Nothing Special   »   [go: up one dir, main page]

JPS584810A - Microporous hollow fiber - Google Patents

Microporous hollow fiber

Info

Publication number
JPS584810A
JPS584810A JP4970582A JP4970582A JPS584810A JP S584810 A JPS584810 A JP S584810A JP 4970582 A JP4970582 A JP 4970582A JP 4970582 A JP4970582 A JP 4970582A JP S584810 A JPS584810 A JP S584810A
Authority
JP
Japan
Prior art keywords
hollow
fibers
stretching
fiber
micropores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4970582A
Other languages
Japanese (ja)
Inventor
Hikoichi Nagano
長野 日子一
Koichi Matsunami
松波 浩一
Kentaro Yoda
依田 賢太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP4970582A priority Critical patent/JPS584810A/en
Publication of JPS584810A publication Critical patent/JPS584810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:The titled fibers, prepared by drawing undrawn fibers without holes consisting of a thermoplastic crystalline polymer in the long direction, having micropores formed by the drawing in the hollow fibrous walls and a specific nitrogen permeability, high permeation rate and high strength, and useful for separating gases, etc. CONSTITUTION:A thermoplastic crystalline polymer, e.g. isotactic poplypropylene, is molten and extruded through a spinneret for hollow fibers having a diameter (a) and a slig width (b) by an extruder, to give undrawn hollow fibers having substantially no holes with a pore diameter of 0.01-0.5mu. The resultant fibers are then heat-treated and cold drawn, hot-drawn under heating, and heat- set under tension to give longitudinally oriented microporous hollow fibers having micropores, having an average pore diameter of 0.01-0.5mu, and formed by the drawing on the hollow fibrous walls and a nitrogen permeability at 20 deg.C of 0.01-100cc/cm<2>.min.10cm Hg at the fibrous walls.

Description

【発明の詳細な説明】 本発明は1ガスや液体などの精製分離用として有用な繊
維壁に微孔を有する長さ方向に配向しかつ引張り強度が
大である中空繊維に関する。本発明はまた機能性材料の
素材として有用な高強度の微孔性中空繊維を浴融紡糸法
により製造する方法を提供することにある。また箋本発
明は可溶性成分を溶解除去するための溶剤等の残留溶剤
の懸念を持たない中空amおよびその製造法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to hollow fibers useful for purifying and separating gases, liquids, etc., which have micropores in their fiber walls, are oriented in the longitudinal direction, and have high tensile strength. Another object of the present invention is to provide a method for producing high-strength microporous hollow fibers useful as materials for functional materials by bath melt spinning. The present invention also provides a hollow am and a method for producing the same, which are free from the concern of residual solvent such as a solvent for dissolving and removing soluble components.

従来1微細な開孔を有する平面状の膜はよく知られてお
り液体1ガスなどの精製分離1通気性を必要とする包装
などへの応用を目的として種々の技術が提案されてきた
。しかし液体やガスを微孔性の膜を通して分離精製を行
なう場合平面状の膜を使用すると一般に一過面積に比し
大きな占有容積を必要とし装置の小塵化が困難である・
また湿式紡糸法により微孔性中空繊維を製造する方法に
おいては高強度の繊維を得ることができない。これに対
し本発明の微孔性中空IIA維は容積に比し表面積が着
しく大きく単位スペース当りの効準の高い分離用膜を高
強度のものとして提供する。一方中空m維については従
来から種々のタイプのS維が提案され1凰合や嵩嶌性1
被覆力の増加1斯熱効果の向上などにより衣料用1ふと
ん綿、救命具のカポツタなどとして利用されている。ま
た最近においては水嵩やヘリウムなどの気体分離用とし
てlリエステル中空繊維が利用されている。しかしこれ
らの中空繊維の繊維壁には貫通した微細な孔は存在せず
1そのために重合体が本来有する気体や液体の透過速度
をなんら変えたものではない。
BACKGROUND OF THE INVENTION Conventionally, planar membranes having fine pores are well known, and various techniques have been proposed for application to purification and separation of liquids, gases, etc., packaging that requires air permeability, and the like. However, when separating and purifying liquids and gases through microporous membranes, using a flat membrane generally requires a large occupied volume compared to the permeate area, making it difficult to reduce the size of the equipment.
Further, in the method of manufacturing microporous hollow fibers by wet spinning, high strength fibers cannot be obtained. On the other hand, the microporous hollow IIA fiber of the present invention has a large surface area compared to its volume, and provides a separation membrane with high efficiency and high strength per unit space. On the other hand, regarding hollow m-fibers, various types of S-fibers have been proposed in the past, including 1-fold and 1-bulk.
Due to its increased covering power and improved thermal effect, it is used as futon cotton for clothing and capotsuta for life preservers. Recently, L-ester hollow fibers have been used for separating water and gases such as helium. However, the fiber walls of these hollow fibers do not have penetrating fine pores, 1 so that the gas or liquid permeation rate inherent in the polymer is not changed in any way.

本発明の微孔性中空繊維は長さ方向に配向しており1か
つ繊維壁に貫通した微孔を有するため重合体が本来有す
るガスや液体の透過速度に比し着しく大きな透過速度を
有しまた高強度である働また、lリアミド、ポリエステ
ル寓ポリオキシメ嘩しンからなる微孔性繊維が知られて
いる(υ8PII61111Dxυ5ps5a1sas
参照)が1これらのIli維形態は中空糸でなく本発明
の繊維のような一過特性を有するものではない。
The microporous hollow fibers of the present invention are oriented in the length direction and have micropores that penetrate through the fiber walls, so they have a much higher permeation rate than the gas or liquid permeation rate that the polymer originally has. In addition, microporous fibers made of polyamide, polyester, and polyoxymethane are known to have high strength (υ8PII61111Dxυ5ps5a1sas).
These Ili fiber forms are not hollow fibers and do not have transient properties like the fibers of the present invention.

