximum average length becomes. In the case of activated carbon fibers having the diameter and elongation/diameter ratio as described above, the average length must be was found to be less than 5 mm. On the other hand, if the length of the activated carbon fibers becomes too short, it becomes difficult to form intertwining between the fibers that is effective in preventing carbonaceous material from falling off, and the escape of activated carbon fibers from the screen during wet paper making becomes difficult. This tends to lead to a decrease in the weight yield of activated carbon fibers, contamination of white water, and a decrease in the strength of the obtained sheet. As a result of the study, it was determined that the average length of the activated carbon fibers should be 0.1 mm or more. Next, the processability of the mixed sheet will be explained.
The mixed sheet, which mainly contains activated carbon with adsorption ability, can be used not only as is, but also by processing it into single-sided corrugated cardboard or shaping it into a zigzag waveform, to further expand its range of applications. known to expand. When this type of shaping operation that is performed on ordinary paper is performed on a mixed sheet mainly made of activated carbon fibers,
In addition to the possibility of shedding of the carbonaceous material, activated carbon fibers are generally highly rigid, so even if the sheet is creased, the mixed sheet will bounce off, for example, once it exits an embossing roller. It becomes difficult to form creases and, as a result, tends to have poor shape retention during shaping. Naturally, the higher the content of the blending fibers, the better the processability, but it was found that at the same content, the shorter the average length of the activated carbon fibers, the better the processability. did. Although it was a secondary benefit, the smaller the diameter of the activated carbon fiber, the more advantageous it was. In the case of a mixed sheet with high adsorption capacity, which is the object of this application, the main component is activated carbon fibers, and the average length of the activated carbon fibers must be 5 mm or less. Regarding the improvement of the processability, in addition to the method proposed in this patent, there is a method in which a thermoplastic binder is mixed, the mixed sheet is heated above the softening point of the binder, and the sheet is forcibly pressed. An attempt was made to obtain a sheet with improved properties, but this method resulted in an extremely low adsorption capacity, making it impossible to obtain a sheet with high adsorption capacity and high processability as the aim of this application. Ta. Another major object of the present invention is to provide a sheet with high density. The density decreases as the ratio of activated carbon fiber increases, and when the ratio of activated carbon fiber and other fibers for mixing is greater than 1:0.25, the density becomes 0.1 g/cc or less, and the adsorption capacity per volume of the adsorption sheet is It becomes something small. The fiber length of the activated carbon fibers has a large effect on the density of the sheet, and even if the ratio of activated carbon fibers is less than 1:0.25, the density of the sheet decreases rapidly when the fiber length of the activated carbon fibers reaches 5 mm. . In order to obtain a sheet of 0.1 g/cc or more, the fiber length must be 5 mm or less. Regarding the adsorption capacity of the activated carbon fiber used in this application, it is preferable that the equilibrium adsorption amount of benzene is 300 mg/g or more. As a result, a mixed sheet with a much higher adsorption capacity than conventional adsorbent sheets, in which the equilibrium adsorption amount of benzene on the mixed sheet is 140 mg/g or more, can be obtained. Activated carbon fibers with such adsorption ability can be used to absorb raw material fibers such as cotton, hemp, wood pulp cellulose regenerated fibers, polyvinyl alcohol fibers, acrylic fibers, aromatic polyamide fibers, lignin fibers, and petroleum pitch fibers into suitable flame-resistant materials. It is manufactured by flame-retardant treatment with a chemical agent and then activated carbonization at a temperature of 500°C or higher. Cellulose fibers, particularly polynosic fibers, are preferred because the activated carbon fibers obtained as raw material fibers have high physical properties (such as elongation). Even if the activated carbon fiber is pre-adjusted to the length within the above range,
Further, a cutting step may be incorporated into the papermaking process. In the latter case, cutting of fibers whose average fiber length is larger than the above-mentioned range can be advantageously achieved, for example, with a beater capable of free beating. In this case, it is preferable to cut the activated carbon fibers in the absence of fibers to be mixed, from the viewpoint of homogeneous dispersion of the activated carbon fibers. Next, the fibers to be mixed with the activated carbon fibers include:
Examples include natural fibers, synthetic fibers, organic fibers, and inorganic fibers. That is, they include natural fibers such as wood pulp, hemp pulp, and liciter pulp, semi-synthetic fibers such as rayon, synthetic pulps such as polyacrylonitrile, polyethylene, and polypropylene, and inorganic fibers such as asbestos fibers. These may be used alone or in combination of two or more. These mixed fibers need to be mixed in a weight ratio of 0.25 to 1.0 times the weight of activated carbon fibers. If the amount of mixed fiber is larger than this, a sheet with the desired high adsorption capacity cannot be obtained, and if the amount of mixed fiber is smaller than this, the mechanical strength of the obtained sheet will be low, which is not practical. . Furthermore, in the papermaking process, various auxiliary agents are used to improve papermaking operability, such as binders to improve the strength of wet paper, polyvinyl alcohol fibers, etc. Adhesives such as polyethylene oxide or polyacrylamide to homogenize the dispersion of carbon fibers and mixed fibers, and fluorine-based auxiliaries to improve the separation of the sheet from the dryer can be added to the sheet raw material liquid. In some cases it may be preferable. A conventional wet papermaking method is applied to obtain the mixed sheet. For example, activated carbon fibers, which have been prepared in advance to the above average length using a Hollender type beater, are disintegrated using a pulper and placed in a mixing tank. Next, the mixed fibers are similarly disintegrated using a pulper and placed in a mixing tank. The concentration of fiber in the mixing tank is usually 0.5
~3%. After adding various auxiliary agents to this mixing tank, the mixture may be filtered through a normal paper-making wire mesh, such as a circular wire mesh or a fourdrinier, and then dried in a Yankee type or multi-barrel dryer. The terms used in the present invention will be explained below. Benzene equilibrium adsorption amount Measure the equilibrium adsorption amount according to JIS K-1412
JIS specifies benzene adsorption power (%),
Change the expression and display it in mg/g. However, the sample
Use 0.1-0.2g. Example 1 The average length is 2 mm, the diameter is 8 μ, the elongation (%)/diameter (μ) ratio is 0.25, and the equilibrium adsorption amount of benzene is 480.
70 kg of activated carbon fiber with a concentration of mg/g was disintegrated in a water dispersion state at a concentration of 1% using a conventional disintegrator and placed in a mixing tank. Next, 30 kg of bleached softwood kraft pulp, which had been previously beaten to a freeness of SR30°, was put into a mixing tank through a disintegrator. A small amount of 7 kg of polyvinyl alcohol fibers, a fluorine-based sizing agent, and a silicone-based antifoaming agent were added to this mixing tank to prepare a stock stock solution having a total fiber concentration of 1%. Next, according to a conventional method, paper was made using a circular steel wet paper machine using polyethylene oxide as a sticky agent to obtain a mixed sheet with a basis weight of 50 g/m 2 . The equilibrium benzene adsorption amount of this mixed sheet is 270
Yield of mg/g activated carbon fiber to mixed sheet is 98%
It was hot. Furthermore, no fluff-like aggregates of activated carbon fibers were observed in this mixed sheet, and even when air was flowed through this sheet at a speed of, for example, 50 cm/sec, no carbonaceous material was observed to fall off. No drop-off of carbonaceous material was observed even after this process. The carbonaceous shedding test was evaluated as follows. That is, after attaching an adhesive tape to an adsorption sheet, it was peeled off and the amount of black activated carbon fibers attached to the tape was observed. Separate samples were prepared and the shedding properties were evaluated by comparing them with the test products. Examples 2 to 3, Comparative Examples 1 to 4 Various mixed sheets were obtained in the same manner as in Example 1, except that only the shape and elongation of the activated carbon fibers used in Example 1 were changed. For each mixed sheet, average number of pill-like aggregates present in an area of 10 cm x 10 cm, presence or absence of carbonaceous material falling off when air is flowed through the mixed sheet at a speed of 50 cm/sec, processing of ordinary single-sided corrugated cardboard. At this time, the presence or absence of carbonaceous material falling off and the weight yield of activated carbon fibers into the mixed sheet were measured. The results are shown in Table-1.

