Nothing Special   »   [go: up one dir, main page]

JPS61227804A - Production of finely pored hollow yarn - Google Patents

Production of finely pored hollow yarn

Info

Publication number
JPS61227804A
JPS61227804A JP60068690A JP6869085A JPS61227804A JP S61227804 A JPS61227804 A JP S61227804A JP 60068690 A JP60068690 A JP 60068690A JP 6869085 A JP6869085 A JP 6869085A JP S61227804 A JPS61227804 A JP S61227804A
Authority
JP
Japan
Prior art keywords
yarn
hollow fiber
wall
corona discharge
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60068690A
Other languages
Japanese (ja)
Inventor
Hajime Ito
元 伊藤
Haruhiko Yoshida
晴彦 吉田
Akira Hasegawa
章 長谷川
Hiroshi Takahashi
洋 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP60068690A priority Critical patent/JPS61227804A/en
Publication of JPS61227804A publication Critical patent/JPS61227804A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • External Artificial Organs (AREA)

Abstract

PURPOSE:To reduce only the diameter of a pore while keeping the porosity of a membrane by treating a melt-spun crystalline org. high molecular hollow yarn with corona discharge and then stretching the yarn by >=1.5 times at a temp. higher than the glass transition temp. and lower than the m.p. CONSTITUTION:A melt-formable crystalline org. polymer is melt-spun by using a spinneret for producing hollow yarn to obtain unstretched hollow yarn having substantially no through-pores leading from the outer wall to the inner wall. The hollow yarn is treated with corona discharge at 1-50W/m<2>. The yarn is then stretched by 1.5-4 times at temps. ranging from the glass transition temp. of the org. polymer to the m.p. at >=2/sec deformation speed with use of >=2 rolls.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は結晶性有機高分子から成る中壁未延伸糸を延伸
多孔質化する方法に関する。更に詳しくは血液透析或い
は血液1過に適する微多孔質中空糸の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of drawing and making an undrawn inner wall yarn made of a crystalline organic polymer porous. More specifically, the present invention relates to a method for manufacturing microporous hollow fibers suitable for hemodialysis or blood filtration.

〔従来の技術〕[Conventional technology]

腎臓障害含有する患者に対する血液透析は既に汎〈実施
さ扛ており、血液透析用分離膜としては従来、例えば銅
アンモニア法、再生セルローズ、アセチルセルローズ、
ポリアクリロニトリル、エチレン−ビニルアルコール共
M合体’4の半透膜が供さnている。
Hemodialysis for patients with renal impairment has already been widely implemented, and conventional separation membranes for hemodialysis include the cuprammonium method, regenerated cellulose, acetylcellulose,
A semipermeable membrane made of polyacrylonitrile and ethylene-vinyl alcohol co-merged '4' is provided.

しかし近年、血液透析に際し補体活性化と称さnる現象
つまり白血球数の一時的減少、血圧の一時的低下という
一連の症状が指摘さr問題となつ−Cいる。こt′1.
は血漿中の一部の成分と膜全構成するポリマーとの間の
反応に起因するものであジ、かかる反応の起こらない膜
の出現が待た扛ている。
However, in recent years, a phenomenon called complement activation, that is, a series of symptoms such as a temporary decrease in the number of white blood cells and a temporary decrease in blood pressure, has become a problem during hemodialysis. This t'1.
This is caused by a reaction between some components in plasma and the polymers that make up the entire membrane, and we are eagerly awaiting the emergence of a membrane in which such a reaction does not occur.

一方、最近、血中の中分子量有毒成分が注目さtてきて
おり、人工腎臓においても該成分除去に効果のある血液
e適法によるfj過髪型人工腎臓増加してきている。か
かる血液濾過においては分離膜として限外1過膜が供さ
扛ており、例えばアセチルセルローズ、ポリスルホン等
の多孔質膜が用いら扛ているが、こ扛らの多孔質膜は機
能の1侠な因子のひとつである透水性能が充分とは言い
難く、この点の改善が強く賛望さn、でいる。
On the other hand, recently, medium-molecular-weight toxic components in the blood have been attracting attention, and the number of artificial kidneys using a blood e-proper method that is effective in removing these components is increasing. In such blood filtration, ultraviolet filtration membranes are used as separation membranes, and porous membranes such as acetylcellulose and polysulfone are used, but these porous membranes have only one function. The water permeability, which is one of the key factors, is far from satisfactory, and improvements in this point are strongly recommended.