上記に鑑み本発明者らは多年にわたり種青研究の結果本
発明に到達した。即ち本発明は、熱可盟性の結晶性重合
体から成る実質的に0.01〜0.I Hの貫通孔を有
しない未延伸糸を長さ方向に延伸することにより得た1
長さ方向に配向した中空繊維であり、該中空繊維壁には
延伸により生じた孔径(平均)が0.01〜o、aμの
貫通した微孔を有し1該111i維壁における窒素のg
odでの透過量が0.01〜100(C/−・1・io
amligの値を有する配向した微孔性中空sImに関
する。
In view of the above, the present inventors have arrived at the present invention as a result of many years of seed blue research. That is, the present invention comprises a thermoplastic crystalline polymer having substantially 0.01 to 0.0. 1 obtained by stretching in the length direction an undrawn yarn without IH through-holes
It is a hollow fiber oriented in the length direction, and the hollow fiber wall has penetrating micropores with a pore size (average) of 0.01 to 0.0, a μ caused by stretching, and the nitrogen content in the 111i fiber wall is
The amount of transmission at od is 0.01 to 100 (C/-・1・io
Regarding oriented microporous hollow sIm with the value of amlig.

本発明をさらに詳しく説明する。本発明において用いる
熱可盟性の結晶性重合体としては、&lJエチレン1ボ
リプ賞ピレン1エチレン/プ田ピレン共重合体のような
ポリオレフィン1ナイ四ン61ナイレン66Sナイリン
12などのポリアミド11リエチレンテレ7タレート\
ポリエチレンテレフタレート/イソフタレート、ポリブ
チレンテレフタレート1ポリエチレン−1,6−す7タ
レートなどのlジエステル1ポリ弗化ビニリデン、lり
弗化ビニルエチレン/四弗化エチレン共重合体などの弗
素系重合体、ポリオキシメチレンなどがあげられる・こ
れら重合体にはまた安定剤、紫外線吸収剤1可逅剤1染
料、顔料1結晶核剤を必要に応じて添加することができ
る。さらに上記結晶性重合体同士をブレンドしてもよく
、またこれら結晶性重合体にエラスト!−やゴムなどの
非品性ポリマー)炭酸カルシ クムなどの無機物を添加するとさもで一石。
The present invention will be explained in more detail. Examples of the thermoplastic crystalline polymer used in the present invention include polyolefins such as &lJ ethylene 1 polypropylene 1 ethylene/Puda pyrene copolymer, polyamide 11 polyethylene terefin such as nylene 61 nylene 66S nylin 12, etc. 7 talates\
1-diester 1-polyvinylidene fluoride such as polyethylene terephthalate/isophthalate, polybutylene terephthalate 1-polyethylene-1,6-7-talate, fluorine-based polymers such as 1-polyvinylidene fluoride/tetrafluoroethylene copolymer, Polyoxymethylene, etc. can be added to these polymers, if necessary, stabilizers, one UV absorber, one slenderizer, one dye, and one pigment, one crystal nucleating agent. Furthermore, the above-mentioned crystalline polymers may be blended with each other, and these crystalline polymers may be combined with ELAST! If you add inorganic substances such as - or non-grade polymers such as rubber) and calcium carbonate, it will be a stone's throw.

本発明の微孔性中空繊細を製造すゐ[Lい方法は、喝細
形成性を有す石結晶性重杏体の博拳体を紡糸口金を通し
てS融紡糸して中空繊維を得ふ方法において紡糸口金の
円環状スリットの吐出口径(外径)がQ、l−19m。
The microporous hollow filament of the present invention is produced [L method is to obtain hollow fibers by S-melt spinning a stone-crystalline polygonite body having a fine-forming property through a spinneret. The discharge opening diameter (outer diameter) of the annular slit of the spinneret is Q, l-19 m.

円環状のスリットの巾を0.01− I mとし紡糸温
度は電合体の融点よりl5−tsot−高い温度を用い
1巻取速度は10幇/−以上、ドラフト比100−10
00の範囲で溶融紡糸して外径が3−以下、肉厚が10
0μ以下の中空−維を作り、これを重合体の融点より4
10−10Qt’低い温度で熱娘理し、その後1段延伸
オ念は多段延伸により伸度5oon以下に延伸して孔径
(平均)がO,Sμ以下の貫通し九微孔を繊維壁に有す
る中空繊維を製造する方法である。
The width of the annular slit was 0.01-I m, the spinning temperature was 15-tsot- higher than the melting point of the electrolyte, the winding speed was 10 mm/- or more, and the draft ratio was 100-10 mm.
Melt-spun in the range of 00, the outer diameter is 3- or less, and the wall thickness is 10
Create hollow fibers of 0μ or less, and
Heat treatment is carried out at a low temperature of 10-10Qt', and then one-stage stretching is performed to achieve an elongation of 5 ounces or less by multi-stage stretching, resulting in nine penetrating pores with a pore diameter (average) of 0, Sμ or less in the fiber wall. This is a method for manufacturing hollow fibers.

これら結晶性重合体の溶―紡糸においては。In melt-spinning of these crystalline polymers.

スクリューやギアポンプおよび中空用中空用命を傭オた
通常の溶融紡糸装置で充分であるースクリュー押出機や
溶融格子で融解されたポリマーはギアポンプにて中空糸
紡糸用口金に送られ、円環状スリットから紡糸筒内に紡
糸し、冷風で冷却固化されてlI取機にI!取られる。
Ordinary melt-spinning equipment with screw or gear pumps and hollow fiber applications is sufficient - the polymer melted in the screw extruder or melt grate is conveyed by a gear pump to a hollow fiber spinning nozzle and then through an annular slit. The yarn is spun into the spinning tube, cooled and solidified with cold air, and transferred to the II machine. taken.

