Nothing Special   »   [go: up one dir, main page]

JPS581043A - High strength alloy having superior stress corrosion cracking resistance for oil well pipe - Google Patents

High strength alloy having superior stress corrosion cracking resistance for oil well pipe

Info

Publication number
JPS581043A
JPS581043A JP9796281A JP9796281A JPS581043A JP S581043 A JPS581043 A JP S581043A JP 9796281 A JP9796281 A JP 9796281A JP 9796281 A JP9796281 A JP 9796281A JP S581043 A JPS581043 A JP S581043A
Authority
JP
Japan
Prior art keywords
less
alloy
corrosion cracking
stress corrosion
cracking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9796281A
Other languages
Japanese (ja)
Inventor
Yasutaka Okada
康孝 岡田
Kunihiko Yoshikawa
吉川 州彦
Yasuo Otani
大谷 泰夫
Takeo Kudo
赳夫 工藤
Akio Ikeda
昭夫 池田
Daiji Moroishi
諸石 大司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9796281A priority Critical patent/JPS581043A/en
Priority to US06/389,484 priority patent/US4400349A/en
Priority to GB08217859A priority patent/GB2105368B/en
Priority to DE19823223457 priority patent/DE3223457A1/en
Priority to SE8203922A priority patent/SE442025B/en
Priority to FR8211071A priority patent/FR2508491B1/en
Publication of JPS581043A publication Critical patent/JPS581043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)

Abstract

PURPOSE:To provide an alloy having improved stress corrosion cracking resistance for high strength oil well pipe under adverse environments by sepcifying the contents of Ni, Cr, Mn, Mo, W, etc. in steel and the relations among respective additive components. CONSTITUTION:An alloy consisting of <=0.1wt% C, <=1.0% Si, 3-20% Mn, <=0.030% P, <=0.005% S, <=0.5% solAl, >=1 kind of 20-60% Ni, 22.5-30% Cr, <8% Mo and <16% W and the balance Fe and unavoidable impurities. The alloy of the compsn. wherein the conditions >=70% Cr%+ 10Mo%+5W%, >= 25% 1/2Mn%+Ni%, and <8% 4%<=Mo%+1/2W% are satisfied. If necessary, Cu, Co, rare earth elements, Y, Mg, Ti, etc. are contained in this alloy. The alloy for oil well pipes having the high strength that withstands petroleum excavation in deep wells and severe working environments sufficiently and superior stress corrosion cracking resistance is obtained.

Description

【発明の詳細な説明】 この発明は、高強度および優れた耐応力腐食割れ性を有
し、特にこれらの特性が要求される油井管の製造に用い
るのに適した合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alloy that has high strength and excellent stress corrosion cracking resistance and is particularly suitable for use in the manufacture of oil country tubular goods where these properties are required.

近年、エネルギー事情の悪化から、油井および天然ガス
井は深井戸化の傾向が著しく、深さ二6ooom以上、
なかには深さ:10,000m以上の深井戸が出現して
いる。
In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper;
Some deep wells with a depth of 10,000 m or more have appeared.

また、同様な事情から、湿潤な硫化水素をはじめ、炭酸
ガスや塩素イオンなどの腐食性成分を含有する苛酷な腐
食環境下での石油および天然ガスの採掘が予儀なくされ
つつある。
Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions.

このような厳しい環境下での石油および天然ガスの掘削
に伴い、これに使用される油井管にも高強度、並びに優
れた耐食性、特に耐応力腐食割れ性が要求されるように
なってきている。
As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used therein are required to have high strength and excellent corrosion resistance, especially resistance to stress corrosion cracking. .

油井管の一般的腐食対策として、インヒビタと呼ばれる
腐食抑制剤を投入する方法が知られているが、この方法
は、例えば海上油井などには有効に活用できない場合が
多い。
As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells.

かかる点から、最近では油井管の製造に、ステンレス鋼
はじめ、インコロイやハステロイ(いずれも商品名)と
いった高級な耐食性高合金鋼の採用も検討されはじめて
いるが、いまのところ、これらの合金に関して、H2S
−C’02−Ct−の油井環境での腐食挙動についての
詳細は十分に解明されるに至っておらず、しかも深井戸
用油井管に要求される高強度をもつものではないのが現
状である。
From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel and Incoloy and Hastelloy (all trade names) for the production of oil country tubular goods. H2S
The details of the corrosion behavior of -C'02-Ct- in an oil well environment have not yet been fully elucidated, and the current situation is that it does not have the high strength required for oil country tubular goods for deep wells. .

そこで、本発明者等は、上述のような観点から、深井戸
や苛酷な腐食環境、特にH2S−CO2−Ct−の油井
環境下での石油掘削に十分耐え得る高強度とすぐれた耐
応力腐食割れ性を有する油井管を得べく研究を行なった
結果、 (a) 、 H2S−CO2−C1−環境下における腐
食の主たるものは応力腐食割れであるが、この場合の応
力腐食割れ態輝は、オーステナイトステンレス鋼におけ
る一般的力それとは挙動を全く異にするものであること
。すなわち、一般の応力腐食割れがCt−の存在と深く
係わるものであるのに対して、上記の油井環境によるも
のではCt−もさることながら、それ以上にH2Sの影
響が大きいこと。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a material with high strength and excellent stress corrosion resistance that can sufficiently withstand oil drilling in deep wells and harsh corrosive environments, especially in H2S-CO2-Ct- oil well environments. As a result of research to obtain crackable oil country tubular goods, it was found that (a) The main type of corrosion in the H2S-CO2-C1- environment is stress corrosion cracking, and the stress corrosion cracking behavior in this case is as follows: The behavior is completely different from the general force in austenitic stainless steel. That is, while general stress corrosion cracking is deeply related to the presence of Ct-, in the oil well environment mentioned above, the influence of H2S is greater than that of Ct-.

(b)  油井管として実用に供される鋼管は一般に強
度上の必要性から冷間加工が施されるが、冷間加工は上
記応力腐食割れに対する抵抗性を著しく減少させるもの
であること。
(b) Steel pipes used for practical use as oil country tubular goods are generally subjected to cold working to improve their strength, and cold working significantly reduces the resistance to stress corrosion cracking.

(C)  H2S −’CO2−CL−環境での鋼の溶
出速度(腐食速度)は、合金成分たるNi、 Cr、 
Mn、 Mo。
(C) The elution rate (corrosion rate) of steel in the H2S-'CO2-CL- environment is determined by the alloying components Ni, Cr,
Mn, Mo.