本発明者らに溶融賦形可能な結晶性有機高分子から成る
未延伸中9糸全延伸多孔質化する公知の方法による膜が
溶剤可塑剤等を使用せず、残留不純物が非常に少なく極
めて安全性が高いこと、非常に透水能が優扛ていること
をみとめた0 し発明が解決しようとする問題点コ しかしながら収脱は分画分子量が高く、血液透析、血液
j1過に供するには孔径の縮小適性化が必要であること
が判明したのであるが、公知の技術範囲では孔径全縮少
すると必然的に空孔率が低下するという結果になる。つ
ま9孕孔率全維持しなから孔径のみを縮小することがで
きなかったのである。
The present inventors have developed a membrane made of a crystalline organic polymer that can be melt-formed using a known method of fully stretching 9 filaments during unstretching to make it porous. It was found that the invention has high safety and excellent water permeability.However, the problem that the invention aims to solve is that the molecular weight cut-off is high, making it difficult to use for hemodialysis or blood filtration. It has been found that it is necessary to suitably reduce the pore diameter, but within the known technical range, a complete reduction in the pore diameter inevitably results in a decrease in porosity. It was not possible to reduce only the pore diameter without maintaining the full porosity.

し問題点全解決するための手段〕 本発明者らにかかる状況VC@み、延伸多孔質化方法に
ついて種々検=’t ’(]l−重ねた結果、短かい延
伸区間内で高速で面倍率に冷延伸することにより空孔率
全維持しつつ細孔径縮少が可能であること、高速冷延伸
全ローラー間で実施すると未延伸がローラー上でスリッ
プし易くなるが冷延伸に先立ち予め未延伸糸全コロナ放
電処理することによりかかるスリップ全防止できること
を見出し本発明全完成した。
[Means for solving all the problems] The present inventors looked at the situation VC@, and as a result of conducting various tests on the stretching method to make the porous material ='t'(]l-), it was found that It is possible to reduce the pore diameter while maintaining the full porosity by cold-stretching at a certain ratio. It was discovered that such slippage could be completely prevented by subjecting the entire drawn yarn to corona discharge treatment, and the present invention was completed.

本発明の要旨は溶融賦形可能な結晶性有機高分子を中壁
糸製造用口金を用いて溶融紡糸して得らnる外壁から内
壁に通じる貫通孔全実質的にMしない中空未延伸糸tコ
ロナ放電処理した後に該有機高分子のガラス転移温度以
上融点以下の温度範囲内で、下記の式で表わさnる変形
速度が2乃至100/秒で、かつ延伸倍率が1.5倍以
上となるように2本又はそn以上のロールの間で延伸す
ること全特徴とする微多孔質中空糸の製造方法にある。
The gist of the present invention is to melt-spun a melt-formable crystalline organic polymer using a spinneret for producing an inner-walled yarn, and to obtain a hollow undrawn yarn in which all through-holes communicating from the outer wall to the inner wall are substantially free from M. After corona discharge treatment, the deformation rate expressed by the following formula is from 2 to 100/sec within the temperature range from the glass transition temperature to the melting point of the organic polymer, and the stretching ratio is 1.5 times or more. The method for producing microporous hollow fibers is characterized in that the fibers are stretched between two or more rolls so that the fibers are drawn.

溶融賦形可能な結晶性有機高分子としては、ポリエチレ
ン、ポリプロピレン、ポリ4−メチルペンテン−1、ポ
リ3−メチルブテン−1、ポリオキシメチレン全例示す
ることができる。
Examples of crystalline organic polymers that can be melt-formed include polyethylene, polypropylene, poly4-methylpentene-1, poly3-methylbutene-1, and polyoxymethylene.

従来開発さしてきた多孔質中壁繊維は未延伸中9糸を短
かい延伸区間内で高速で冷延伸し、次いで熱延伸するこ
とによって作ら扛ており、この多孔質中空糸の壁面の孔
の径は大きいものとなっており、微小孔径の孔に!する
多孔質中窒糸ケ当該技術で作ることに極めて難い。本発
明者らの検討に工nば、特定の未延伸糸を先に示した式
で表現さする変形速度が2乃至100/秒で、延伸倍率
が1.5倍以上冷延伸すると空孔率に従来の延伸法によ
る多孔質中空糸のそtと同様に大きい値全保ちつつ細孔
径のみ全縮少した多孔質中空糸となしうろことが判明し
たのである。
The previously developed porous mid-wall fibers are made by cold-drawing nine undrawn fibers at high speed within a short drawing section, and then hot-drawing them. The pores are large and have a microscopic pore size! It is extremely difficult to make porous medium nitrogen yarn using this technology. Based on the studies conducted by the present inventors, it was found that when a specific undrawn yarn is cold-stretched at a deformation rate expressed by the formula shown above from 2 to 100/sec and at a stretching ratio of 1.5 times or more, the porosity increases. It was discovered that the porous hollow fiber had a completely reduced pore diameter while maintaining the same large value as the porous hollow fiber produced by the conventional drawing method.