本発明の中空m*紡糸口金の一例を第1図、第3図忙示
す、中空糸紡糸用口金のpqm状スリットは吐出口径(
flQ珊の外周径)Aが0、1−10−、スリットの巾
)が0.OI〜5雪の範囲であるのが*tLい0円環状
スリットの吐出口%け細す虻ても、オた太す負゛て本紡
来においてドラフト比を大−くすると糸切れが多くなり
、紡糸が困翰となる。またスリット中は狭すぎると流動
ダリマー〇剪断速度が高くなり過ぎてメルト7ラクチヤ
ーを発生しやすく均一な@維を得ることが困輸であり糸
切れも多くなる。スリット中が広すぎると得られた中9
!−維の肉厚力;厚くなり、この中空wutiaoea
維壁に貫通した微孔を形改させるために中空線#を延伸
して本肉厚が厚いと貫通し會微孔が発生しにくい、外径
が1−以下、肉厚が100μ以下の中空IIs#が貫通
した微孔f得るために有利であり、そのためKけ結糸口
金の寸法は上記の幀囲が好オしい、fた中?繊維用紡糸
口金の円環状スリットという形状は閉#円環にこだわる
本のではなく、C形(一部切欠轡部を有する円環)、星
形、三角形、四角形、多角形、およびこれらを質形した
もので本など、中空糸を紡糸で自るものであればなんら
差支えない。このS杏、吐出口径けI!l!囲の長さを
円形に換算して直径を算出した本のから求ぬるこ七がで
傘る。さらに中空繊組の中?部に気体を供給するための
気体供給管lを備えた中空用紡糸「1金屯この微孔中空
1#を製造するため忙けよ秒好ましいものである。結糸
口金のスリットが連続した円環状のものにおりてけ繊維
中空部への気体の供給または吸入は自然吸入で吃強、制
吸入で本、どちらで本よい、しかし、この中空部への気
体の供給量により得られる中空繊維の外径や肉厚が堺な
る。気体の供給量が多す自゛ると繊維がちょうちん状に
!IIら奉好ましくない。
An example of the hollow m* spinneret of the present invention is shown in FIGS. 1 and 3. The pqm-shaped slit of the hollow fiber spinning die has a discharge opening diameter
The outer diameter of flQ coral) A is 0, 1-10-, the width of the slit) is 0. The range of OI to 5 snow is *tL0. Even if the discharge opening of the annular slit is narrowed, it will become thicker, and if the draft ratio is increased in this spinning method, there will be many yarn breakages. This makes spinning difficult. In addition, if the slit is too narrow, the shear rate of the fluid dalimer becomes too high, which tends to cause melt 7 lacquer, making it difficult to obtain uniform fibers, and increasing the number of yarn breakages. Medium 9 obtained when the slit is too wide
! - Thickness of the fiber; thickens this hollow wutiaoea
In order to reshape the micropores penetrating the fiber wall, the hollow wire # is stretched, and if the main wall thickness is thick, it will penetrate and the micropores will be less likely to occur. It is advantageous to obtain a microhole f through which IIs# is formed, so the dimensions of the K thread cap are preferably the same as above. The shape of the annular slit of a fiber spinneret is not a book that focuses on closed rings, but rather C-shapes (circles with a partially cut-out rim), star-shapes, triangles, squares, polygons, and these shapes. There is no problem with any shaped object, such as a book, as long as it is made by spinning hollow fibers. This S apricot has a discharge port diameter of I! l! The length of the enclosure is converted into a circle, and the diameter is calculated from the book. Furthermore, inside the hollow fiber group? It is preferable that the slit of the tying cap is a continuous circle for manufacturing the microporous hollow 1# hollow spinning yarn equipped with a gas supply pipe l for supplying gas to the part. The gas can be supplied or inhaled into the hollow part of the fiber by using a ring-shaped object, either by natural inhalation by stuttering or by controlled inhalation by regular inhalation.However, depending on the amount of gas supplied to this hollow part, the hollow fiber The outer diameter and wall thickness will be affected.If the amount of gas supplied is large, the fibers will become lantern-shaped!II is not preferable.

得られる1lIIIiの外径は結糸口金の吐出口径より
も小さくなるのが好ましい、tた、気体の供給量が少な
すぎると中空IIa維でなくなる。
It is preferable that the outer diameter of the obtained 1lIIIi be smaller than the discharge opening diameter of the tying nozzle.If the amount of gas supplied is too small, the fiber will not be a hollow IIa fiber.

C彫結糸口金(第1図参照)のようにスリットが不連続
の4の(吐出ポリマーの切れ目から外気を吸入する方式
)では中空部への気体の吸入は自然吸入となる。紡糸口
金から吐出された重合体はドラフト比100−1000
の範囲で巻取られる。ドラフト比とけ巻取速度と紡糸口
金での重合体の吐出線速度の比であり、次式で示される
In the case of No. 4 with discontinuous slits (method in which outside air is sucked in through cuts in the discharged polymer) such as the C-engraved thread cap (see Figure 1), gas is naturally sucked into the hollow part. The polymer discharged from the spinneret has a draft ratio of 100-1000.
It can be wound within the range of . Draft ratio is the ratio between the winding speed and the linear speed at which the polymer is discharged from the spinneret, and is expressed by the following formula.

ドラフト比が低1合は巻取った中空繊維を延伸しても貫
通し九微孔は発生せずオたドラフト比が高い場合は紡糸
において糸条に掛ゐ張力がポリマーの融点強度を超える
たtに糸切れが発生する。yラット比としては100−
1000でああが好ましくはsOO〜■]Oの範囲がよ
い、中?繊維の中空部に紡糸のと−に気体を強制吸入す
る場合は自然吸入する場合に比べて會孔件中空繊維を得
るために好ましいドラフト比は小さくなる。気体の吸入
量にもよゐが強制収入の場合はドラフト比はII〜$0
0゜自aqL人の場41)hドラフト比が400〜II
O@が好オしい。
If the draft ratio is low, even if the wound hollow fiber is drawn, no micropores will be generated.If the draft ratio is high, the tension applied to the yarn during spinning will exceed the melting point strength of the polymer. Thread breakage occurs at t. y rat ratio is 100-
A value of 1000 is preferably sOO~■]O, medium? When gas is forcibly inhaled into the hollow part of the fiber during spinning, the preferable draft ratio for obtaining a hollow fiber becomes smaller than when it is naturally inhaled. It depends on the amount of gas inhaled, but in the case of forced income, the draft ratio is II to $0.
0゜ own aqL person field 41) h draft ratio is 400~II
I like O@.

このようにして得られた中?−細は外径が1m以下、肉
厚が100μ以下が好オしい。
Inside obtained in this way? - The thin material preferably has an outer diameter of 1 m or less and a wall thickness of 100 μm or less.