およびWの含有量に依存し、これらの成分からなる表面
皮膜゛によって耐食性が保持され、かつこれらの成分は
、応力腐食割れに対して本その抵抗性を高め、特にMo
tiCrに対し10倍の効果を、またMoはWの2倍の
効果をもち、さらにMnFiNiの士の効果をもつもの
であシ、したがって、これらの成分が、 Cr (fi+10 Mo (4+ 5 W (%)≧
70%。
Depending on the content of Mo and W, corrosion resistance is maintained by a surface film composed of these components, and these components increase the resistance to stress corrosion cracking.
It is 10 times more effective than TiCr, Mo is twice as effective as W, and even more effective than MnFiNi. Therefore, these components are Cr (fi + 10 Mo (4 + 5 W ( %)≧
70%.

4 Mn(絢+Ni (@≧25%。4 Mn (Aya + Ni (@≧25%).

4チ≦MO+ 4 w (チ)〈8チ。4chi≦MO+ 4 w (chi)〈8chi.

の条件式を満足すると共に、N1含有量を20〜60%
、Cr含有量を22.5〜30%、さらにMn含有量を
3〜20%とすると、冷間加工材であってシ、きわめて
腐食性の強いH2S−Co2−C1−の油井環境下、特
に200℃以下の悪環境において、応力腐食割れに対し
て優れた抵抗性を示す表面皮膜が得られること。
Satisfy the conditional expression and reduce the N1 content to 20 to 60%.
, the Cr content is 22.5 to 30%, and the Mn content is 3 to 20%.It is a cold-worked material, especially in the oil well environment of H2S-Co2-C1-, which is extremely corrosive. It is possible to obtain a surface film that exhibits excellent resistance to stress corrosion cracking in a harsh environment of 200°C or less.

(a)  Niについては表面皮膜に対する効果だけで
寿ぐ、組織的にも応力腐食割れ抵抗性を高める効果があ
ること。  。
(a) As for Ni, it lasts only by its effect on the surface film, and it also has the effect of increasing stress corrosion cracking resistance structurally. .

(、)  合金成分としてNを0.05〜0.3%の範
囲で含有させる七一段と合金強度が向上するようになる
こと。
(,) By containing N as an alloy component in the range of 0.05 to 0.3%, the alloy strength can be improved to a greater extent.

(f)  不可避不純物としての8含有量をO,OOO
’/チ以下に低減させると、合金の熱間加工性が著しく
改善されるようになること。
(f) 8 content as an unavoidable impurity is O, OOO
When it is reduced to less than '/', the hot workability of the alloy is significantly improved.

C)不可避不純物としてのP含有量を0.003%以下
に低減させると、水素割れ感受性が著しく低下するよう
になること。
C) When the P content as an unavoidable impurity is reduced to 0.003% or less, the hydrogen cracking susceptibility is significantly reduced.

(h)  合金成分としてCu:2%以下およびCO:
2−以下のうちの1種または2種を含有させると、耐食
性がさらに改善されるようになること。
(h) Cu: 2% or less and CO as alloy components:
2- When one or two of the following are contained, corrosion resistance is further improved.

(1)合金成分として、希土類元素+0.10%以下、
Y:0.20チ以下、 Mg : 0.10チ以下、T
1:0.5チ以下、およびCa:0.10%以下のうち
の1種または2種以上を含有させると、熱間加工性がさ
ら7に一段と改善されるようになること。
(1) Rare earth elements +0.10% or less as alloy components,
Y: 0.20 inch or less, Mg: 0.10 inch or less, T
By containing one or more of the following: 1:0.5% or less and Ca: 0.10% or less, the hot workability is further improved to 7.

以上(a)〜(1)に示される知見を得たのである。The findings shown in (a) to (1) above were obtained.

したがづて、この発明は、上記知見にもとづいてなされ
たものであって、C:0.1%以下、Sl:1.0チ以
下、Mn:3〜20%、P :0.030%以下。
Therefore, this invention was made based on the above findings, and includes C: 0.1% or less, Sl: 1.0% or less, Mn: 3 to 20%, P: 0.030%. below.

望ましくは耐水素割れ性を一段と改善する目的でp:o
、o03チ以下、 S:0.005%以下、望ましくは
熱間加工性を一段と改善する目的でS :O,OOO’
7チ以下、 sot、A1 : 0.5チ以下、Ni:
20〜60%。
Preferably p:o for the purpose of further improving hydrogen cracking resistance.
, o03chi or less, S: 0.005% or less, preferably S:O,OOO' for the purpose of further improving hot workability.
7 inches or less, sot, A1: 0.5 inches or less, Ni:
20-60%.

Cr: 22.5〜30%を含有し、MO:8%未満お
よびW:16%未満のうちの1種または2種を含有し、
さらに必要に応じてN : 0.05〜0.3 %、 
Cu:2%以下、Co:2チ以下、希土類元素:0.1
0−以下、y:o、+ao−以)、 M8F IJ、1
13 II以ト。
Cr: Contains 22.5 to 30%, MO: less than 8% and W: less than 16%, and contains one or two of them,
Furthermore, if necessary, N: 0.05-0.3%,
Cu: 2% or less, Co: 2% or less, rare earth elements: 0.1
0- or less, y: o, +ao- or less), M8F IJ, 1
13 II onwards.

Ti:0.5%以下、およびCa:0.10%以下のう
ちの1種または2種以上を含有し、残シがFeと不可避
不純物からなる組成(以上重量%、以下チの表示はすべ
て重量%を表わす)・を有すると共に、Cr (@ +
 10Mo(@−1−5w≧70%。
Contains one or more of Ti: 0.5% or less and Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (the above weight %, the following Cr(@ +
10Mo (@-1-5w≧70%.

+ Mn (9g) + Ni (4≧25%。+ Mn (9g) + Ni (4≧25%.

4%≦MO+ +W (%)< 8% 。4%≦MO++W(%)<8%.

の条件式を満足し、しかも高強度とすぐれた耐応力腐食
割れ性を有し、特にこれらの特性が要求される油井管の
製造に用いるのに適した合金に特徴を有するものである
The alloy satisfies the following conditional expression, has high strength and excellent resistance to stress corrosion cracking, and is particularly suitable for use in manufacturing oil country tubular goods which require these properties.

つぎに、この発明の合金において、成分組成範囲を上記
の通りに限定した理由を説明する。
Next, the reason why the composition range of the alloy of the present invention is limited as described above will be explained.