つまり変形速度が小さい場合には冷延伸による応力に結
晶界面剥離で生成したミクロクレーズの拡大に作用する
が、他方変形速度が大きい場合には結晶界面剥離の頻度
の増加として作用するのである。延伸倍率ニ1.5倍以
上であることが必要であり、4倍までであることが好ま
しい。延伸温度は未延伸糸全構成する有機高分子の分子
配列が可能であり、かつ結晶構造が変化しない温度範囲
、つまり該有機高分子のガラス転移温度乃至融点の範囲
であ扛は良い。
In other words, when the deformation rate is low, the stress due to cold drawing acts to expand the microcrazes generated by crystal interfacial exfoliation, whereas when the deformation rate is high, it acts to increase the frequency of crystal interfacial exfoliation. It is necessary that the stretching ratio is 1.5 times or more, and preferably up to 4 times. The stretching temperature is preferably within a temperature range at which the molecular arrangement of the organic polymers constituting the entire undrawn yarn is possible and the crystal structure does not change, that is, the range from the glass transition temperature to the melting point of the organic polymers.

また変形速度は27秒、つまり1秒間に2倍以上の長さ
になるようにするのが良く、こ扛以下では所期の効果が
得ら扛ない。逆に変形速度が100/秒、すなわち1秒
間に100倍の長さになるような速度以上で延伸した場
合には、未延伸糸が所謂延伸切′nk起こすために1.
5倍以上の長さまで延伸することができず、実質的には
外壁から内壁に通じる貫通孔を有する多孔質中空糸るこ
とができないのである。
Further, it is preferable that the deformation speed is 27 seconds, that is, more than double the length per second; if the deformation speed is less than this, the desired effect will not be obtained. On the other hand, if the deformation rate is 100/sec, that is, the length is 100 times longer per second, if the undrawn yarn is drawn at a rate higher than 100/sec, the undrawn yarn will undergo so-called stretch breakage.
It cannot be stretched to a length of five times or more, and it is virtually impossible to form a porous hollow fiber having through holes that communicate from the outer wall to the inner wall.

延伸倍率は例えば未延伸糸の給糸側ローラーの速度に対
する巻取り側ローラーの速度の比で表わさする。
The stretching ratio is expressed, for example, as the ratio of the speed of the winding-side roller to the speed of the yarn-feeding roller of the undrawn yarn.

延伸法の態様は種々考えら扛るが、延伸区間を出来る限
9短かく、かつ連続的に延伸が可能であるという理由か
らロールを用いて該ロール間で実施するのが最も現実的
である。この場合2本のロール音用いて一段で延伸して
もよく、3本以上のロール金剛いて多段で延伸してもよ
い。
Although various aspects of the stretching method can be considered, the most practical method is to use rolls and perform the stretching between the rolls because the stretching section is as short as possible and continuous stretching is possible. . In this case, it may be stretched in one stage using two rolls, or it may be stretched in multiple stages using three or more rolls.

本発明のもうひとつの重要が点は、冷延伸に先立って未
延伸糸をコロナ放電処理することにある。つまり、上に
述べた如く高変形速度の下においてローラー間で延伸す
る場合、未延伸糸がローラー上でスリップし易く延伸斑
が発生するだけでなく、全く所期の効果が得らnないの
である。このスリップ會防止すべく検討した結果、未延
伸糸全コロナ放電処理することにより未延伸糸表面に凹
凸が発生し、該表面が粗面化さ扛ること、未延伸糸が帯
電しロール面に静電的に引き寄せらすること02つの効
果があり、スリップが効果的に防止さ扛るのである。
Another important point of the present invention is that the undrawn yarn is subjected to corona discharge treatment prior to cold drawing. In other words, when drawing between rollers at high deformation speeds as mentioned above, not only does the undrawn yarn tend to slip on the rollers, causing uneven drawing, but the desired effect is not obtained at all. be. As a result of studies to prevent this slipping, we found that applying corona discharge treatment to all undrawn yarns causes unevenness to occur on the surface of the undrawn yarns, making the surface rough and rough, and that the undrawn yarns become electrically charged and the roll surface The electrostatic attraction has two effects, effectively preventing slippage.

