Nothing Special   »   [go: up one dir, main page]

JPS6144133B2 - - Google Patents

Info

Publication number
JPS6144133B2
JPS6144133B2 JP56093172A JP9317281A JPS6144133B2 JP S6144133 B2 JPS6144133 B2 JP S6144133B2 JP 56093172 A JP56093172 A JP 56093172A JP 9317281 A JP9317281 A JP 9317281A JP S6144133 B2 JPS6144133 B2 JP S6144133B2
Authority
JP
Japan
Prior art keywords
less
stress corrosion
corrosion cracking
alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56093172A
Other languages
Japanese (ja)
Other versions
JPS57207149A (en
Inventor
Takeo Kudo
Daiji Moroishi
Akio Ikeda
Yasuo Ootani
Yasutaka Okada
Kunihiko Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9317281A priority Critical patent/JPS57207149A/en
Priority to US06/383,803 priority patent/US4400209A/en
Priority to GB08216703A priority patent/GB2103655B/en
Priority to DE3221878A priority patent/DE3221878A1/en
Priority to FR8210116A priority patent/FR2507628A1/en
Priority to SE8203627A priority patent/SE452477B/en
Publication of JPS57207149A publication Critical patent/JPS57207149A/en
Publication of JPS6144133B2 publication Critical patent/JPS6144133B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高強度および優れた耐応力腐食割
れ性を有し、特に油井管の製造に用いるのに適し
た析出強化型合金に関するものである。 近年、エネルギー事情の悪化から、油井および
天然ガス井は深井戸化の傾向が著しく、深さ:
6000m以上、なかには深さ:10000m以上の深井
戸が出現している。 また、同様な事情から、湿潤な硫化水素をはじ
め、炭酸ガスや塩素イオンなどの腐食性成分を含
有する苛酷な腐食環境下での石油および天然ガス
の採掘が予儀なくされつつある。 このような厳しい環境下での石油および天然ガ
スの掘削に伴い、これに使用される油井管にも高
強度、並びに優れた耐食性、特に耐応力腐食割れ
性が要求されるようになつてきている。 油井管の一般的腐食対策として、インヒビタと
呼ばれる腐食抑制剤を投入する方法が知られてい
るが、この方法は、例えば海上油井などには有効
に活用できない場合が多い。 かかる点から、最近では油井管の製造に、ステ
ンレス鋼はじめ、インコロイやハステロイ(いず
れも商品名)といつた高級な耐食性高合金鋼の採
用も検討されはじめているが、いまのところ、こ
れらの合金に関して、H2S−CO2−Cl-の油井環
境での腐食挙動についての詳細は十分に解明され
るに至つておらず、しかも深井戸用油井管に要求
される高強度をもつものではないのが現状であ
る。 そこで、本発明者等は、上述のような観点か
ら、深井戸や苛酷な腐食環境、特にH2S−CO2
Cl-の油井環境下での石油掘削に十分耐え得る高
強度とすぐれた耐応力腐食割れ性とをもつた油井
管を得べく研究を行なつた結果、 (a) H2S−CO2−Cl-環境下における腐食の主た
るものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、オーステナイトステンレス
鋼における一般的なそれとは挙動を全く異にす
るものであること。すなわち、一般の応力腐食
割れがCl-の存在と深く係わるものであるのに
対して、上記の油井環境によるものではCl-
さることながら、それ以上にH2Sの影響が大き
いこと。 (b) 油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間
加工は上記応力腐食割れに対する抵抗性を著し
く減少させること。 (c) H2S−CO2−Cl-環境での鋼の溶出速度(腐
食速度)は、Cr,Ni,Mo,およびWの含有量
に依存し、これらの成分からなる表面皮膜によ
つて耐食性が保持され、かつこれらの成分は、
応力腐食割れに対してもその抵抗性を高め、特
にMoはCrに対し10倍の効果を、またMoはWの
2倍の効果をもつており、したがつて、この
MoおよびWが、 Cr(%)+10Mo(%)+5W(%)≧50%, 1%≦Mo(%)+1/2W(%)<3.5%, の条件式を満足すると共に、Ni含有量を25〜60
%、Cr含有量を22.5〜40%とすると、時効処理を
施せば冷間加工材であつても、きわめて腐食性の
強いH2S−CO2−Cl-の油井環境下、特に150℃以
下の悪環境において、応力腐食割れに対して優れ
た抵抗性を示す表面皮膜が得られること。 (d) Niについては表面皮膜に対する効果だけで
なく、組織的にも応力腐食割れ抵抗性を高める
効果があること。 (e) 合金成分としてNを0.05〜0.25%含有させる
と、合金強度が向上するようになること。 (f) 合金成分としてNbおよびVのうちの1種ま
たは2種を0.5〜4%含有させると、析出強化
作用により合金は一段と高強度をもつようにな
ること。 (g) 不可避不純物としてのS含有量を0.0007%以
下に低減させると、合金の熱間加工性が著しく
改善されるようになること。 (h) 不可避不純物としてのP含有量を0.003%以
下に低減させると、水素割れ感受性が著しく低
下するようになること。 (i) 合金成分としてCu:2%以下含有させる
と、耐食性がさらに改善されるようになるこ
と。 (j) 合金成分として、希土類元素:0.10%以下、
Y:0.20%以下、Mg:0.10%以下、および
Ca:0.10%以下のうちの1種または2種以上
を含有させると、熱間加工性がさらに一段と改
善されるようになること。 以上(a)〜(j)に示される知見を得たのである。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、C:1.0%以下、Si:
1.0%以下、Mn:2.0%以下、P:0.030%以下、
望ましくは耐水素割れ性を一段と改善する目的で
P:0.003%以下、S:0.005%以下、望ましくは
熱間加工性を一段と改善する目的でS:0.0007%
以下、N:0.05〜0.25%、Ni:25〜60%、Cr:
22.5〜40%を含有し、NbおよびVのうちの1種
または2種:0.5〜4%を含有し、Mo:3.5%未
満およびW:7%未満のうちの1種または2種を
含有し、さらに必要に応じてCu:2%以下、
Co:2%以下、希土類元素:0.10%以下、Y:
0.20%以下、Mg:0.10%以下、およびCa:0.10
%以下のうちの1種または2種以上を含有し、残
りがFeと不可避不純物からなる組成(以上重量
%、以下%の表示はすべて重量%を表わす)を有
すると共に、 Cr(%)+10Mo(%)+5W(%)≧50%, 1%≦Mo(%)+1/2W(%)<3.5%, の条件式を満足し、しかも高強度とすぐれた耐応
力腐食割れ性を有し、特にこれらの特性が要求さ
れる油井管の製造に用いるのに適した析出強化型
合金に特徴を有するものである。 つぎに、この発明の合金において、成分組成範
囲を上記の通りに限定した理由を説明する。 (a) C その含有量が0.10%を越えると、粒界に応力
腐食割れが生じやすくなることから、その上限
値を0.10%と定めた。 (b) Si Siは脱酸成分として必要な成分であるが、そ
の含有量が1.0%を越えると熱間加工性が劣化
するようになることから、その上限値を1.0%
と定めた。 (c) Mn Mn成分にはSiと同様に脱酸作用があり、し
かもこの成分は応力腐食割れ性にほとんど影響
を及ぼさない成分であることから、その上限値
を高めの2.0%と定めた。 (d) P 不可避不純物としてのP成分には、その含有
量が0.030%を越えると、応力腐食割れ感受性
を高める作用が現われるので、上限値を0.030
%と定めて応力腐食割れ感受性を低位の状態と
する必要がある。また、P含有量を低減してゆ
くと、0.003%を境にして急激に耐水素割れ性
が改善されるようになることが判明しており、
かかる点から、特にすぐれた耐水素割れ性を必
要とする場合には、P含有量を0.0030%以下と
するのが望ましい。 (e) S 不可避不純物としてのS成分には、その含有
量が0.005%を越えると、熱間加工性を劣化さ
せる作用があるので、その上限値を0.005%と
定めて熱間加工性の劣化を防止する必要があ
る。このようにS成分には、含有量が多くなる