繊維の太さけ太すぎると形状を保つのが困難であり特に
外圧が掛ると潰れて偏平化しやすい、オた細す暫゛ると
紡糸においてA切れが生じやすく、またとの微孔性中空
#*を利用して気体や液体を繊維中空部に通す場合、圧
力損失が大きくなる傾1aIKある。中空繊維の外径は
好ましくは10〜暴OOμがよい、tた。中空#a#1
0肉厚は比較的薄い#1つが延伸Kkいて貫通した微孔
が得られやすく、好オしくけS〜60μがよい。中空繊
維の外径および肉厚は光学−微鋺や走査形電子sit鏡
を用いて観察すれは奪1kK測定することができ石。
If the thickness of the fiber is too thick, it will be difficult to maintain its shape, and it will easily collapse and flatten when external pressure is applied. *When passing gas or liquid through the hollow part of the fiber, there is a tendency for the pressure loss to increase. The outer diameter of the hollow fibers is preferably 10 to 00μ. Hollow #a #1
When the thickness is 0, it is easy to obtain penetrating micropores when #1 is stretched, which is relatively thin, and the preferred thickness is S~60μ. The outer diameter and wall thickness of the hollow fiber can be observed using an optical micrometer or a scanning electronic spot mirror and measured at a rate of 1kK.

中空繊維の巻取連関は上記ドラフト比を速成するために
10−/−以上が慶く、好オしくけ@ O−10000
s/mが好適である。高速で41#取れば重合体の分子
鎖の配向も改善され、後の延伸工程で微孔が発生しゃす
いうlO+w/−以下のIII取速変速度上記ドラフト
比を実施するためKは結糸口金からの重合体の吐出線速
度は極端に遅くなね、糸条の#固点が紡糸口金に接近し
す虻て紡糸が不安定となる。オな重合体の分子配向4b
低い本の2なh巻取られた1a緒を延伸して屯微凡の発
生が少ない。
The winding connection of the hollow fiber is preferably 10-/- or more in order to quickly achieve the above draft ratio.
s/m is preferred. If 41 # is taken at a high speed, the orientation of the molecular chains of the polymer will be improved, and micropores will be generated in the subsequent drawing process. The linear speed at which the polymer is discharged from the spinneret is extremely slow, and the solid point of the yarn approaches the spinneret, making spinning unstable. Molecular orientation of polymer 4b
Stretching the 2-h roll of a low-quality book reduces the occurrence of curling.

さらに均一なm−を得るためには結糸口金から吐出され
た溶融した重合体糸条に庵風を吹付けると効果的である
In order to obtain a more uniform m-, it is effective to blow an air stream onto the molten polymer thread discharged from the tying nozzle.

紡糸温度は重合体の融点よ#11!l−150℃高い温
度範囲が好適で島る。良好な@#が得られるならば結A
M度はなるべく低い温間が好ましい、IIsえげポリプ
ロピレンの場合においてけ10・〜800t、好$には
file〜neoで、高密度ポリエチレンの場合におい
てけ180〜5set’、好適には100−MaOt″
、fた。ポリフッ化ビニリデンの場合は愈lO〜5oo
t’、好ましくけ5so−ssotが良い、 このように比較的低#llにおける紡糸と高いFラフト
比により得ら#を念中空繊維の分子配向険は未配向の本
のに比べてかなり高い。分子4向實の指I/Il、!−
[7て複屈折率を用いて表わせげII x l O−”
以上の値がよく、例えばポリプロピレン中空糸でけ10
xl(1”以上の値が好ましい、この値は偏光顕微鏡を
用いて通常の方法で求めることがf−る。
The spinning temperature is the melting point of the polymer #11! A temperature range of 1-150°C is preferred. If a good @# is obtained, result is A.
The M degree is preferably as low as possible, in the case of IIs polypropylene, it is 10-800t, preferably file-neo, and in the case of high-density polyethylene, it is 180-5set', preferably 100-MaOt. ″
, f. In the case of polyvinylidene fluoride, 10~5oo
t', preferably 5so-ssot, is obtained by spinning at a relatively low #ll and high F raft ratio.The molecular orientation of the hollow fiber is considerably higher than that of an unoriented fiber. Molecule 4 Mukami no Finger I/Il,! −
[7 and express it using the birefringence II x l O-”
A value of 10 or more is good, for example, a polypropylene hollow fiber.
xl (preferably a value of 1" or more; this value can be determined by a conventional method using a polarizing microscope.

紡糸して巻取られ走中空噛維の結晶化度は比較的高いが
、いまだ充分でない場合はこの繊維を重合体の融点から
lO〜foot’ 低い潟度覇囲内において緊張!たけ
緩和熱l&御すれば窒オしい結晶化度に到達する。結晶
化度けAJTM−DIISOIから求まる密度により、
結晶密度、非晶書間〔岡村較三ら共著r高分子化学序論
IP86化学回人(1117g) )の値から求めるこ
とができふ、結晶化度は延伸前の中空繊維で4O憾以上
であればよいが、SO囁以上がより好適である。紡糸し
たままの中空繊維がこの状1lPc達してい々い場合は
、その1寸放置すること忙より又は熱処理すること−よ
り結晶化度を高めることができる。熱処理するためには
、熱処理#l!l實はポリプロピレンでは110−18
0’C1高密廖ポリエチレンでけ90〜tset、ポリ
フッ化ビニリデンでは100−14et”である。熱処
理時聞け10秒以上、好ましくけ10秒から1#間の!
′igl実施するのがよい。常温で&日装置することに
より結晶化度が上昇する場合はそれでもよい。
The crystallinity of the spun and wound hollow fibers is relatively high, but if this is still not sufficient, the fibers are strained in a lagoon range 10~foot' below the melting point of the polymer. If the relaxation heat is controlled to a certain degree, a high degree of crystallinity can be achieved. Based on the density determined from the crystallinity AJTM-DIISOI,
The crystal density can be determined from the value of the amorphous book [Kenzo Okamura et al., Introduction to Polymer Chemistry IP86 Kagaku Kaijin (1117g)]. It is fine, but SO whisper or above is more suitable. When the as-spun hollow fibers reach 1 lPc, the degree of crystallinity can be increased by leaving them for a while or by heat-treating them. For heat treatment, heat treatment #l! The actual value is 110-18 for polypropylene.
For 0'C1 high-density polyethylene, it is 90~tset, and for polyvinylidene fluoride, it is 100-14et''.The heat treatment time is 10 seconds or more, preferably between 10 seconds and 1#!
'igl is recommended. If the degree of crystallinity increases when the device is heated at room temperature, it is fine.