(a)  C その含有量が0.10 %を越えると、粒界に応力腐食
割れが生じやすくなることから、その上限値を0.10
チと定めた。
(a) If the C content exceeds 0.10%, stress corrosion cracking tends to occur at grain boundaries, so the upper limit value was set to 0.10%.
It was decided that

(b)  5i Siは脱酸成分として必要な成分であるが、その含有量
が1.0%を越えると熱間加工性が劣化するようになる
ことから、その上限値を1,0%と定めた。
(b) 5i Si is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so the upper limit is set at 1.0%. Established.

(c)  Mn 所望のすぐれた耐応力腐食割れ性を確保するには3チ以
上の含有が必要であるが、20%を越えて含有させると
熱間加工性が劣化するようになることから、その含有量
を3〜20チと定めた。
(c) Mn In order to ensure the desired excellent stress corrosion cracking resistance, it is necessary to contain 3 or more, but if the content exceeds 20%, hot workability will deteriorate. Its content was determined to be 3 to 20 inches.

(a)  p 不可避不純物としてのP成分には、そ、の含有量が0.
030%を越えると、応力腐食割れ感受性を高める作用
が現われるので、上限値をo、o3o%と定めて応力腐
食割れ感受性を低位の状態とする必要がある。また、P
含有量を低減してゆくと、0,00.3チを填圧して急
激に耐水素割れ性が改善されるようになることが判明し
ており、かかる点から゛、特にすぐれた耐水素割れ性を
必要とする場合には、P含有量を0.0030%以下と
するのが望ましい。
(a) p The P component as an unavoidable impurity has a content of 0.
If it exceeds 0.30%, the effect of increasing stress corrosion cracking susceptibility appears, so it is necessary to set the upper limit as o, o3o% to keep stress corrosion cracking susceptibility to a low state. Also, P
It has been found that as the content is reduced, the hydrogen cracking resistance is rapidly improved by filling 0.00.3 g, and from this point of view, When properties are required, the P content is preferably 0.0030% or less.

(e)  S 不可避不純物としてのS成分には、その含有量がO,O
O5%を越えると、熱間加工性を劣化させる作用がある
ので、その上限値を0.005%と定めて熱間加工性の
劣化を防止する必要がある。このようにS成分には、含
有量が多くなると熱間加工性を劣化させる作用があるが
、その含有量を低めてゆき、O,OOO’7%まで低減
すると、逆に熱間加工性が一段と改善されるようになる
ことから、厳しい条件での熱間加工を必要とする場合に
は、S含有量を0.0007%以下とするのが望ましい
(e) S The S component as an unavoidable impurity has a content of O, O
If O exceeds 5%, it has the effect of deteriorating hot workability, so it is necessary to set the upper limit to 0.005% to prevent deterioration of hot workability. In this way, the S component has the effect of deteriorating hot workability when its content increases, but when its content is lowered to 7% O, OOO', on the contrary, hot workability deteriorates. If hot working under severe conditions is required, it is desirable to set the S content to 0.0007% or less, as this results in further improvement.

(f)AI MはSlおよびMnと同様に脱酸成分として有効であf
) 、sol、 AQ含有量で0.5%まで含有させて
も合金の特性を何らそこなうものではないことから、そ
の含有量をSOムM含有量で0.5%以下と定めた。
(f) AI M is effective as a deoxidizing component like Sl and Mn.
), sol, AQ content up to 0.5% does not impair the properties of the alloy, so the content was determined to be 0.5% or less in terms of SOM content.

(g)  Ni Ni成分には合金の耐応力腐食割れ性を向上させる作用
があるが、その含有量が20%未満では所望のすぐれた
耐応力腐食割れ性を確保することができず、一方60%
を越えて含有させても耐応力腐食割れ性にさらに一段の
向上効果は現われず、経済性をも考慮して、その含有量
を20〜60%と定めた。
(g) Ni Although the Ni component has the effect of improving the stress corrosion cracking resistance of the alloy, if its content is less than 20%, the desired excellent stress corrosion cracking resistance cannot be secured; %
Even if the content exceeds 20%, the effect of further improving stress corrosion cracking resistance does not appear, and taking economic efficiency into account, the content was set at 20% to 60%.

(h)  Cr Cr成分は、 Ni 、 Mn 、 Mo、 およびW
成分との共存において、耐応力腐食割れ性を著しく改善
する成分であるが、その含有量を22.54未満として
(熱間加工性が改善されるようになるものでもなく、逆
に所望の耐応力腐食割れ性を確保するためには、MOや
Wの含有量をそれだけ増加させなければならず、経済的
に不利となることから、その下限値を22.5%と定め
た。一方、その含有量が30%を越えると、いくらS含
有量を低減させても熱間加工性の劣化は避けることがで
きないことから、その上限値を30チと定めた。
(h) Cr Cr components are Ni, Mn, Mo, and W
It is a component that significantly improves stress corrosion cracking resistance when coexisting with other components, but if its content is less than 22.54 (it does not improve hot workability, and on the contrary, In order to ensure stress corrosion cracking resistance, the content of MO and W must be increased accordingly, which would be economically disadvantageous, so the lower limit was set at 22.5%. If the content exceeds 30%, deterioration of hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 30%.

(i)  MoおよびW 上記のように、これらの成分には、Ni、 Mn、 C
rとの共存において耐応力腐食割れ性を改善する均等的
作用があるが、それぞれMo:8%以上、およびW:1
6%以上含有させても、環境温度が200℃以下のH2
S−CO2−CL−の腐食環境では、さらに一段の改善
効果が現われず、経済性を考慮して、それぞれの含有量
を、Mo:8%未満、W:16%未満と定めた。また、
MoとWの含有量に関して、条件式: Mo(# 十+
 W (%)で規定するのは、WがMoに対し原子/量
が約2倍で、効果の点では約十で均等となることからで
、この値が4%未満では特に200℃以下の上記悪環境
下で所望の耐応力腐食割れ性が得られず、一方、この値
を8チ以上としても、上記の通シ実質的に不必要な量の
MoおよびWの含有となシ、経済的でなく、かかる点か
ら、MO(→++W(弼の値を4〜8%未満と定めた。
(i) Mo and W As mentioned above, these components include Ni, Mn, C
Coexistence with r has an even effect of improving stress corrosion cracking resistance, but Mo: 8% or more and W: 1
Even if the H2 content is 6% or more, the environmental temperature is 200℃ or less.
In the corrosive environment of S-CO2-CL-, no further improvement effect was observed, and in consideration of economic efficiency, the respective contents were determined to be less than 8% for Mo and less than 16% for W. Also,
Regarding the content of Mo and W, the conditional expression: Mo(# 10 +
The reason for specifying W (%) is that the atoms/amount of W is about twice that of Mo, and the effect is about 10%, which makes them equal.If this value is less than 4%, the The desired stress corrosion cracking resistance cannot be obtained under the above-mentioned adverse environment, and on the other hand, even if this value is set to 8 or more, the above-mentioned structure will contain substantially unnecessary amounts of Mo and W. From this point of view, the value of MO(→++W) was determined to be less than 4% to 8%.