と熱間加工性を劣化させる作用があるが、その
含有量を低めてゆき、0.0007%まで低減する
と、逆に熱間加工性が一段と改善されるように
なることから、厳しい条件での熱間加工を必要
とする場合には、S含有量を0.0007%以下とす
るのが望ましい。 (f) N Nには固溶強化作用により合金の強度を向上
させる作用があるが、その含有量が0.05%未満
では所望の高強度を得ることができず、一方
0.25%を越えて含有させると、時効処理時に窒
化物を形成して合金の耐食性を劣化させるよう
になることから、その含有量を0.05〜0.25%と
定めた。 (g) Ni Ni成分には合金の耐応力腐食割れ性を向上
させる作用があるが、その含有量が25%未満で
は所望のすぐれた耐応力腐食割れ性を確保する
ことができず、一方60%を越えて含有させても
耐応力腐食割れ性にさらに一段の向上効果は現
われず、経済性をも考慮して、その含有量を25
〜60%と定めた。 (h) Cr Cr成分は、Ni,Mo,およびW成分との共存
において、耐応力腐食割れ性を著著しく改善す
る成分であるが、その含有量を22.5%未満とし
ても熱間加工性が改善されるようになるもので
もなく、逆に所望の耐応力腐食割れ性を確保す
るためには、MoやWの含有量をそれだけ増加
させなければならず、経済的に不利となること
から、その下限値を22.5%と定めた。一方、そ
の含有量が40%を越えると、いくらS含有量を
低減させても熱間加工性の劣化は避けることが
できないことから、その上限値を40%と定め
た。 (i) NbおよびV これらの成分には、主としてNiとの間で金
属間化合物を形成して合金を析出強化する均等
的作用があるが、その含有量が0.5%未満では
所望の高強度を得ることができず、一方4%を
越えて含有させると、延性および靭性が低下
し、かつ熱間加工性も劣化するようになること
から、その含有量を0.5〜4%と定めた。 したがつて、この発明の合金より油井管を製
造するに際しては、加工率:10〜60%の冷間加
工前後のいずれか、あるいは製造工程の適当な
個所で温度:450〜800℃に1〜20時間保持の時
効処理を施して、その析出強化をはかる必要が
ある。 (j) MoおよびW 上記のように、これらの成分には、Niおよ
びCrとの共存において耐応力腐食割れ性を改
善する均等的作用があるが、それぞれMo:3.5
%以上、およびW:7%以上含有させても、環
境温度が150℃以下のH2S−CO2−Cl-の腐食環
境では、さらに一段の改善効果が現われず、経
済性を考慮して、それぞれの含有量を、Mo:
3.5%未満、W:7%未満と定めた。また、Mo
とWの含有量に関して、条件式:Mo(%)+1/2 W(%)で規定するのは、WがMoに対し原子量
が約2倍で、効果の点では約1/2で均等となるこ
とからで、この値が1%未満では特に150℃以下
の上記悪環境下で所望の耐応力腐食割れ性が得ら
れず、一方、この値を3.5%以上としても、上記
の通り実質的に不必要な量のMoおよびWの含有
となり、経済的でなく、かかる点
から、Mo(%)+1/2W(%)の値を1〜3.5%未 満とした。 (k) CuおよびCo これらの成分には、合金の耐食性を向上させ
る均等的作用があり、さらにCoには固溶強化
作用があるので、特にこれらの特性を必要とす
る場合に必要に応じて含有されるが、Cuは2
%を越えて含有させると、熱間加工性が劣化す
るようになり、一方Coには2%を越えて含有
させてもより一層の改善効果はないことから、
それぞれの含有量をCu:2%以下、Co:2%
以下と定めた。 (l) 希土類元素、Y,Mg、およびCa これらの成分には、熱間加工性をさらに改善
する均等的作用があるので、厳しい条件で熱間
加工が行なわれる場合に、必要に応じて含有さ
れるが、それぞれ希土類元素:0.10%、Y:
0.20%、Mg:0.10%、およびCa:0.10%を越
えて含有させても、熱間加工性に改善効果は見
られず、むしろ劣化現象さえ現われるようにな
ることから、それぞれの含有量を、希土類元
素:0.10%以下、Y:0.20%以下、Mg:0.10%
以下、およびCa:0.10%以下と定めた。 (m) Cr(%)+10Mo(%)+5W(%) 第1図は厳しい腐食環境下での耐応力腐食割
れ性に関し、Cr(%)+10Mo(%)+5W(%)
とNi(%)との関係を示したものである。す
なわち、Cr,Ni,Mo,およびWの含有量を
種々変化させたCr−Ni−Mo系、Cr−Ni−W
系、およびCr−Ni−Mo−W系の鋼を溶製し、
鋳造し、鍛伸し、熱間圧延して板厚:7mmの板
材とし、ついでこの板材に、温度:1050℃に30
分保持後水冷の溶体化処理を施した後、強度向
上の目的で加工率:30%の冷間加工を加え、さ
らに温度:650℃に15時間保持の時効処理を施
し、この結果得られた鋼板から圧延方向と直角
に、厚さ:2mm×幅:10mm×長さ:75mmの試験
片を切り出し、この試験片について、第2図に
示す3点支持ビーム治具を用い、前記試験片S
に0.2%耐力に相当する引張応力を付加した状
態で、10気圧のH2Sおよび10気圧のCO2でH2S
およびCO2を飽和させた20%NaCl溶液(温
度:150℃)中に1000時間浸漬の応力腐食割れ
試験を行ない、試験後、前記試験片における割
れ発生の有無を観察した。これらの結果に基
き、発明者等が独自に設定した条件式:Cr
(%)+1OMo(%)+5W(%)とNi含有量との
間には、耐応力腐食割れ性に関して、第1図に
示される関係があることが明確になつたのであ
る。なお、第1図において、〇印は割れ発生な
し、×印は割れ発生をそれぞれ示すものであ
る。第1図に示される結果から、Cr(%)+
10Mo(%)+5W(%)の値が50%未満にし
て、Ni含有量が25%未満では所望のすぐれた
耐応力腐食割れ性は得られないことが明らかで
ある。 なお、この発明の合金において、不可避不純
物としてTi,Al,B,Sn,Pb、およびZnをそ
れぞれ0.1%以下の範囲で含有しても、この発
明の合金の特性が何らそこなわれるものではな
い。 つぎに、この発明の合金を実施例により比較例
および従来例と対比しながら説明する。 実施例 それぞれ第1表に示される成分組成をもつた溶
湯を通常の電気炉、並びに窒素含有および脱硫の
目的でAr−酸素脱炭炉(AOD炉)と、必要に応
じて脱燐の目的でエレクトロスラグ溶解炉
(ESR炉)を使用して溶製した後、直径:500mm
φのインゴツトに鋳造し、ついでこのインゴツト
に温度:1200℃で熱間鍛造を施して直径:150mm
φのビレツトを成形し、この場合熱間加工性を評
価する目的でビレツトに割れの発生があるか否か
を観察し、引続いて前記ビレツトより熱間押出加
工により直径:60mmφ×肉厚:4mmの素管を成形
した後、さらにこれに抽伸加工にて22%の冷間加
工を施して直径:55mmφ×肉厚:3.1mmの寸法と
することによつて、本発明合金管材1〜24、比較
合金管材1〜8、および従来合金管材
The present invention relates to a precipitation-strengthened alloy that has high strength and excellent stress corrosion cracking resistance and is particularly suitable for use in the manufacture of oil country tubular goods. In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper.
Deep wells have appeared that are over 6,000 meters deep, and some are over 10,000 meters deep. Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions. As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used in this process are now required to have high strength and excellent corrosion resistance, especially stress corrosion cracking resistance. . As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells. From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel and Incoloy and Hastelloy (both trade names) for the production of oil country tubular goods. Regarding the corrosion behavior of H 2 S−CO 2 −Cl in an oil well environment, the details have not yet been fully elucidated, and furthermore, it does not have the high strength required for oil country tubular goods for deep wells. is the current situation. Therefore, from the above-mentioned point of view, the present inventors investigated deep wells and severe corrosive environments, especially H 2 S−CO 2