この状−での中空S*においてけいオだ微孔は形成され
ていない。
No pores are formed in the hollow S* in this state.

この中空繊維は著しい弾性を示す8f念。This hollow fiber exhibits remarkable elasticity.

中空繊維を延伸すれは微孔を形成する8微孔の発生は降
伏点を超える伸%によりけじめで生ずる。そして延伸g
I#が増加するにつれて著しい空孔率の増加vc屯たら
す、1孔の大〜さけ延伸量により浩干変化するが孔径(
平均値)けO,aμ以下であり大部分の孔径けo、os
 −o、spである。いい変えれば延伸しなければとの
繊維は普通の中空繊維である。延伸によね始めて微孔性
中空輸給となり、微孔性中空繊維を得ゐために#−1延
伸は製造条件において必要不可欠となる。温度set’
以下での延伸を冷延伸、801:以上での延伸を熱延伸
とすれば1段冷延伸でけ最初の長さに比べて、伸度10
0%まで延伸可能で島り、さらに冷延伸と熱延伸管組合
せた多段延伸でけSOO憾壇で延伸tIJ能であゐ、こ
れ以上の倍率に延伸すゐと繊維は破断することが多い、
延伸において微孔が均一に発生するまでけ冷延伸を行う
必要がある。熱延伸を最初に行うと延伸しても微孔の発
生が著しく少なかったり、また微孔が発生しない、多段
延伸忙おいてけ重ず最初の延伸が冷延伸であることが必
要であり、そしてB%以上、好ましくFile〜・・−
延伸しこれに引続いて熱延伸を行なえばl教冷延伸に比
べて延伸倍率も増加し、微孔の発生もより多くなる1例
えば、ポリプロピレンでは801:以下、好ましく1−
1室温ないしOt″以下から一601cの低温において
60〜160%  1段冷延伸する。1段延伸の場合に
はまず初めに上記の低温でh−Zoos、好ましく#−
tIO〜609に冷延伸し、これに引続いて110〜I
IItでの熱延伸を80〜4141襲、好オしくけgo
−soo鴨延伸するのがよい、延伸は3段で屯、tた、
1段以上の多段延伸でもよい。
When the hollow fiber is drawn, 8 micropores are formed.The generation of micropores is caused by the elongation percentage exceeding the yield point. and stretching g
As I# increases, the porosity increases markedly.
average value) is less than O,aμ, and most of the pore diameters are O,os
-o, sp. In other words, the fibers with or without stretching are ordinary hollow fibers. Stretching starts with microporous hollow fibers, and #-1 stretching is indispensable under manufacturing conditions in order to obtain microporous hollow fibers. temperature set'
If the stretching below is cold stretching, and the stretching above 801 is hot stretching, one-stage cold stretching will result in an elongation of 10% compared to the initial length.
It is possible to stretch the fiber to 0%, and the fiber can be stretched to 0%, and it can be stretched in multiple stages using a combination of cold stretching and hot stretching.
It is necessary to carry out cold stretching until micropores are uniformly generated during stretching. If hot stretching is performed first, the generation of micropores will be significantly less even after stretching, and no micropores will occur. B% or more, preferably File~・・−
If stretching is followed by hot stretching, the stretching ratio will increase compared to cold stretching, and more micropores will be generated.For example, in polypropylene, 801: or less, preferably 1-
A one-stage cold stretch of 60 to 160% is carried out at a low temperature from 1 room temperature to 1000 cm or less. In the case of one-stage stretching, first h-Zoos, preferably #-
Cold stretching to tIO~609 followed by 110~I
80 to 4141 strokes of hot stretching at IIt, good luck.
-It is better to stretch the paper in three stages.
Multi-stage stretching of one or more stages may be used.

総延伸量は100噂以下が好オしい。高密度ポリエチレ
ンでけ80t−以下、好オしくけ室温またけoh以下か
ら一60t″の低温においてSO〜110% 1股冷延
伸をする。1段延伸の場合は上記の低温で先ずto−s
os冷延伸し、これに引続いて9O−11Orで5G−
1110襲熱延し、合計4e−1100囁延伸するのが
好ましい、さらに、ポリフッ化ビニリデンKkいては8
0鵞以下好ましくけat″以下から−601:の低温で
先ずSO〜目]噂の1段冷延伸する。S段延伸の場合は
上記の低温で先ず10−80%冷延伸し、これに引続い
て90〜1401:でSO〜■]襲、合計80−100
慢証伸するのが好ましい、冷延伸は−601:以下の低
温で行なうこともできるが、これを工業的に宴施するに
け#PS的でかい。延伸速度け1−1o’%/−の範囲
で行なうことができる。
The total amount of stretching is preferably 100 degrees or less. High-density polyethylene is cold-stretched at SO~110% at a low temperature of 80 tons or less, preferably from room temperature to 160 tons.In the case of one-stage stretching, first to-s at the above-mentioned low temperature.
os cold stretching, followed by 5G-stretching at 9O-11Or
It is preferable to heat-roll 1110 and stretch to a total of 4e-1100. Furthermore, polyvinylidene fluoride Kk is preferably 8
First, the rumored 1st stage cold stretching is carried out at a low temperature of 0 to 60%, preferably from 0 to 601: In the case of S stage stretching, first cold stretch 10-80% at the above-mentioned low temperature, and then Then 90-1401: SO-■] attack, total 80-100
It is preferable to carry out long-distance drawing, and cold drawing can be carried out at a low temperature of -601: or less, but it is too large to be used industrially. The stretching can be carried out at a stretching speed of 1 to 1 o'%/-.

また延伸時に嘲絢を有機71則に浸漬して延伸すること
により空孔率の増大と孔径の拡大をけかること本できる
Furthermore, by immersing the material in an organic 71 rule and drawing it during stretching, it is possible to increase the porosity and enlarge the pore diameter.