(j)  N N成分には固溶強化による強度向上作用があるので、特
に高強度が要求される場合に必要に応じて含有されるが
、その含有量が0.05%未満では所望の強度向上効果
を得ることができず、一方0.3優を越えて含有させる
と、溶製および造塊が困難となることから、その含有量
を0.05〜0.3チと定めた。
(j) N Since the N component has the effect of improving strength through solid solution strengthening, it is included as necessary when particularly high strength is required, but if the content is less than 0.05%, the desired strength cannot be achieved. No improvement effect can be obtained, and if the content exceeds 0.3%, melting and ingot making become difficult, so the content was set at 0.05 to 0.3%.

(→Cuおよびc。(→Cu and c.

これらの成分には合金の耐食性を向上させる均等的作用
があシ、かつCOには固溶強化作用があシ、したがって
特に一段とすぐれた耐食性が要求される場合に必要に応
じて含有されるが、Cuが2チを越えると、熱間加工性
が劣化するようになシ、一方coは2%を越えて含有さ
せてもよシ一層の改善効果は現われないことから、その
上限値をそれぞれCu:2%、Co:2%と定めた。
These components have a uniform effect of improving the corrosion resistance of the alloy, and CO has a solid solution strengthening effect, so it is included as necessary especially when even better corrosion resistance is required. , If Cu exceeds 2%, hot workability deteriorates.On the other hand, even if Co exceeds 2%, no further improvement effect will appear, so the upper limit values are set respectively. Cu: 2% and Co: 2% were determined.

(4希土類元素、YlMg、T1.およびCaこれらの
成分には、熱間加工性をさらに改善する均等的作用があ
るので、厳しい条件で熱間加工が行なわれる場合に、必
要に応じて含有されるが、それぞれ希土類元素:0,1
0%、Y:0.20%。
(4 rare earth elements, YlMg, T1., and Ca) These components have a uniform effect of further improving hot workability, so they may be included as necessary when hot working is performed under severe conditions. However, rare earth elements: 0 and 1, respectively.
0%, Y: 0.20%.

Mg: O,l 0%、Ti:0.5%、およびCa:
O,10%を越えて含有させても、熱間加工性に改善効
果は見られず、むしろ劣化現象さえ現われるようになる
ことから、それぞれの含有量を、希土類元素:0.10
%以下、Y:0.20チ以下、 Mg:、0.10%以
下、 Ti: 0.5%以下、およびCa:0.10%
以下と定めた。
Mg: O, l 0%, Ti: 0.5%, and Ca:
Even if the content of O exceeds 10%, no improvement effect on hot workability is observed, and even a deterioration phenomenon appears.
% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and Ca: 0.10%
It was determined as follows.

(’)  Cr(@+ l OMo(4+ 5 W (
%)第1図は厳しい腐食環境下での耐応力腐食割れ性に
関し、cr(@+ l OMo(1+ 5 W (罰と
+Mn (’4 + N i(9g)との関係を示した
ものである。すなわち、cr 。
(') Cr(@+ l OMo(4+ 5 W (
%) Figure 1 shows the relationship between cr(@+ l OMo(1+ 5 W Yes, that is, cr.

Ni、 Mn、 Mo 、およびWの含有量を種々変化
させたCr −Ni −Mn −Mo系、 Cr−Ni
 −Mn−W系、およびCr−Ni−Mn−Mo−W系
の鋼を溶製し、鋳造し、鍛伸し、熱間圧延して板厚:’
I1mの板材とし、ついでこの板材に、温度:1050
℃に30分保持後水冷の溶体化処理を施した後、強度向
上の目的で加工率:30%の冷間加工を加え、この結果
得られた鋼板から圧延方向と直角に、厚さ:2imX幅
=1011”X長さ=75順の試験片を切シ出し、この
試験片について、第2図に示す3点支持ビーム冶具を用
い、前記試験片Sに0.2%耐力に相当する引張応力を
付加した状態で、10気圧のH2Sおよび10気圧のC
O2でH2SおよびC02を飽和させた2 0 %Na
Ct溶液(温度:200℃)中に1000時間浸漬の応
力腐食割れ試験を行ない、試験後、前記試験片における
割れ発生の有無を観察した。
Cr-Ni-Mn-Mo system, Cr-Ni with various contents of Ni, Mn, Mo, and W
- Mn-W series and Cr-Ni-Mn-Mo-W series steels are melted, cast, forged, and hot rolled to achieve plate thickness: '
I1m plate material, then this plate material, temperature: 1050
After being held at ℃ for 30 minutes and subjected to water-cooling solution treatment, cold working was applied at a processing rate of 30% for the purpose of improving strength, and the resulting steel plate was rolled perpendicularly to the rolling direction to a thickness of 2 mm Cut out test pieces in the order of width = 1011" x length = 75, and apply a tensile force equivalent to 0.2% proof stress to the test piece S using the three-point support beam jig shown in Figure 2. 10 atm H2S and 10 atm C under stress
20% Na saturated with H2S and CO2 with O2
A stress corrosion cracking test was conducted by immersing the test piece in a Ct solution (temperature: 200°C) for 1000 hours, and after the test, the presence or absence of cracking in the test piece was observed.

これらの結果に基き、発明者等が独自に設定した条件式
:’ Cr (%) + l OMo(@+ 5 W 
C%)と+Mn (# 十Ni (@との間には、耐応
力腐食割れ性に関して、第1図に示される関係があるこ
とが明確になったのである。なお、第1図において、○
印は割れ発生なし、×印は割れ発生番それぞれ示すもの
である。第1図に示される結果から、 Cr(@ + 
10 Mo(%il + 5 W(@の値が′lO%未
満にして、+Mn(%) +Ni (@が25チ未満で
は所望のすぐれた耐応力腐食割れ性は得られないことが
明らかである。
Based on these results, the inventors independently set a conditional expression: ' Cr (%) + l OMo (@+ 5 W
It has become clear that there is a relationship between +Mn (C%) and +Mn (# 10Ni (@) with respect to stress corrosion cracking resistance, as shown in Figure 1. In Figure 1, ○
The mark indicates no cracking, and the x mark indicates the cracking number. From the results shown in Figure 1, Cr(@ +
10Mo (%il + 5W .