【表】 比較例 5 実施例1に於いて用いる活性炭素繊維の形状及
び伸度を次の如く変えて、他は実施例1と同様な
方法で混合シートを得た。
[Table] Comparative Example 5 A mixed sheet was obtained in the same manner as in Example 1 except that the shape and elongation of the activated carbon fibers used in Example 1 were changed as follows.

【表】 この混合シートについて、10cm×10cmの面積中
に存在する毛玉状集合体の平均数、混合シートを
通して50cm/秒の速度で空気を流したときの炭素
質の脱落の有無、通常の片面段ボールを加工した
時の炭素質の脱落の有無及び混合シート中への活
性炭素繊維の重量収率を測定した。結果は次の通
りであつた。
[Table] Regarding this mixed sheet, the average number of pill-like aggregates present in an area of 10 cm x 10 cm, presence or absence of carbonaceous matter falling off when air is flowed through the mixed sheet at a speed of 50 cm/sec, and normal single-sided corrugated cardboard. The presence or absence of shedding of carbonaceous material during processing and the weight yield of activated carbon fibers into the mixed sheet were measured. The results were as follows.

【表】 実施例 5 実施例1において、針葉樹晒クラフトパルプの
代わりに、混合繊維としてポリエチレン系合成パ
ルプ(ゼラパツクSWP三井ゼラパツクK.K製)
を用いる以外は同一の操作により混合シートを得
た。この場合シートは、活性炭素繊維の毛玉状集
合体はみく均質の地合いのもので、炭素質の脱落
も認められなかつた。 実施例 6 平均長さ1mm、直径8μ、伸度/直径の比0.16
で、平衡ベンゼン吸着量500mg/gの活性炭素繊
維50部と叩解度25゜の針葉樹晒クラフトパルプ50
部とから、実施例1にのつとつて湿式抄紙法によ
つて坪量30g/m2の混合シートを得た。この際の
混合槽中の繊維分の濃度は2%であつた。この混
合シートは、毛玉状集合体は全く発生しておら
ず、かつ炭素質の脱落も実質上なかつた。 比較例 6 平均長さ1mm、直径16μ、伸度/直径の比0.07
で、平衡ベンゼン吸着量500mg/gの活性炭を使
う以外は、実施例6と同様にして混合シートを得
た。この混合シートを使つて片面段ボールを加工
したところ炭素質の激しい脱落がみられた。
[Table] Example 5 In Example 1, instead of bleached softwood kraft pulp, polyethylene synthetic pulp (Zerapack SWP manufactured by Mitsui Zerapack KK) was used as the mixed fiber.
A mixed sheet was obtained by the same operation except that . In this case, the sheet had a fluff-like aggregate of activated carbon fibers with a homogeneous texture, and no carbonaceous matter was observed to come off. Example 6 Average length 1mm, diameter 8μ, elongation/diameter ratio 0.16
50 parts of activated carbon fiber with an equilibrium benzene adsorption amount of 500 mg/g and 50 parts of bleached softwood kraft pulp with a beating degree of 25°.
A mixed sheet having a basis weight of 30 g/m 2 was obtained from the same portion by the wet paper making method as in Example 1. The concentration of fibers in the mixing tank at this time was 2%. In this mixed sheet, no fluff-like aggregates were generated, and there was substantially no shedding of carbonaceous matter. Comparative example 6 Average length 1mm, diameter 16μ, elongation/diameter ratio 0.07
A mixed sheet was obtained in the same manner as in Example 6, except that activated carbon with an equilibrium benzene adsorption amount of 500 mg/g was used. When this mixed sheet was used to process single-sided corrugated cardboard, severe shedding of carbonaceous material was observed.