コロナ放電処理は1乃至50 w/m”の条件が適当で
あり、1w/m2以下の条件ではスリップ防止に対する
効果が発現し難く、他方50W/m2  以上の条件で
は未延伸糸が劣化損傷を受けるため好ましくない。
For corona discharge treatment, conditions of 1 to 50 w/m" are appropriate; under conditions of 1 w/m2, it is difficult to achieve slip prevention effects; on the other hand, under conditions of 50 W/m2 or more, undrawn yarn may deteriorate and be damaged. Therefore, it is undesirable.

かかる条件で得られる延伸多孔質中空糸がどのような細
孔を有しているかは次のようにして評価することができ
る◎ 多孔質中空糸の多孔質壁面を透過する気体の速度はその
細孔径の大きさにより流動形式がボアゼイユ流又はクヌ
ーセン流に分類さrるが、いずnの場合においても平均
細孔径rに膜厚會し、空孔率をφ、気体流速tJとした
とき次の様な関係で示さ扛ることか知ら扛ている。
What kind of pores the drawn porous hollow fiber obtained under these conditions has can be evaluated as follows.◎ The speed of gas passing through the porous wall surface of the porous hollow fiber is The flow type is classified into Boiszeuille flow or Knudsen flow depending on the size of the pores, but in any case, when the average pore diameter is r, the film thickness is set to r, the porosity is φ, and the gas flow rate is tJ, the following I don't know how to show this in a relationship like this.

このうち膜厚は光学顕微鏡等により、空孔率に水銀圧入
法により容易に測定できる。また、気体透過速度は多孔
質中空糸束の末端の一端會接着剤等で固定開放し、他端
は溶融等により封じた状態とし中9糸内に加圧望見全圧
入し、中9糸外へ透過した空気の流速會測定丁扛ば艮い
Among these, the film thickness can be easily measured using an optical microscope or the like, and the porosity can be easily measured by mercury porosimetry. In addition, the gas permeation rate was determined by fixing one end of the porous hollow fiber bundle with an adhesive, etc., and sealing the other end by melting, etc., and fully pressurized the inside of the middle 9 fibers. It is possible to measure the flow velocity of the air that permeates to the outside.

孔径に関する相対的評価が可能となるのである。This allows for relative evaluation of pore size.

本発明による多孔質中空糸は、空孔率は高く細孔径が小
さいことが示さ扛る。
It is shown that the porous hollow fiber according to the present invention has a high porosity and a small pore diameter.

〔実施例〕〔Example〕

以下、実施例に従って本発明全説明する。 The present invention will be fully explained below with reference to Examples.

実施例1 高密度ポリエチレン(三井石油化学社製ハイゼツクス2
200J)il 60℃で溶融し、中空糸製造用口金を
用いて紡糸トラフ) 5500で紡糸し、未延伸糸を得
た。
Example 1 High-density polyethylene (Mitsui Petrochemical Co., Ltd. Hi-Zex 2)
200J)il was melted at 60°C and spun using a spinning trough (5500J) using a hollow fiber production spinneret to obtain an undrawn fiber.

該未延伸糸’z 10 w/m2の条件でコロナ放電処
理を施した後、30℃で直径7αの2本のロール間で未
延伸糸給糸側ロール速度120m/分巻取9側ロール速
度が30’Om/分になるように延伸して多孔質中空糸
(A)?得た。変形速度に45/秒である。得らn7’
n多孔質中空糸の測定結果全比較例1.2の中空糸のそ
nと共に第1表に示す。
After corona discharge treatment under the condition of the undrawn yarn'z 10 w/m2, the undrawn yarn was heated at 30°C between two rolls with a diameter of 7α at a roll speed of 120 m/min on the feeding side and a roll speed on the winding 9 side. The porous hollow fiber (A) is drawn so that the Obtained. The deformation speed is 45/sec. obtained n7'
All measurement results of the porous hollow fibers are shown in Table 1 together with the results of the hollow fibers of Comparative Example 1.2.