なお、この発明の合金において、不可避不純物としてB
、Sn、Pb、およびZnをそれぞれ0.1%以下の範
囲で含有しても、この発明の合金の特性が何らそこなわ
れるものではない。
In addition, in the alloy of this invention, B is included as an unavoidable impurity.
, Sn, Pb, and Zn each in a range of 0.1% or less does not impair the properties of the alloy of the present invention.

また、この発明の合金よシ油井管を製造するに際しては
、一般的にまず電気炉で溶製した後、Ar−酸素脱炭処
理(AOD)を施し、ついで2 ton程度の鋼塊とし
た後、1050〜1250℃の温度に加熱して直径:1
50g1φのビレットに分塊し、引続いて再び1050
〜1250℃の温度に加熱した後、例えば押出加工など
の熱間加工によって素管を成形し、この場合熱間加工温
度が再結晶の進まない1000℃以下にして、肉厚減少
率が30−以上の条件での熱間加工を行なえば、管材の
強度上昇にとって有効であり、さらに、この熱間圧延後
の素管に対して、直接、あるいは850〜1150℃の
温度で固溶化処理を施した状態で、例えば抽伸加工など
の冷間加工を、10〜60チ、好ましくは20〜40チ
の肉厚減少率で行なうこよび靭性は勿論のこと、耐応力
腐食割れ性に優れた油井管が得られるのである。
In addition, when producing the alloy oil country tubular goods of this invention, it is generally first melted in an electric furnace, then subjected to Ar-oxygen decarburization treatment (AOD), and then made into a steel ingot of about 2 tons. , heated to a temperature of 1050-1250℃ to make diameter: 1
Blooming into a 50g 1φ billet, then again 1050
After heating to a temperature of ~1250°C, the raw tube is formed by hot processing such as extrusion, and in this case, the hot working temperature is set to 1000°C or less where recrystallization does not proceed, and the wall thickness reduction rate is 30-30°C. Hot working under the above conditions is effective for increasing the strength of the tube material, and furthermore, the hot-rolled raw tube is subjected to solution treatment directly or at a temperature of 850 to 1150°C. In this state, cold working such as drawing is performed at a wall thickness reduction rate of 10 to 60 inches, preferably 20 to 40 inches. is obtained.

つぎに、この発明の合金を実施例によシ比較例および従
来例と対比しながら説明する。
Next, the alloy of the present invention will be explained by comparing it with examples, comparative examples, and conventional examples.

実施例 それぞれ第1表に示される成分組成をもった溶湯を通常
の電気炉、および脱硫とN付加の目的でAr−酸素脱炭
炉(AOD炉)を併用し、さらに必要に応じて脱燐の目
的でエレクトロスラグ溶解炉(ESR炉)を使用して溶
製した後、直径:500龍φのインゴットに、鋳造し、
ついでこのインゴットに温度:1200℃で熱間鍛造を
施して直径:150絹φのビレットを成形し、この場合
熱間加工性を評価する目的でビレットに割れの発生があ
るか否かを観察し、引続いて前記ビレットよ多熱間押出
加工によシ直径:601gφ×肉厚:4朋の素管を成形
した後、さらにこれに抽伸加工にて22%の冷間加工を
施して直径:55mtφ×肉厚:3.111の寸法とす
ることによって、本発明合金管材1〜29.比較合金管
材1〜6.および従来合金管材1〜4をそれぞれ製造し
た。
In each of the examples, a molten metal having the composition shown in Table 1 was heated in a conventional electric furnace, an Ar-oxygen decarburization furnace (AOD furnace) for the purpose of desulfurization and N addition, and further dephosphorization as necessary. After melting using an electroslag melting furnace (ESR furnace) for the purpose of
Next, this ingot was hot forged at a temperature of 1200°C to form a billet with a diameter of 150 silk φ, and in this case, for the purpose of evaluating hot workability, it was observed whether or not cracks occurred in the billet. Subsequently, the billet was subjected to multi-hot extrusion to form a raw tube with a diameter of 601 gφ x wall thickness: 4 mm, and then cold worked by 22% by drawing to obtain a diameter: By setting the dimensions to 55 mtφ x wall thickness: 3.111, the alloy tube materials 1 to 29 of the present invention. Comparative alloy tube materials 1 to 6. and conventional alloy tube materials 1 to 4 were manufactured, respectively.

なお、比較合金管材1〜6は、いずれも構成成分のうち
のいずれかの成分の含有量(第1表には※印を付して表
示)がこの発明の範囲から外れた組成をもつものであシ
、また従来合金管材1は、J lS−8US 316に
、同2はJIS−8US 3108に、同3はインコロ
イ800に、同4はJIS・SUS  329J1にそ
れぞれ相当する組成をもつものである。
In addition, Comparative Alloy Tube Materials 1 to 6 all have compositions in which the content of one of the constituent components (indicated with an asterisk in Table 1) is outside the scope of the present invention. In addition, the conventional alloy tube material 1 has a composition corresponding to JIS-8US 316, 2 to JIS-8US 3108, 3 to Incoloy 800, and 4 to JIS SUS 329J1. be.

ついで、この結果得られた本発明合金管材1〜29.比
較合金管材1〜6.・および従来合金管材1〜4より長
さ:2011の試験片をそれぞれ切出し、この試験片よ
シ長さ方向にそって60°に相当する部分を切落し、こ
の状態の試験片に第3図に正面図で示されるようにボル
トを貫通し、ナツトでしめつけて管外表面に0.2%耐
力に相当する引張応力を付加し、この状態の試験片Sに
対して、H2S分圧をそれぞれ0.1気圧、1気圧、お
よび15気圧としたH2S−10気圧CO2−20%N
aC1溶液(液温:200℃)中に1000時間浸漬の
応力腐食割れ試験を行にい、試験後における応力腐食割
れの有無を調査した。この結果を、上記の熱間鍛造時の
割れ発生の有無、引張試験結果、および衝撃試験結果と
共に、第2表に合せて示した。
Next, the resulting alloy tube materials 1 to 29 of the present invention were prepared. Comparative alloy tube materials 1 to 6.・A test piece of length: 2011 was cut out from conventional alloy tube materials 1 to 4, and a portion corresponding to 60° was cut off along the length direction of the test piece. As shown in the front view, a bolt passes through the tube and is tightened with a nut to apply a tensile stress equivalent to 0.2% proof stress to the outer surface of the tube, and the H2S partial pressure is H2S - 10 atm CO2 - 20% N at 0.1 atm, 1 atm, and 15 atm
A stress corrosion cracking test was carried out by immersion in aC1 solution (liquid temperature: 200°C) for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. The results are shown in Table 2 together with the presence or absence of cracking during hot forging, the tensile test results, and the impact test results.