いずれの重合体の中空部IIにおいて一延伸後、重合体
の鵬点から10〜100″C低い温度で緊’!l状lI
!1撞たけ全延伸量に対して35慢章満の緩和状態で熱
固定すれば寸法安定性が向上する8例えば、ポリプロピ
レンでけtSO#160t”、高密度ポリエチレンでは
100−119℃、ポリフッ化ビニリデンでけl(1#
1IOt’の温度でへ固定すれば効果的である。熱固定
時開け8秒以Eが好ま1.い、本発明の微孔性中空繊維
は上記の方法により容島に得ることができるが、これに
限定されない。
After one stretching in the hollow part II of any polymer, it is stretched at a temperature 10 to 100"C lower than the bending point of the polymer.
! Dimensional stability can be improved by heat setting in a relaxed state of 35°C for the total amount of stretching per 1 stroke. Dekel (1#
It is effective to fix it at a temperature of 1IOt'. It is preferable to open for 8 seconds or more during heat setting. 1. The microporous hollow fibers of the present invention can be obtained by the method described above, but the method is not limited thereto.

本発明の微孔性中空II4#け長さ方向K11P向して
おり、その配向は通常複屈折値でfoxlo−”以上の
値を示す。そして平均孔径o、 gμ以下大部分けo、
os−o、sμの貢N t、た微孔を有する。微孔の太
きさけ水銀ポロシメーターにより測定することができる
。tた微孔性中空繊維の外径#″t9wt9w以下10
0μ以下で、繊**部分の空孔率は通常!10−a。
The microporous hollow II of the present invention is oriented in the length direction K11P, and its orientation usually exhibits a birefringence value of foxlo-'' or more.
os-o, sμ, and micropores. It can be measured using a mercury porosimeter with fine pores. Outer diameter of microporous hollow fiber #''t9wt9w or less 10
Less than 0μ, the porosity of the fiber ** part is normal! 10-a.

襲1時くけSO弧に達しSOυでの窒素ガスの透過量が
0.01 N100(Z、、/c4mmm 1105H
という伸性を示す。
At 1 o'clock, the SO arc was reached and the amount of nitrogen gas permeated at SOυ was 0.01 N100 (Z,, /c4mmmm 1105H
It shows the elongation.

過などの公害防1への利用、水の精製、再生への利用な
どがあげらt1ムがこれ忙制限される亀ので杜ない?ま
た未発明の繊維けその舅iIl微孔を利用して多くの物
質を噛維苧或は/及び中空部に吸収!たけ吸着させる用
途に#用すること本できる1例えば、ポリオレフィン製
の微孔性中空wA維は水面上に拡がった油のオイルキャ
ッチャ−1曖は油水分m**の充填剤などとして好適で
ある、さらに積極的に繊維の中空部及び/又は繊meの
微孔に各種の物質を内蔵させることKより高度の機能を
付与することもできる0例えば、イオン交換能やキレ−
)IEt有す石物質を内蔵させ水の精製や金属の捕集に
用いた#)唆は人工の触媒や天然の酵素を充填して固定
化し戻応の触媒、検知素子、医療材料に用いることがで
きる。fた殺虫剤や香料を中空部に充填し微孔から揮散
させることによ幻神絣的な効果を得ることができる。さ
らに吸鯉割、吸駿素剤、液晶、肥料、医薬品などを充填
して利用することもできる。上記の物質の内蔵ないし充
填はこれら物質を含む液体に微孔性中空繊維を含浸させ
るなどの手段により容JIK行なう仁とができるが、含
浸処理の皐でも使用で傘るしTRけ含浸処理後熱勉理に
よる封入4坪して使用できる0本発明の微孔性中空繊維
を加熱すれば、例えばポリプロビーンでけ約160を以
上、高密度ポリエチレンでは110t’以上、ポリ弗化
ビニリデンでは約14(1℃以上で微孔が消失すふので
、これを利用すれは微孔内及び中空部に各種物質を封入
することができる。
The use of water for pollution prevention, water purification, recycling, etc., is one of the reasons why time is so busy. In addition, many substances are absorbed into the chewing fibers and/or hollow parts using the uninvented micropores of the fibers! For example, microporous hollow WA fibers made of polyolefin are suitable as oil catchers for oil spread on the water surface. Furthermore, it is also possible to actively incorporate various substances into the hollow parts of the fibers and/or the micropores of the fibers.
) Built-in stone material containing IET and used for water purification and metal collection. I can do it. By filling the hollow part with insecticides and fragrances and letting them volatilize through the micropores, a phantom Kasuri-like effect can be obtained. Furthermore, it can be used by filling it with carp suckers, sucking agents, liquid crystals, fertilizers, medicines, etc. The above-mentioned substances can be incorporated or filled in by impregnating microporous hollow fibers with a liquid containing these substances, but it can also be used in impregnated fibers and after TR-impregnated treatment. By heating the microporous hollow fiber of the present invention, which can be used after 4 tsubo of encapsulation by heat treatment, for example, polyprobean can be heated to over 160 t', high-density polyethylene to over 110 t', and polyvinylidene fluoride to about 14 t' (Since the micropores disappear at temperatures above 1°C, various substances can be sealed inside the micropores and the hollow space.

本発明において用いる測定方法を以下に示す。The measurement method used in the present invention is shown below.

(1)  密度! AS’l’M−DI!103 K準
じて温度17rで測定した。
(1) Density! AS'l'M-DI! 103K at a temperature of 17r.

(り  メルトインデックス:^STM−D11811
 Kよりポリプロピレンではfi80t”、L18Kl
ポリエチレンでi;1000℃、818KIで測定した
(Melt index: ^STM-D11811
fi80t" for polypropylene than K, L18Kl
Measured with polyethylene at 1000°C and 818KI.

(3)中空繊維の寸法:中空繊維の断面を日本光学工業
社製生物顕微鏡り型を用い倍率50〜SO・倍で観察し
て求めた。
(3) Dimensions of hollow fibers: The cross-section of the hollow fibers was determined by observing the cross section of the hollow fibers using a biological microscope mold manufactured by Nippon Kogaku Kogyo at a magnification of 50 to SO.

(4)  空孔率と孔径8カルロエルパ社製水銀ボロシ
ノーター800型を用いて測定し虎。
(4) Porosity and pore diameter 8 Measured using a Mercury Borosinotor Model 800 manufactured by Carlo Elpa.