As a result of research aimed at obtaining oil country tubular goods with high strength and excellent stress corrosion cracking resistance that can withstand oil drilling in a Cl - oil well environment, we found that (a) H 2 S−CO 2 − The main type of corrosion in a Cl - environment is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general austenitic stainless steel. In other words, whereas general stress corrosion cracking is deeply related to the presence of Cl - , in the oil well environment mentioned above, the influence of H 2 S is greater than that of Cl - . (b) Steel pipes used for practical use as oil country tubular goods are generally
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking. (c) The elution rate (corrosion rate) of steel in an H 2 S−CO 2 −Cl environment depends on the contents of Cr, Ni, Mo, and W, and is affected by the surface film made of these components. Corrosion resistance is maintained and these components are
It also increases its resistance to stress corrosion cracking, and in particular, Mo is 10 times more effective than Cr and twice as effective as W.
Mo and W satisfy the following conditional expressions: Cr (%) + 10Mo (%) + 5W (%) ≧ 50%, 1% ≦ Mo (%) + 1/2W (%) < 3.5%, and the Ni content 25-60
%, and the Cr content is 22.5 to 40%, even if it is a cold-worked material if it is aged, it will not work under the extremely corrosive H 2 S−CO 2 −Cl oil well environment, especially below 150°C. It is possible to obtain a surface film that exhibits excellent resistance to stress corrosion cracking in adverse environments. (d) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure. (e) When 0.05 to 0.25% of N is included as an alloy component, the alloy strength improves. (f) When 0.5 to 4% of one or both of Nb and V are contained as alloying ingredients, the alloy will have even higher strength due to precipitation strengthening. (g) When the S content as an unavoidable impurity is reduced to 0.0007% or less, the hot workability of the alloy will be significantly improved. (h) When the P content as an unavoidable impurity is reduced to 0.003% or less, the susceptibility to hydrogen cracking significantly decreases. (i) Corrosion resistance is further improved when Cu is contained as an alloy component at 2% or less. (j) Rare earth elements: 0.10% or less as alloy components;
Y: 0.20% or less, Mg: 0.10% or less, and
Ca: When one or more of 0.10% or less is contained, hot workability is further improved. The findings shown in (a) to (j) above were obtained. Therefore, this invention was made based on the above knowledge, and includes C: 1.0% or less, Si:
1.0% or less, Mn: 2.0% or less, P: 0.030% or less,
Preferably, for the purpose of further improving hydrogen cracking resistance, P: 0.003% or less, S: 0.005% or less, desirably S: 0.0007% for the purpose of further improving hot workability.
Below, N: 0.05-0.25%, Ni: 25-60%, Cr:
Contains 22.5 to 40%, one or two of Nb and V: 0.5 to 4%, and one or two of Mo: less than 3.5% and W: less than 7%. , further Cu: 2% or less as necessary,
Co: 2% or less, rare earth elements: 0.10% or less, Y:
0.20% or less, Mg: 0.10% or less, and Ca: 0.10
% or less, with the remainder consisting of Fe and unavoidable impurities (all % by weight and % by weight), and Cr (%) + 10Mo ( %)+5W(%)≧50%, 1%≦Mo(%)+1/2W(%)<3.5%, and has high strength and excellent stress corrosion cracking resistance. This is a precipitation-strengthened alloy suitable for use in manufacturing oil country tubular goods, which requires these properties. Next, the reason why the composition range of the alloy of the present invention is limited as described above will be explained. (a) C If its content exceeds 0.10%, stress corrosion cracking is likely to occur at grain boundaries, so the upper limit was set at 0.10%. (b) Si Si is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so the upper limit value should be set at 1.0%.