なお、第2表において、Q印はいずれも割れ発生のない
ものを示し、一方X印は割れ発生のあったものを示す。
In Table 2, the marks Q indicate those with no cracks, while the marks X indicate those with cracks.

第2表に示される結果から、比較合金管材1〜6は、熱
間加工性、耐応力腐食割れ性、および強度のうちの少な
くともいずれかの性質が劣ったものであるのに対して、
本発明合金管材1〜29は、いずれもすぐれた熱間加工
性および耐応力腐食割れ性を有し、さらに高強度を有し
、かつ熱間加工性は良好であるが、相対的に強度が低く
、しかも耐応力′腐食割れ性に劣る従来合金管材1〜4
と比較しても一段とすぐれた特性を有することが明らか
である。
From the results shown in Table 2, comparative alloy tube materials 1 to 6 were inferior in at least one of the following properties: hot workability, stress corrosion cracking resistance, and strength.
The alloy tube materials 1 to 29 of the present invention all have excellent hot workability and stress corrosion cracking resistance, and also have high strength and good hot workability, but have relatively low strength. Conventional alloy pipe materials 1 to 4 with low stress resistance and inferior corrosion cracking resistance
It is clear that it has even better characteristics when compared to

上述のように、この発明の合金は、特に高強度および優
れた耐応力腐食割れ性を有しているので、これらの特性
が要求される苛酷な環境下での石油および天然ガス採掘
に用いられる油井管として、さらに地熱井管として使用
した場合にきわめて優れた性能を発揮するのである。
As mentioned above, the alloy of the present invention has particularly high strength and excellent resistance to stress corrosion cracking, making it suitable for use in oil and natural gas extraction in harsh environments where these properties are required. It exhibits extremely excellent performance when used as oil country tubular goods and geothermal country tubular goods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金の耐応力腐食割れ性に関し、4Mn(1)
 + Ni (’l)とcr(1) + 10 Mo(
@+ 5 W (@との関係を示し−た図、第2図およ
び第3図はそれぞれ板状および管状試験片に対する応力
腐食割れ試験の態様を示す図である。 出願人  住友金属工業株式会社 代理人  富  1) 和  夫 萎1図 Cr(%)+IOMo(%)+5W(%)第1頁の続き 0発 明 者 池田皓夫 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中゛央技術 研究所内 0発 明 者 諸石大司 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内
Figure 1 shows the stress corrosion cracking resistance of the alloy, 4Mn(1).
+ Ni ('l) and cr (1) + 10 Mo (
@ + 5 W (Figures 2 and 3 are diagrams showing the relationship with @, respectively, are diagrams showing aspects of stress corrosion cracking tests on plate-shaped and tubular specimens. Applicant: Sumitomo Metal Industries, Ltd. Agent Tomi 1) Kazufu 1 Cr (%) + IOMo (%) + 5 W (%) Continued from page 1 0 Inventor Hiroo Ikeda Sumitomo Metal Industries, Ltd., 1-3 Nishinagasu Hondori, Amagasaki City Inventor: Daiji Moroishi, 1-3 Nishinagasu Hondori, Amagasaki City, Sumitomo Metal Industries, Ltd., Central Technology Research Institute

Claims (1)