Claims (1)

【特許請求の範囲】[Claims] 1 直径が15μ以下、伸度(%)/直径(μ)の
比が0.1以上で平均長さが0.1〜5mmの範囲にある
活性炭素繊維及び他の繊維材料を重量比で1:
0.25〜1:1の比率で水中に分散し抄紙すること
を特徴とする吸着性シートの製造法。
1. Activated carbon fibers and other fiber materials with a diameter of 15 μ or less, an elongation (%)/diameter (μ) ratio of 0.1 or more, and an average length of 0.1 to 5 mm in a weight ratio of 1:
A method for producing an adsorbent sheet, which comprises dispersing it in water at a ratio of 0.25 to 1:1 and making paper.
JP12798377A 1977-10-24 1977-10-24 Production of adsorbing sheet Granted JPS5464105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12798377A JPS5464105A (en) 1977-10-24 1977-10-24 Production of adsorbing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12798377A JPS5464105A (en) 1977-10-24 1977-10-24 Production of adsorbing sheet

Publications (2)

Publication Number Publication Date
JPS5464105A JPS5464105A (en) 1979-05-23
JPS6145000B2 true JPS6145000B2 (en) 1986-10-06

Family

ID=14973529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12798377A Granted JPS5464105A (en) 1977-10-24 1977-10-24 Production of adsorbing sheet

Country Status (1)

Country Link
JP (1) JPS5464105A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696998A (en) * 1979-12-27 1981-08-05 Toho Beslon Co Deodorizing and antiifungal blend paper
JPS56148999A (en) * 1980-04-16 1981-11-18 Riyouji Kimura Production of adsorbing sheet
JPS56155012A (en) * 1980-04-30 1981-12-01 Mitsubishi Rayon Co Ltd Sheet-shaped active carbon fiber and its preparation
JPS57117700A (en) * 1981-01-08 1982-07-22 Riyouji Kimura Production of adsorbable sheet
JPS57150600U (en) * 1981-03-16 1982-09-21
JPS6110228A (en) * 1984-06-26 1986-01-17 松下電器産業株式会社 Electric double layer capacitor
JPS6110229A (en) * 1984-06-26 1986-01-17 松下電器産業株式会社 Method of producing electric double layer capacitor
DE3576878D1 (en) * 1984-07-17 1990-05-03 Matsushita Electric Ind Co Ltd POLARIZABLE ELECTRODE BODY, METHOD FOR THE PRODUCTION THEREOF AND ELECTRIC DOUBLE LAYER CAPACITOR WITH THE POLARIZABLE ELECTRODE BODY.
JP6914106B2 (en) * 2017-06-05 2021-08-04 三菱製紙株式会社 Carbon short fiber non-woven fabric

Also Published As

Publication number Publication date
JPS5464105A (en) 1979-05-23

Similar Documents

Publication Publication Date Title
US5573640A (en) Paper made with cellulose fibers having an inner core of cellulose acetate
US6306251B1 (en) Multi-ply cellulosic products using high-bulk cellulosic fibers
US5906894A (en) Multi-ply cellulosic products using high-bulk cellulosic fibers
US2810646A (en) Water-laid webs comprising water-fibrillated, wet-spun filaments of an acrylonitrile polymer and method of producing them
US5223095A (en) High tear strength, high tensile strength paper
JPS6145000B2 (en)
US3052593A (en) Cellulosic fibers and fibrous articles and method of making same
EP0444073A1 (en) Easily defibered web-shaped paper product.
JP2024032705A (en) Adsorption sheet and method for producing the same
JP5235553B2 (en) Paper yarn base paper
JP6118617B2 (en) Multilayer paper and method for producing multilayer paper
JP2001032189A (en) Heat-resistant paper-like material and its production
CN114450450B (en) Wet-laid web comprising viscose fibres
JPH07252794A (en) Heat-resistant paper and catalyst support consisting of the same paper
WO2000058094A1 (en) Use of cotton fibers in filter paper
JP4214495B2 (en) Separator paper for air conditioning filter
JP4633070B2 (en) Manufacturing method of sanitary thin paper
JP2020094309A (en) Carbon short fiber wet type nonwoven fabric and carbon fiber-reinforced resin
JPS62191600A (en) Production of nonwoven fabric
JP3646239B2 (en) Separator paper for air conditioning filter
JP2000282386A (en) Paper with low dust development
JP3342063B2 (en) Paper for stencil printing
JPH1086247A (en) Low density paper stock board
JP4292430B2 (en) Separator paper for air conditioning filter
Martin et al. Pulping and papermaking experiments on redwood