It was determined that (c) Mn The Mn component has a deoxidizing effect like Si, and since this component has little effect on stress corrosion cracking resistance, the upper limit was set at a rather high value of 2.0%. (d) P The P component as an unavoidable impurity has the effect of increasing stress corrosion cracking susceptibility when its content exceeds 0.030%, so the upper limit should be set at 0.030%.
It is necessary to set the stress corrosion cracking susceptibility to a low state by setting the %. It has also been found that as the P content is reduced, hydrogen cracking resistance rapidly improves after reaching 0.003%.
From this point of view, when particularly excellent hydrogen cracking resistance is required, it is desirable that the P content be 0.0030% or less. (e) S The S component as an unavoidable impurity has the effect of deteriorating hot workability when its content exceeds 0.005%, so the upper limit is set at 0.005% to reduce the deterioration of hot workability. It is necessary to prevent this. In this way, the S component has the effect of deteriorating hot workability when its content increases, but when its content is lowered to 0.0007%, hot workability is further improved. Therefore, if hot working under severe conditions is required, it is desirable to set the S content to 0.0007% or less. (f) N N has the effect of improving the strength of the alloy through solid solution strengthening, but if its content is less than 0.05%, the desired high strength cannot be obtained;
If the content exceeds 0.25%, nitrides will be formed during aging treatment and the corrosion resistance of the alloy will deteriorate, so the content was set at 0.05 to 0.25%. (g) Ni The Ni component has the effect of improving the stress corrosion cracking resistance of the alloy, but if its content is less than 25%, the desired excellent stress corrosion cracking resistance cannot be secured; Even if the content exceeds 25%, no further improvement in stress corrosion cracking resistance will be obtained, and considering economic efficiency, the content should be reduced to 25%.
~60%. (h) Cr The Cr component is a component that significantly improves stress corrosion cracking resistance when coexisting with Ni, Mo, and W components, but hot workability is improved even if its content is less than 22.5%. On the contrary, in order to ensure the desired stress corrosion cracking resistance, the content of Mo and W must be increased by that amount, which is economically disadvantageous. The lower limit was set at 22.5%. On the other hand, if the S content exceeds 40%, deterioration of hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 40%. (i) Nb and V These components mainly have the uniform effect of forming intermetallic compounds with Ni to strengthen the alloy by precipitation, but if their content is less than 0.5%, the desired high strength cannot be achieved. On the other hand, if the content exceeds 4%, the ductility and toughness will decrease, and the hot workability will also deteriorate. Therefore, the content was set at 0.5 to 4%. Therefore, when manufacturing oil country tubular goods from the alloy of the present invention, it is necessary to perform cold working at a working rate of 10 to 60% or after cold working at a temperature of 450 to 800°C at an appropriate point in the manufacturing process. It is necessary to perform aging treatment for 20 hours to strengthen the precipitation. (j) Mo and W As mentioned above, these components have an equal effect on improving stress corrosion cracking resistance when coexisting with Ni and Cr, but each Mo: 3.5
% or more and W: 7% or more, in a corrosive environment of H 2 S - CO 2 - Cl - where the environmental temperature is 150°C or less, no further improvement effect appears, and considering economic efficiency, , each content is Mo:
It was set as less than 3.5% and W: less than 7%. Also, Mo
The conditional formula for the content of Therefore, if this value is less than 1%, the desired stress corrosion cracking resistance cannot be obtained, especially under the above-mentioned adverse environment of 150°C or less.On the other hand, even if this value is 3.5% or more, as mentioned above, the desired stress corrosion cracking resistance cannot be obtained. The content of unnecessary amounts of Mo and W would be uneconomical, and from this point of view, the value of Mo (%) + 1/2 W (%) was set to less than 1 to 3.5%. (k) Cu and Co These components have a uniform effect of improving the corrosion resistance of the alloy, and Co has a solid solution strengthening effect, so they can be used as necessary when these properties are especially required. It contains Cu, but Cu is 2