【特許請求の範囲】 (1)  C: 0.1 %以下、St:1.o$以下
、Mu:3〜2’Ogb、 P :O,030%以下、
 S:0.005%以下。 sot、 M : O−516以下、 yi: 20〜
60 %、 Cr:22.5〜30チを含有し、Mo:
8%未満およびW二16−未満のうちの1種または2種
を含有し、残少がFeと不可避不純物からなる組成(以
上重量%)を有し、かつ。 cr($ + 1 ova@ + 5 W <@≧10
チ。 4Mn(91!+Ni(彎≧25チ。 4s≦Mo(−十+w&り< s s。 の条件を満足することを特徴とする耐応力腐食割れ性に
優れた高強度油井管用合金。 (2)C:0.1qIj以下、 Si: 1.0%以下
、Mn:3〜2’ OL P :0.030%以下、S
 :0.005%以下。 soL、AI Q、5%以下、Ni:20〜60%、 
Cr :22.5〜30チを含有し、Mo:8チ未満お
よびW:16%未満のうちの1種または2種を含有し、
さらにCu:2%以下およびCo:2%以下のうちの1
種または2種を含有し、残りがFeと不可避不純物から
なる組成(以上重量%)を有し、かつ、er(@ + 
10 MO(91) + s w (@≧10チ。 + Mrh(99+Ni61)≧25チ。 4チ≦Mo(資)++W(至)〈8チ。 の条件を満足することを特徴とする耐応力腐食割れ性に
優れた高強度油井管用合金。 −(3)  C: 0.1g6以下、Si:1.09J
以下、Mn:3〜20嘔、 P :(1030チ以下、
S :0.005%以下。 BOl、ldl : 0.5 %以下、N1 : 20
〜6096. Cr:22.5〜30fiを含有し、M
o:896未満およびW:16−未満のうちの1種また
は2種を含有し、さらに希土類元素: 0.10 %以
下、Y:O,,20%以下、 Mg:O,10%以下、
 Ti: 0.5 S以下、 オヨUCa: 0.10
 %以下のうちの1種または2種以上を含有し、残りが
Feと不可避不純物からなる組成(以上重量%)を有し
、かつ cr(91) + I C+Mo(%)’−1−5W(
@≧′10%。 +Mn(@+ N1(1525%。 4チ≦Mo(吻++W((5)〈8%。 の条件を満足することを特徴とする耐応力腐食割れ性に
優れた高強度油井管用合金。 (4) C:0.1%以下、Si:1.0%以下、 M
n : 3〜20%、p :0.030チ以下、  S
:0.O05チ以下。 sot、 AQ : 0−5 %以下、 Ni: 20
〜60%、Cr:22.5〜30%を含有し、Mo+8
%未満およびW:16%未満のうちの1種または2種を
含有し、さらにCu:2%以下およびCo:2%以下の
うちの1種または2種と、希土類元素:0.10%以下
。 Y二0.20%以下、 Mg: 0.10%以下、’l
:’i:0.5チ以下、およびCa: 0.10%以下
のうちの1種または2種以上とを含有し、残シがFeと
不可避不純物からなる組成(以上重量%)を有し、かつ
、Cr (@+i 0MO(伺+ 5 W (@≧70
%。 +Mn(%’) 十Ni (LE)≧25チ。 4チ≦MO(%) 十+ W (# < 8 % 。 の条件を満足することを特徴とする耐応力腐食割れ性に
優れた高強度油井管用合金。 (5)  C: 0.1 %以下、 Si: 1.0 
%以下、Mn:3〜20チ、p:o、030チ以下、3
 :0.005%以下。 sot、 kl : 0.5%以下、N:0.05〜0
.3チ、N1:20〜60%、Cr: 22.5〜30
 %を含有し、M。 二8%未満およびW:16%未満のうちの1種または2
種を含有し、残シがFeと不可避不純物からなる組成(
以上重量%)を有し、かつ、CrC弼+10Mo(%)
+ 5 w(1270%。 +Mn (+9 +Ni (働≧25%。 4%≦Mo(96)十+W (’4< 8 % 。 の条件を満足することを特徴とする耐応力腐食割れ性に
優れた高強度油井管用合金。 (6)  C: 0.1%以下、Si:1.0%以下、
Mn:3〜20%、p :0.030%以下、S :0
.O05チ以下。 sol、 M : 0.5 %以下、 N : 0.0
5〜0.3 %、 Ni :20〜60%、Cr: 2
2.5〜30%を含有し、M。 二8チ未満およびW:16%未満のうちの1種または2
種を含有し、さらにC’u:2%以下およびCO:2%
以下1のうちの1種または2種を含有し、残9がFeと
不可避不純物からなる組成(以上重量%)を有し、かつ
、 C,(@ + 10Mo(%) +5 W (%)≧7
0%。 +Mn(@+Ni(@≧25%。 4%≦Mo(イ)++W(@<8チ。 の条件を満足することを特徴とする耐応力腐食割れ性に
優れた高強度油井管用合金。 (−/)C:0.1%以下、sl:1.0%以下、Mn
:3〜20チ、P :0.030%以下 3+0.00
5%以下。 soLM: 0.5%以下、 N : 0.05〜0.
3 %、 N1:20〜60%、 Cr: 22,5〜
30.4を含有し、M。 二8%未満およびW :、 16 %未満のうちの1種
または2種を含有し、さらに希土類元素:0.1.0%
以下、Y二〇、20%以下、 Mg : 0.1.0%
以下、Ti二0.5%以下、およびCa:0.10%以
下のうちの1種または2種以上を含有し、残シがFeと
不可避不純物からなる組成(以上重量%)を有し、力)
つ、Cr(%) + 10 MO(@+ 5 W (%
)≧’i’o%。 + Mn(@+ N i@)≧25饅。 4チ≦Mo(%) + +W (%) (8% 。 の条件を、満足することを特徴とする耐応力腐食割れ性
に優れた高強度油井管用合金。 (8)  C: 0.1%以下、Si:1.0%以下、
Mn:3〜20チ、P:0.030チ以下、S :0.
005%以下。 sot、 M : 0.5 %以下、 N : 0.O
j 〜0.3 % 、 Nl :20〜60 %、 C
r: 22.5〜30 %を含有し、M。 =88チ満およびW: 16%未満のうちの1種または
2種を含有し、さらにCu:2%以下およびCO:2チ
以下のうちの1種または2種と、希土類元素:0.10
%以下、 Y :、O,,20%以下、 Mg : 0
.10チ以下、 Ti: 0.50%以下、およびCa
:0.1.0%以下のうちの1種または2種以上とを含
有し、残りがFeと不可避不純物からなや組成(以上重
量%)を有し、かつ、 Cr(q6)+ I O,Mo(%) + 5 w (
#≧70チ。 + Mn(%) 十N1(%)≧25−24チ≦Mo(
@+ + W (チ)〈8チ。 の条件を満足することを特徴とする耐応力腐食割れ性に
優れた高強度油井管用合金。
[Claims] (1) C: 0.1% or less, St: 1. o$ or less, Mu: 3-2'Ogb, P: O, 030% or less,
S: 0.005% or less. sot, M: O-516 or less, yi: 20~
60%, Cr: 22.5-30%, Mo:
It contains one or two of the following: less than 8% W and less than 16% W, with the balance consisting of Fe and unavoidable impurities (the above weight %), and. cr($ + 1 ova@ + 5 W <@≧10
blood. A high-strength oil country tubular alloy with excellent stress corrosion cracking resistance that satisfies the following conditions. C: 0.1qIj or less, Si: 1.0% or less, Mn: 3-2' OL P: 0.030% or less, S
: 0.005% or less. soL, AI Q, 5% or less, Ni: 20-60%,
Cr: 22.5 to 30%, Mo: less than 8% and W: less than 16%, one or two of them;
Furthermore, one of Cu: 2% or less and Co: 2% or less
It has a composition (weight% or more) containing one or two species, and the remainder consists of Fe and unavoidable impurities, and er(@ +
10 MO(91) + s w (@≧10chi. + Mrh(99+Ni61)≧25chi. 4chi≦Mo (equity) ++W (to) <8chi. Stress resistance characterized by satisfying the following conditions. High strength alloy for oil country tubular goods with excellent corrosion cracking resistance. -(3) C: 0.1g6 or less, Si: 1.09J
Below, Mn: 3 to 20 mm, P: (1030 mm or less,
S: 0.005% or less. BOl, ldl: 0.5% or less, N1: 20
~6096. Cr: Contains 22.5-30fi, M
o: less than 896 and W: less than 16-, and further contains rare earth elements: 0.10% or less, Y: O, 20% or less, Mg: O, 10% or less,
Ti: 0.5 S or less, Oyo UCa: 0.10
% or less, with the remainder consisting of Fe and unavoidable impurities (weight %), and cr (91) + I C + Mo (%)'-1-5W (
@≧′10%. +Mn(@+N1(1525%. ) C: 0.1% or less, Si: 1.0% or less, M
n: 3-20%, p: 0.030 or less, S
:0. O05chi or less. sot, AQ: 0-5% or less, Ni: 20
~60%, Cr:22.5~30%, Mo+8
% and W: less than 16%, and further contains one or two of Cu: 2% or less and Co: 2% or less, and rare earth elements: 0.10% or less. . Y2 0.20% or less, Mg: 0.10% or less, 'l
Contains one or more of the following: i: 0.5% or less, and Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (weight% or more) , and Cr (@+i 0MO(visit+5 W) (@≧70
%. +Mn (%') 10Ni (LE)≧25chi. A high-strength oil country tubular alloy with excellent stress corrosion cracking resistance that satisfies the following conditions: 4CH≦MO(%) 10+W (#<8%. (5) C: 0.1% or less , Si: 1.0
% or less, Mn: 3 to 20 inches, p: o, 030 inches or less, 3
: 0.005% or less. sot, kl: 0.5% or less, N: 0.05-0
.. 3chi, N1: 20-60%, Cr: 22.5-30
%, M. One or two of the following: less than 28% and W: less than 16%
A composition containing seeds, with the remainder consisting of Fe and unavoidable impurities (
or more weight%), and CrC + 10Mo (%)
+ 5 w (1270%. (6) C: 0.1% or less, Si: 1.0% or less,
Mn: 3-20%, p: 0.030% or less, S: 0
.. O05chi or less. sol, M: 0.5% or less, N: 0.0
5-0.3%, Ni: 20-60%, Cr: 2
Contains 2.5-30%, M. One or two of less than 28 inches and W: less than 16%
Contains seeds, and further contains C'u: 2% or less and CO: 2%
Contains one or two of the following 1, with the remaining 9 consisting of Fe and unavoidable impurities (weight%), and C, (@ + 10Mo (%) + 5 W (%) ≧ 7
0%. +Mn(@+Ni(@≧25%.4%≦Mo(a))++W(@<8ch.) A high-strength oil country pipe alloy with excellent stress corrosion cracking resistance. (- /) C: 0.1% or less, sl: 1.0% or less, Mn
: 3~20chi, P: 0.030% or less 3+0.00
Less than 5%. soLM: 0.5% or less, N: 0.05-0.
3%, N1: 20~60%, Cr: 22.5~
Contains 30.4 and M. Contains one or two of the following: less than 28% and W:, less than 16%, and further contains rare earth elements: 0.1.0%
Below, Y20, 20% or less, Mg: 0.1.0%
Containing one or more of Ti: 0.5% or less and Ca: 0.10% or less, the remainder having a composition (weight %) consisting of Fe and unavoidable impurities, Power)
Cr (%) + 10 MO (@+ 5 W (%)
)≧'i'o%. + Mn(@+N i@)≧25 rice cake. A high-strength oil country tubular alloy with excellent stress corrosion cracking resistance that satisfies the following conditions: 4CH≦Mo (%) + +W (%) (8%) (8) C: 0.1% Hereinafter, Si: 1.0% or less,
Mn: 3 to 20 inches, P: 0.030 inches or less, S: 0.
005% or less. sot, M: 0.5% or less, N: 0. O
j ~0.3%, Nl: 20~60%, C
r: Contains 22.5-30%, M. = less than 88% and W: Contains one or two of less than 16%, further contains one or two of Cu: 2% or less and CO: 2% or less, and rare earth element: 0.10
% or less, Y:, O,, 20% or less, Mg: 0
.. 10 Ti or less, Ti: 0.50% or less, and Ca
Cr(q6) + I O , Mo (%) + 5 w (
#≧70chi. + Mn (%) 10N1 (%)≧25-24chi≦Mo(
@+ + W (chi)〈8chi. A high-strength oil country tubular alloy with excellent stress corrosion cracking resistance that satisfies the following conditions.
JP9796281A 1981-06-24 1981-06-24 High strength alloy having superior stress corrosion cracking resistance for oil well pipe Pending JPS581043A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9796281A JPS581043A (en) 1981-06-24 1981-06-24 High strength alloy having superior stress corrosion cracking resistance for oil well pipe
US06/389,484 US4400349A (en) 1981-06-24 1982-06-17 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08217859A GB2105368B (en) 1981-06-24 1982-06-21 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
DE19823223457 DE3223457A1 (en) 1981-06-24 1982-06-23 ALLOY, ESPECIALLY FOR THE PRODUCTION OF HIGHLY RESILIENT PIPING OF DEEP HOLES OR THE LIKE
SE8203922A SE442025B (en) 1981-06-24 1982-06-23 ALLOY
FR8211071A FR2508491B1 (en) 1981-06-24 1982-06-24 HIGH TENSION CORROSION CRACKING ALLOY, IN PARTICULAR FOR PRODUCING TUBULAR PRODUCTS FOR DEEP WELLS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9796281A JPS581043A (en) 1981-06-24 1981-06-24 High strength alloy having superior stress corrosion cracking resistance for oil well pipe