(6)  If素透週量:歇孔牲中空櫓維100木を0
字をに束ねて繊維の切口部分をエポキシSt脂で固め、
その一部を切断して繊維端面をそろえ、そこから中空繊
維内部に窒素て10ell−の内圧を掛けて中空繊維の
1PWIを通して外部へ透過してくる窒素の単位量を求
めた、 (6)複屈折率ニオリンバス光学工業社製al11先瞑
微鋺PO9を用いて測定し九。
(6) If the weekly amount of permeation: perforation hollow turret fiber 100 wood 0
Bundle the letters together and harden the cut end of the fibers with epoxy St resin.
A part of the fiber was cut to align the fiber end faces, and an internal pressure of 10 ell- was applied to the interior of the hollow fiber to determine the unit amount of nitrogen permeating to the outside through 1 PWI of the hollow fiber. Refractive index: 9, measured using an Al11-point micrometer PO9 manufactured by Niolinbus Optical Industry Co., Ltd.

(7)  強伸度:稟洋渕機社製万焙引う試験機テンシ
ロンII T M−II型を用い糸長40W、試Ml實
!lO鰭/分で測定し念、11定値は中空Sを除く実質
断面積に対する本のである。
(7) Strength and elongation: using a shoplifting tester Tensilon II T M-II type manufactured by Choyobuchi Co., Ltd., yarn length 40W, test Ml actual! Measured in lO fins/min, the 11 constant value is for the real cross-sectional area excluding the hollow S.

実施例 l。Example l.

アイソタクチックポリプロピレンCメルトインデックス
1.0)を押出棒(スクリュー口径* Ow %L /
 D l 11 、圧縮比8.1)を用いてally−
!1int−で溶−し気体供給管を備え九中空用#来口
金C吐出口%lo−、スリット巾lawの円環スリット
)を用いて紡糸した。
Isotactic polypropylene C (melt index 1.0) is extruded using an extrusion rod (screw diameter * Ow %L /
D l 11 , compression ratio 8.1)
! The material was melted at 1 int, and spun using a circular slit equipped with a gas supply pipe, 9 hollow spout C discharge ports, and a slit width law.

吐出量m v t/m 、吐’出411速度0.18*
/am、巻取速度tOws/m、ドラフト比纂4oの条
件で巻取った。中空繊維内部への気体の供給は自然吸入
である。得られ上申?1IJlliの寸法は外径41(
lμ、肉厚11pであった。密度け(1,1111f/
al、結晶化炭#f48襲複屈折率け16XIO−”で
あった、この中空繊維を温度ト1℃でb分間緩和状儒で
熱処理すると密度け0、@11f/偲で結晶化度はテ0
弧になり走、複屈折率F!14XlO”−”K増加した
。結晶化度は結晶密度を0.188 #/W、非晶帯間
を0.810F/aaさして求めた。そしてこの熱@−
理した中空繊維を一度10tで10襲冷延伸した後、1
4i勤で畠o−5oo憾熱延伸した。総延伸量けgo〜
■]−であっ念。これを1ull状態で14@tで1分
間熱固定し虎、得られた中?繊維は微孔のために光を欽
乱し白色をすしていた。この噛給はエチルアルコールを
容易に吸収した。この徽几性中空@維の窒素透過量を測
定すると著しく大きな値を示し1貫通した微細々孔が存
在していふことが明瞭で島る。
Discharge amount m v t/m, discharge 411 speed 0.18*
/am, a winding speed of tOws/m, and a draft ratio of 4o. Gas is supplied into the hollow fiber by natural suction. Obtained and reported? The dimensions of 1IJlli are outer diameter 41 (
lμ, wall thickness 11p. Density (1,1111f/
al, crystallized carbon #f48 with a birefringence index of 16 0
Running in an arc, birefringence F! 14XlO"-"K increased. The degree of crystallinity was determined by calculating the crystal density of 0.188 #/W and the distance between the amorphous zones by 0.810 F/aa. And this heat @-
The processed hollow fiber was once cold-stretched at 10 tons for 10 times, then 1
It was hot-stretched from 0 to 5 o'clock in 4i shift. Total stretching amount go~
■] - I am sorry. Heat set this in 1ull state at 14@t for 1 minute and get a medium? The fibers had micropores that disturbed the light and gave it a white color. This chew readily absorbed ethyl alcohol. When the amount of nitrogen permeation through this hollow fiber was measured, it showed a significantly large value, and it was clear that there were micropores that penetrated through the fiber.

また、この微孔性中空繊維を水銀ゼロシメーターで測定
した結果では大部分の孔がo、es〜0、1μの孔径を
有することかや1明した。東延伸及び延伸量による微孔
性の変化を第1表に示す。
In addition, the results of measuring this microporous hollow fiber with a mercury zerosimeter revealed that most of the pores had a pore diameter of 0, es to 0,1 μ. Table 1 shows changes in microporosity depending on east stretching and amount of stretching.

第1表 上記1−8の櫓鰺の破断強度は14に4/s$、破断伸
度け8s噂であった。
It was rumored that the breaking strength of the Yagurabaji of 1-8 above in Table 1 was 14 to 4/s$, and the breaking elongation was 8 seconds.

比較例 1) 実施例1.で紡糸した中空繊維を熱処理後、延伸せずに
竜素の透過量と空孔率を測定したが共に零であった。@
tl<結果を示す。
Comparative Example 1) Example 1. After heat treatment of the hollow fibers spun, the amount of hydrogen permeation and the porosity were measured without stretching, and both were zero. @
tl<show results.

実施例 東 アイソタクチックぼりプロピレン(メルトインデックス
電番)の重合時KSFA椿削としてキナクリFンを10
PP銅添加したものと無添加の屯のを押出機(スクリュ
ー口径8O−1L/DI易、圧縮比ti)を用い、18
0t”で溶融し、気体供給管を備えた中空用紡糸口金(
吐出口l!11、気体供給管の外径0.811t、スリ
ット巾0.1−の円環スリット)から紡糸し念。
Example When polymerizing East Isotactic propylene (melt index number), 10% of Quinacrylic
Using an extruder (screw diameter 8O-1L/DI easy, compression ratio ti), 18
A hollow spinneret with a gas supply pipe (
Outlet l! 11. Spinning from an annular slit with an outer diameter of 0.811 t and a slit width of 0.1 mm of the gas supply pipe.