If the Co content exceeds 2%, the hot workability will deteriorate, while if the Co content exceeds 2%, there will be no further improvement effect.
Each content is Cu: 2% or less, Co: 2%
It was determined as follows. (l) Rare earth elements, Y, Mg, and Ca These components have the uniform effect of further improving hot workability, so they may be added as necessary when hot working is performed under severe conditions. However, rare earth elements: 0.10%, Y:
Even if the content exceeds 0.20%, Mg: 0.10%, and Ca: 0.10%, there is no improvement effect on hot workability, and in fact, deterioration phenomenon appears. Rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10%
and Ca: 0.10% or less. (m) Cr (%) + 10Mo (%) + 5W (%) Figure 1 shows stress corrosion cracking resistance under severe corrosive environments. Cr (%) + 10Mo (%) + 5W (%)
This shows the relationship between Ni (%) and Ni (%). That is, Cr-Ni-Mo system, Cr-Ni-W system with various contents of Cr, Ni, Mo, and W
system, and Cr-Ni-Mo-W system steel,
It is cast, forged and hot rolled into a plate with a thickness of 7mm, and then heated to 1050°C for 30 minutes.
After holding for 30 minutes, water-cooling solution treatment was applied, followed by cold working at a processing rate of 30% for the purpose of improving strength, followed by aging treatment at a temperature of 650°C for 15 hours. A test piece of thickness: 2 mm x width: 10 mm x length: 75 mm was cut out from the steel plate perpendicular to the rolling direction, and the test piece S
H2S at 10 atm H2S and 10 atm CO2 with an applied tensile stress corresponding to 0.2% yield strength.
A stress corrosion cracking test was conducted by immersing the specimen in a 20% NaCl solution (temperature: 150°C) saturated with CO 2 for 1000 hours, and after the test, the presence or absence of cracking in the test piece was observed. Based on these results, the inventors independently set a conditional expression: Cr
It has become clear that there is a relationship between (%) + 1OMo (%) + 5W (%) and Ni content with respect to stress corrosion cracking resistance, as shown in Figure 1. In FIG. 1, ◯ marks indicate no cracking, and × marks indicate cracking. From the results shown in Figure 1, Cr (%) +
It is clear that when the value of 10Mo (%) + 5W (%) is less than 50% and the Ni content is less than 25%, the desired excellent stress corrosion cracking resistance cannot be obtained. Furthermore, even if the alloy of the present invention contains Ti, Al, B, Sn, Pb, and Zn as unavoidable impurities in the range of 0.1% or less, the properties of the alloy of the present invention will not be impaired in any way. . Next, the alloy of the present invention will be explained using examples while comparing it with comparative examples and conventional examples. Example Molten metal having the composition shown in Table 1 was heated in a normal electric furnace, an Ar-oxygen decarburization furnace (AOD furnace) for the purpose of nitrogen inclusion and desulfurization, and, if necessary, for the purpose of dephosphorization. Diameter: 500mm after melting using electroslag melting furnace (ESR furnace)
It is cast into a φ ingot, then hot forged at a temperature of 1200°C to create a diameter of 150mm.
A billet of φ is formed, and in this case, for the purpose of evaluating hot workability, it is observed whether or not cracks occur in the billet, and then the billet is hot extruded to form a billet with a diameter of 60 mmφ x wall thickness: After forming a 4 mm raw tube, it was further subjected to 22% cold working by drawing processing to obtain dimensions of diameter: 55 mmφ x wall thickness: 3.1 mm, thereby producing alloy tube materials 1 to 24 of the present invention. , comparative alloy tubes 1 to 8, and conventional alloy tubes