Publications (1)

Publication Number Publication Date
JPS581043A true JPS581043A (en) 1983-01-06

Family

ID=14206292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9796281A Pending JPS581043A (en) 1981-06-24 1981-06-24 High strength alloy having superior stress corrosion cracking resistance for oil well pipe

Country Status (1)

Country Link
JP (1) JPS581043A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210155A (en) * 1982-05-31 1983-12-07 Sumitomo Metal Ind Ltd High-strength alloy for oil well pipe with superior corrosion resistance
JPS58210156A (en) * 1982-05-31 1983-12-07 Sumitomo Metal Ind Ltd High-strength alloy for oil well pipe with superior corrosion resistance
JPS6187855A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Stainless steel having superior corrosion resistance and hot workability
JP2002128393A (en) * 2000-09-26 2002-05-09 Ab Dick Co End plug for core of sheet material roll and sheet material roll mounting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210155A (en) * 1982-05-31 1983-12-07 Sumitomo Metal Ind Ltd High-strength alloy for oil well pipe with superior corrosion resistance
JPS58210156A (en) * 1982-05-31 1983-12-07 Sumitomo Metal Ind Ltd High-strength alloy for oil well pipe with superior corrosion resistance
JPH0372698B2 (en) * 1982-05-31 1991-11-19 Sumitomo Metal Ind
JPH0372699B2 (en) * 1982-05-31 1991-11-19 Sumitomo Metal Ind
JPS6187855A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Stainless steel having superior corrosion resistance and hot workability
JPH0357181B2 (en) * 1984-10-05 1991-08-30
JP2002128393A (en) * 2000-09-26 2002-05-09 Ab Dick Co End plug for core of sheet material roll and sheet material roll mounting device

Similar Documents

Publication Publication Date Title
US4400211A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
EP0132055B1 (en) Precipitation-hardening nickel-base alloy and method of producing same
US4400349A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
EP0545753A1 (en) Duplex stainless steel having improved strength and corrosion resistance
JPS625977B2 (en)
JPS625976B2 (en)
JPS58210158A (en) High-strength alloy for oil well pipe with superior corrosion resistance
JPS6144133B2 (en)
JP2001300730A (en) Method for connecting high-strength martensitic stainless steel pipe for oil well
JPS6144135B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6363608B2 (en)
JPS6363610B2 (en)
JPS581043A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6362569B2 (en)
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS6363609B2 (en)
JPH0371506B2 (en)
JPS6144128B2 (en)
JPS6144134B2 (en)
JPS6144126B2 (en)
JPS6363606B2 (en)
JPS581042A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6144125B2 (en)