比較例1 実施例1と同様にして得た未延伸糸30℃で直径7αの
2本のロール間で未延伸給糸側ロール速度3m/分、巻
取り側ロール速度が′15m/分になるように延伸して
多孔質中空糸CB) k得た。変形速度は1.12 /
秒である。
Comparative Example 1 An undrawn yarn obtained in the same manner as in Example 1 was produced at 30°C between two rolls with a diameter of 7α, with a roll speed of 3 m/min on the undrawn yarn feeding side and a roll speed of 15 m/min on the winding side. A porous hollow fiber CB) was obtained by drawing as shown in FIG. The deformation speed is 1.12/
Seconds.

比較例2 実施例1において未延伸糸のコロナ放電処理?施さない
以外は、実施例1と全く同様にして多孔質中空糸(0)
?得た。
Comparative Example 2 Corona discharge treatment of undrawn yarn in Example 1? Porous hollow fibers (0) were prepared in the same manner as in Example 1 except that no treatment was performed.
? Obtained.

第  1  表 実施例2 アイソタクテイツクボリプロビレン(宇部興産社製J1
15G)全190℃で溶融し、中空糸製造用口金音用い
て紡糸トラフ) 8000で紡糸し未延伸糸音帯た〇 該未延伸糸q 30 w/m”の条件でコロナ放電処理
音節した後、30℃で直径7cmの2本のロール間で未
延伸給糸側ロール速度120m/分、巻取り側ロール速
度が400m1分になるように延伸して多孔質中壁糸C
D) k得た。変形速度は61である。得らnfC多孔
質中窒中壁測定結果?比較例6.4の中を糸のそ扛と共
に第2表に示す◇ 比較例3 実施例2で得た未延伸糸?同様に!Iθ℃で直径7cm
の2本のロールの間で未延伸糸給糸速度3m/分で巻取
り側ロール速度が10m/分になるように延伸して多孔
質中壁糸(K)Tr得た。
Table 1 Example 2 Isotactic polypropylene (J1 manufactured by Ube Industries, Ltd.)
15G) The undrawn yarn was melted at a total temperature of 190°C, spun at a spinning trough using a spinneret for hollow fiber production at a temperature of 8,000°C, and the undrawn yarn was subjected to corona discharge treatment under the conditions of 30 w/m''. , at 30°C between two rolls with a diameter of 7 cm at a roll speed of 120 m/min on the undrawn yarn feeding side and a roll speed of 400 m/min on the winding side to obtain porous inner wall yarn C.
D) Got k. The deformation speed is 61. Obtained nfC porous inner wall measurement results? The contents of Comparative Example 6.4 are shown in Table 2 along with the yarn profile◇ Comparative Example 3 Undrawn yarn obtained in Example 2? Similarly! Diameter 7cm at Iθ℃
The undrawn yarn was drawn between two rolls at a feeding speed of 3 m/min and a winding side roll speed of 10 m/min to obtain a porous inner wall yarn (K)Tr.

変形速度は1.5/秒である。The deformation speed is 1.5/sec.

比較例4 実施例2において未延伸糸のコロナ放電処理を施さない
以外は、実施例2と全く同様にして多孔質中壁糸(F)
會得た。
Comparative Example 4 A porous inner wall yarn (F) was produced in the same manner as in Example 2, except that the undrawn yarn was not subjected to the corona discharge treatment in Example 2.
I met you.

第  2  表 し発明の効果〕 上記から明らかなように、本発明の中空糸製造方法に9
孔軍を低下することなく、細孔径全縮少することができ
る極めて艮好な方法である。
Effects of the invention] As is clear from the above, the hollow fiber manufacturing method of the present invention has nine advantages.
This is an extremely elegant method that can completely reduce the pore diameter without reducing the pore size.

Claims (1)