【表】【table】

【表】【table】

【表】【table】

【表】 1〜3をそれぞれ製造し、引続いて本発明合金管
材1〜24と比較合金管材1〜8には温度:650℃
に15時間保持の時効処理を施した。 なお、比較合金管材1〜8は、いずれも構成成
分のうちのいずれかの成分の含有量(第1表には
※印を付して表示)がこの発明の範囲から外れた
組成をもつものであり、また従来合金管材1は、
JIS・316に、従来合金管材2はインコロイ800
に、さらに従来合金管材3はJIS・SUS329J1にそ
れぞれ相当する組成をもつものである。 ついで、この結果得られた本発明合金管材1〜
24、比較合金管材1〜8、および従来合金管材1
〜3より長さ:20mmの試験片をそれぞれ切出し、
この試験片より長さ方向にそつて60゜に相当する
部分を切落し、この状態の試験片に第3図に正面
図で示されるようにボルトを貫通し、ナツトでし
めつけて管外表面0.2%耐力に相当する引張応力
を付加し、この状態の試験片Sに対して、H2S分
圧をそれぞれ0.1気圧、1気圧、および15気圧と
したH2S−10気圧CO2−20%NaCl溶液(液温:
150℃)中に1000時間浸漬の応力腐食割れ試験を
行ない、試験後における応力腐食割れの有無を調
査した。この結果を、上記の熱間鍛造時の割れ発
生の有無、引張試験結果、および衝撃試験結果と
共に、第2表に合せて示した。なお、第2表にお
いて、〇印はいずれも割れ発生のないものを示
し、一方×印は割れ発生のあつたものを示す。 第2表に示される結果から、比較合金管材1〜
8は、熱間加工性、耐応力腐食割れ性、および強
度のうちの少なくともいずれかの性質が劣つたも
のであるのに対して、本発明合金管材1〜24は、
いずれもすぐれた熱間加工性および耐応力腐食割
れ性を有し、さらに高強度を有し、かつ熱間加工
性は良好であるが、相対的に強度が低く、しかも
耐応力腐食割れ性に劣る従来合金管材1〜3と比
較しても一段とすぐれた特性を有することが明ら
かである。 上述のように、この発明の合金は、特に高強度
および優れた耐応力腐食割れ性を有しているの
で、これらの特性が要求される苛酷な環境下での
石油および天然ガス採掘に用いられる油井管とし
て、さらに地熱井管として使用した場合にきわめ
て優れた性能を発揮するのである。
[Table] 1 to 3 were manufactured respectively, and then the present invention alloy tube materials 1 to 24 and the comparative alloy tube materials 1 to 8 were prepared at a temperature of 650°C.
The material was aged for 15 hours. In addition, Comparative Alloy Tube Materials 1 to 8 all have compositions in which the content of one of the constituent components (indicated with an asterisk in Table 1) is outside the scope of this invention. And, the conventional alloy tube material 1 is
According to JIS 316, the conventional alloy tube material 2 is Incoloy 800.
Furthermore, the conventional alloy tube material 3 has a composition corresponding to JIS and SUS329J1. Next, the resulting alloy tube materials 1 to 1 of the present invention
24, comparative alloy pipe materials 1 to 8, and conventional alloy pipe material 1
From ~3, cut out a test piece with a length of 20 mm,
A section corresponding to 60° in the length direction was cut off from this test piece, and a bolt was passed through the test piece in this state as shown in the front view in Fig. 3, and tightened with a nut. A tensile stress corresponding to the % proof stress was applied to the specimen S in this state, and the H2S partial pressures were set to 0.1 atm, 1 atm, and 15 atm, respectively.H2S - 10 atm CO2 -20 % NaCl solution (solution temperature:
A stress corrosion cracking test was conducted by immersing the steel in a water temperature (150°C) for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. The results are shown in Table 2 together with the presence or absence of cracking during hot forging, the tensile test results, and the impact test results. In Table 2, the ○ marks indicate those with no cracks, while the x marks indicate those with cracks. From the results shown in Table 2, comparative alloy tube materials 1 to
No. 8 is poor in at least one of hot workability, stress corrosion cracking resistance, and strength, whereas alloy tube materials No. 1 to 24 of the present invention are
Both have excellent hot workability and stress corrosion cracking resistance, and also have high strength and good hot workability, but have relatively low strength and poor stress corrosion cracking resistance. It is clear that this material has even better properties than conventional alloy tube materials 1 to 3, which are inferior. As mentioned above, the alloy of the present invention has particularly high strength and excellent resistance to stress corrosion cracking, making it suitable for use in oil and natural gas extraction in harsh environments where these properties are required. It exhibits extremely excellent performance when used as oil country tubular goods and geothermal country tubular goods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金の耐応力腐食割れ性に関し、Ni
含有量とCr(%)+10Mo(%)+5W(%)との関
係を示した図、第2図および第3図はそれぞれ板
状および管状試験片に対する応力腐食割れ試験の
態様を示す図である。
Figure 1 shows the stress corrosion cracking resistance of alloys.
A diagram showing the relationship between content and Cr (%) + 10Mo (%) + 5W (%), Figures 2 and 3 are diagrams showing the mode of stress corrosion cracking tests on plate-shaped and tubular specimens, respectively. .

Claims (1)

【特許請求の範囲】 1 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.25%、Ni:25〜60%、Cr:22.5〜40%を
含有し、NbおよびVのうちの1種または2種:
0.5〜4%を含有し、さらにMo:3.5%未満およ
びW:7%未満のうちの1種または2種を含有
し、残りがFeと不可避不純物からなる組成(以
上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧50%, 1%≦Mo(%)+1/2W(%)<3.5%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用析出強化型合金。 2 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.25%、Ni:25〜60%、Cr:22.5〜40%を
含有し、NbおよびVのうちの1種または2種:
0.5〜4%を含有し、Mo:3.5%未満およびW:
7%未満のうちの1種または2種を含有し、さら
にCu:2%以下およびCo:2%以下のうちの1
種または2種を含有し、残りがFeと不可避不純
物からなる組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧50%, 1%≦Mo+1/2W(%)<3.5%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用析出強化型合金。 3 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.25%、Ni:25〜60%、Cr:22.5〜40%を
含有し、NbおよびVのうちの1種または2種:
0.5〜4%を含有し、Mo:3.5%未満およびW:
7%未満のうちの1種または2種を含有し、さら
に希土類元素:0.10%以下、Y:0.20%以下、
Mg:0.10%以下、およびCa:0.10%以下のうち
の1種または2種以上を含有し、残りがFeと不
可避不純物からなる組成(以上重量%)を有し、
かつ、 Cr(%)+10Mo(%)+5W(%)≧50%, 1%≦Mo(%)+1/2W(%)<3.5%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用析出強化型合金。 4 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.25%、Ni:25〜60%、Cr:22.5〜40%を
含有し、NbおよびVのうちの1種または2種:
0.5〜4%を含有し、Mo:3.5%未満およびW:
7%未満のうちの1種または2種を含有し、さら
にCu:2%以下およびCo:2%以下のうちの1
種または2種と、希土類元素:0.10%以下、Y:
0.20%以下、Mg:0.10%以下、およびCa:0.10
%以下のうちの1種または2種以上を含有し、残
りがFeと不可避不純物からなる組成(以上重量
%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧50%, 1%≦Mo+1/2W(%)<3.5%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用析出強化型合金。
[Claims] 1 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.25%, Ni: 25 to 60%, Cr: 22.5 to 40%, and one or two of Nb and V:
0.5 to 4%, further containing one or two of Mo: less than 3.5% and W: less than 7%, with the remainder consisting of Fe and unavoidable impurities (weight %), and stress corrosion cracking resistance, which satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧ 50%, 1% ≦ Mo (%) + 1/2W (%) < 3.5%. A precipitation-strengthened alloy for high-strength oil country tubular goods with excellent properties. 2 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.25%, Ni: 25 to 60%, Cr: 22.5 to 40%, and one or two of Nb and V:
Contains 0.5 to 4%, Mo: less than 3.5% and W:
Contains one or two of less than 7%, and further contains one of Cu: 2% or less and Co: 2% or less.
Cr(%)+10Mo(%)+5W(%)≧50%, 1%≦Mo+1/2W (%)<3.5%, A precipitation-strengthened alloy for high-strength oil country tubular goods with excellent stress corrosion cracking resistance. 3 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.25%, Ni: 25 to 60%, Cr: 22.5 to 40%, and one or two of Nb and V:
Contains 0.5 to 4%, Mo: less than 3.5% and W:
Contains one or two of less than 7%, and further includes rare earth elements: 0.10% or less, Y: 0.20% or less,
Contains one or more of Mg: 0.10% or less and Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (wt%),
and stress corrosion cracking resistance, which satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧ 50%, 1% ≦ Mo (%) + 1/2W (%) < 3.5%. A precipitation-strengthened alloy for high-strength oil country tubular goods with excellent properties. 4 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.25%, Ni: 25 to 60%, Cr: 22.5 to 40%, and one or two of Nb and V:
Contains 0.5 to 4%, Mo: less than 3.5% and W:
Contains one or two of less than 7%, and further contains one of Cu: 2% or less and Co: 2% or less.
Species or 2 types, rare earth elements: 0.10% or less, Y:
0.20% or less, Mg: 0.10% or less, and Ca: 0.10
% or less, with the remainder consisting of Fe and unavoidable impurities (weight %), and Cr (%) + 10Mo (%) + 5W (%) ≧ 50% , 1%≦Mo+1/2W (%)<3.5%, A precipitation-strengthened alloy for high-strength oil country tubular goods with excellent stress corrosion cracking resistance.
JP9317281A 1981-06-10 1981-06-17 Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance Granted JPS57207149A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9317281A JPS57207149A (en) 1981-06-17 1981-06-17 Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance
US06/383,803 US4400209A (en) 1981-06-10 1982-06-01 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08216703A GB2103655B (en) 1981-06-10 1982-06-09 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
DE3221878A DE3221878A1 (en) 1981-06-10 1982-06-09 ALLOY, ESPECIALLY FOR THE PRODUCTION OF HIGHLY RESILIENT PIPING OF DEEP HOLES OR THE LIKE
FR8210116A FR2507628A1 (en) 1981-06-10 1982-06-10 ALLOY FOR MAKING PITCHES AND TUBES FOR DEEP WELLS
SE8203627A SE452477B (en) 1981-06-10 1982-06-10 ALLOY FOR MANUFACTURE OF HOGHALL SOLID FOODS AND PIPES FOR DEEP DRILLS, APPLICATION OF THE ALLOY AND HOGHALLFAST RODS MADE BY THIS ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9317281A JPS57207149A (en) 1981-06-17 1981-06-17 Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS57207149A JPS57207149A (en) 1982-12-18
JPS6144133B2 true JPS6144133B2 (en) 1986-10-01