【特許請求の範囲】 1、結晶性有機高分子を中空糸製造用口金を用いて溶融
紡糸して得られる外壁から内壁に通じる貫通孔を実質的
に有しない中空未延伸糸をコロナ放電処理した後に、該
有機高分子のガラス転移温度以上融点以下の温度範囲内
で下記の式で表わされる変形速度が2乃至100/秒で
、かつ延伸倍率が1.5以上となるように2本又はそれ
以上のロールの間で延伸することを特徴とする微多孔質
中空糸の製造方法。 変形速度=延伸倍率/[延伸区間の長さ(cm)/供糸
速度(cm/秒)]2、コロナ放電処理条件が1乃至5
0w/m^2であることを特徴とする特許請求の範囲第
1項記載の微多孔質中空糸の製造方法。 3、結晶性有機高分子がポリエチレン、ポリプロピレン
、ポリ4−メチル−1−ペンテン、ポリ3−メチル−1
−ブテン、ポリオキシメチレンから選ばれるものである
ことを特徴とする特許請求の範囲第1項又は第2項に記
載の微多孔質中空糸の製造方法。
[Scope of Claims] 1. A hollow undrawn fiber obtained by melt-spinning a crystalline organic polymer using a die for producing hollow fibers and having substantially no through holes communicating from the outer wall to the inner wall is subjected to corona discharge treatment. Afterwards, two or more fibers are applied so that the deformation rate expressed by the following formula is 2 to 100/sec within the temperature range of the organic polymer above the glass transition temperature and below the melting point, and the stretching ratio is 1.5 or more. A method for producing a microporous hollow fiber, which comprises stretching between the above rolls. Deformation speed = stretching ratio / [length of stretching section (cm) / feeding speed (cm/sec)] 2, corona discharge treatment conditions are 1 to 5
1. The method for producing a microporous hollow fiber according to claim 1, which is 0 w/m^2. 3. The crystalline organic polymer is polyethylene, polypropylene, poly4-methyl-1-pentene, poly3-methyl-1
- The method for producing a microporous hollow fiber according to claim 1 or 2, characterized in that the microporous hollow fiber is selected from -butene and polyoxymethylene.
JP60068690A 1985-04-01 1985-04-01 Production of finely pored hollow yarn Pending JPS61227804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60068690A JPS61227804A (en) 1985-04-01 1985-04-01 Production of finely pored hollow yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60068690A JPS61227804A (en) 1985-04-01 1985-04-01 Production of finely pored hollow yarn

Publications (1)

Publication Number Publication Date
JPS61227804A true JPS61227804A (en) 1986-10-09

Family

ID=13381000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60068690A Pending JPS61227804A (en) 1985-04-01 1985-04-01 Production of finely pored hollow yarn

Country Status (1)

Country Link
JP (1) JPS61227804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147798A2 (en) 2009-06-19 2010-12-23 Toray Tonen Specialty Separator Godo Kaisha Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
US8841032B2 (en) 2009-06-19 2014-09-23 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
JPWO2020026958A1 (en) * 2018-07-30 2021-08-02 東レ株式会社 Separation membrane and method for manufacturing the separation membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147798A2 (en) 2009-06-19 2010-12-23 Toray Tonen Specialty Separator Godo Kaisha Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
US8841032B2 (en) 2009-06-19 2014-09-23 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
US8846253B2 (en) 2009-06-19 2014-09-30 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making these membranes, and the use of these membranes as battery separator films
US8951677B2 (en) 2009-06-19 2015-02-10 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
JPWO2020026958A1 (en) * 2018-07-30 2021-08-02 東レ株式会社 Separation membrane and method for manufacturing the separation membrane

Similar Documents

Publication Publication Date Title
US4664681A (en) Heterogeneous membrane and process for production thereof
US4405688A (en) Microporous hollow fiber and process and apparatus for preparing such fiber
US4401567A (en) Microporous polyethylene hollow fibers
US4802942A (en) Method of making multilayer composite hollow fibers
US4741829A (en) Composite hollow fibers and method of making same
US4541981A (en) Method for preparing a uniform polyolefinic microporous hollow fiber
US4384023A (en) Porous polyethylene film
US5013439A (en) Microporous membranes having increased pore densities and process for making the same
GB2053792A (en) Preparing microporous hollow fibres
US4530809A (en) Process for making microporous polyethylene hollow fibers
JPS60139815A (en) Conjugate hollow yarn and production thereof
US5290448A (en) Polyacrylonitrile membrane
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JPS61227804A (en) Production of finely pored hollow yarn
JPS6037201B2 (en) Manufacturing method of porous polypropylene hollow fiber
JPH0712410B2 (en) Gas separation membrane manufacturing method
JPS6342006B2 (en)
JPS6240441B2 (en)
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JPS584810A (en) Microporous hollow fiber
JPH08252441A (en) Polypropylene hollow yarn membrane and its production
JP7562983B2 (en) Method for producing porous hollow fiber membrane
JPS6018329B2 (en) porous isotactic polypropylene hollow fiber
JPH07124451A (en) Production of polyethylene porous hollow yarn membrane
JP2592725B2 (en) Manufacturing method of hollow fiber membrane