Family

ID=14075146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9317281A Granted JPS57207149A (en) 1981-06-10 1981-06-17 Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS57207149A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224764A (en) * 1984-04-24 1985-11-09 Sumitomo Metal Ind Ltd Austenite stainless steel containing n for high temperature
JPS63100152A (en) * 1986-10-15 1988-05-02 Kubota Ltd Highly corrosion-resistant casting alloy
US4911886A (en) * 1988-03-17 1990-03-27 Allegheny Ludlum Corporation Austentitic stainless steel
US8603389B2 (en) * 2005-01-25 2013-12-10 Huntington Alloys Corporation Coated welding electrode having resistance to ductility dip cracking, and weld deposit produced therefrom
JP4288528B2 (en) 2007-10-03 2009-07-01 住友金属工業株式会社 High strength Cr-Ni alloy material and oil well seamless pipe using the same
EP2415883B1 (en) 2009-04-01 2018-12-26 Nippon Steel & Sumitomo Metal Corporation Method for producing high-strength seamless cr-ni alloy pipe
US10557574B2 (en) 2013-11-12 2020-02-11 Nippon Steel Corporation Ni—Cr alloy material and seamless oil country tubular goods using the same
WO2017037851A1 (en) * 2015-08-31 2017-03-09 株式会社日立製作所 Cr-BASED TWO-PHASE ALLOY AND PRODUCT USING SAID TWO-PHASE ALLOY
JP6602462B2 (en) * 2016-03-30 2019-11-06 株式会社日立製作所 Chromium-based two-phase alloy and product using the two-phase alloy
EP4043590A4 (en) 2019-10-10 2023-05-03 Nippon Steel Corporation Alloy material and seamless pipe for oil well

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALLOYS FOR EIGHTIES=1980 *
JOURNAL OF METALS=1951 *
JOURNAL OF METALS=1969 *
PROCEEDINGS OF MATERIALS AND CORROSION PROBLEMS IN ENERGY SYSTEMS=1980 *

Also Published As

Publication number Publication date
JPS57207149A (en) 1982-12-18

Similar Documents

Publication Publication Date Title
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
US4400211A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPS625977B2 (en)
JPS625976B2 (en)
JPS6144133B2 (en)
JPS6144135B2 (en)
JPS6363608B2 (en)
JPS6362569B2 (en)
JPS6363610B2 (en)
JPS6144128B2 (en)
JPS6144134B2 (en)
JPS6144126B2 (en)
JPS6363609B2 (en)
JPS6144125B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6363606B2 (en)
JPH0372698B2 (en)
JPH0371506B2 (en)
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS6144132B2 (en)
JPS6144127B2 (en)
JPS6363611B2 (en)
JPS581043A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6362570B2 (en)