吐出量Fillf/m、吐出線速険o、go−7’−1
巻取速度40−go6m/−の範囲でドラフト比j01
)−1009に変光て巻取つ九・中空@趨向への気体の
供給は強制吸入であつ走、この中空繊維を温度ト11:
て14+開熱処理した9mg℃で100%延伸し、これ
を緊張状靜忙おいて14Jltで1分間熱固定し九。F
ラフト比の増加につれて微孔の発生が増す、また納晶核
削の勢ナクリVンを添加し士ものけ無添加のものに比べ
て空孔率が大きい。空孔率は水銀ポロシメーターで求め
た。結果を@S表に示す。
Discharge amount Fillf/m, discharge linear velocity o, go-7'-1
Draft ratio j01 in the range of winding speed 40-go6m/-
)-1009 and wind it up. Gas is supplied to the hollow @ direction by forced suction, and this hollow fiber is heated to a temperature of 11:
100% stretching at 14+ 9mg°C, heat set at 14Jlt for 1 minute under tension.9. F
As the raft ratio increases, the occurrence of micropores increases, and the porosity is larger with the addition of nitrous nucleation energizer V compared to the one without addition. The porosity was determined using a mercury porosimeter. The results are shown in @S table.

比較例 2 *施例雪、と同じ紡糸条件で、II取速険だけを14)
m/sの範囲でFラフト比10に責えてII取った。こ
の中空繊維を実施例1.と同じ延伸および熱固定条件で
蛛理し、得られた本のの空孔率を測定したが、零であっ
た。結果を第1表に示す。
Comparative Example 2 *Under the same spinning conditions as Example Yuki, only II Toriyaka 14)
II was taken due to the F raft ratio of 10 in the range of m/s. This hollow fiber was used in Example 1. The porosity of the resulting book was measured and found to be zero. The results are shown in Table 1.

第3表 実施例 1 高密度〆リエチレン(メルトインデックス0.11.@
J0.911)を押出機(スクリュー口径1(1m、L
/D勝墨1圧縮比11.1)にギアポンプを411s!
して、温度5sor  で博帛し中空用給糸口金(吐出
口%8−、スリットの巾O0婁−1不連続スリット部の
巾o、 8 WのC形スリット)を用いて紡糸した。吐
出量け11417wm、吐出線速度り暴〇−/−1春取
速ツ1m00町−1Fラフト比@OOで春取った。得ら
れた中空繊維の寸法は外@aSμ、肉厚11μであった
。複相折率け1lxlO″であっ九、仁の中空繊維を#
l賓110tで1分間へ処理し25℃でSO幅冷冷延伸
引続いて1段目の延伸温度を室温から110t″の範囲
で変えて60%延伸した。総延伸量F!80噂であった
。これを110セで1分間熱固定した。得られた繊維は
エチルアルコールを容易に吸収し、開孔した孔が存在゛
することがわかった。水舒ポロシメーターで測定すると
大部分の孔径がo、om〜0.1μの!wlに分布して
いることがわかった。
Table 3 Example 1 High density polyethylene (melt index 0.11.@
J0.911) using an extruder (screw diameter 1 (1 m, L)
/D Katsuboku 1 compression ratio 11.1) and gear pump 411s!
Then, it was expanded at a temperature of 5 sor and spun using a hollow yarn feeder (C-shaped slit with a discharge port of 8-1, a width of the slit part of O0-1, a width of the discontinuous slit part of O, and a C-shaped slit of 8 W). Spring was taken with a discharge amount of 11417wm and a discharge linear velocity of 0-/-1 spring removal speed of 1m00 town-1F raft ratio @OO. The dimensions of the obtained hollow fiber were outside @aSμ and wall thickness 11μ. Hollow fibers with a multi-phase refractive index of 1lxlO''
110t'' for 1 minute, then SO width cold stretching at 25℃.Subsequently, the first stage stretching temperature was varied from room temperature to 110t'' for 60% stretching.The total amount of stretching was F!80. This was heat-set at 110℃ for 1 minute.The resulting fibers easily absorbed ethyl alcohol and it was found that there were open pores.Measurement using a water porosimeter revealed that most of the pores had a small diameter. It was found that it was distributed in !wl of o, om to 0.1μ.

結りt第8褒に示す。The conclusion is shown in Part 8.

比較例 8 実施例8と同じ条件で紡糸および熱晧胛した中空繊維を
SStで80幅冷延伸し引続いてS段目の延伸温度をl
ll−111tでios延伸し念、#fJ延伸置装@O
鳴で島りた。この場合は、延伸終了後延伸Sツと同じl
1ll険で1分間熱固vlまた。得られた中空繊維は透
明であり、啼たエチルアルコールを吸収せず、孔が存在
しないのが判明し企。結果を第1!IK示す。
Comparative Example 8 Hollow fibers spun and heated under the same conditions as in Example 8 were cold-stretched to a width of 80 mm using SSt, and then the S-th stage stretching temperature was lowered to l.
I made sure to stretch the ios with ll-111t, #fJ stretching device @O
I came to the island because of the sound. In this case, after the stretching is completed, the same l as the stretching S
Heat and harden for 1 minute at a temperature of 1 liter. It was found that the resulting hollow fibers were transparent, did not absorb ethyl alcohol, and had no pores. Results first! Show IK.

第3表 実施例 賑 ポリフッ化ビニリデン(密W1.テロ)を押出機1−甲
いて中空用紡糸ロ舎C吐出ロ径1鱒。
Table 3 Example: Polyvinylidene fluoride (Tero) was added to the extruder 1 and hollow spinning chamber C discharge tube diameter 1 mm.

気体供給管の外径o、 y s* 、内径o、 s s
at >の円環スリットから@WIssetで給糸した
。吐出線速度O,テOm/wa1巻取達f l 10 
m1wm、  )’ラット比重OOで巻敗った。中91
.嘲−内への気体の供給は強制吸入でちつ食。得られた
中空繊維の寸法は外%181μ、肉甲40 uであった
。この峻mを110t’で1分間へ処理したのち、温度
−1Ot″で111延伸し、仁れに引続いて110t″
で811伸し、た、#P鉦伸量けマO%であった。その
@1露b℃で80秒間緊張へ固定しな。得られた中空繊
維はエチルアルコールを容s[吸収し、水銀ポロシメー
ターで測定すると孔径は大部分がo、os−o、tμで
あった。空孔率は8%であった。
Outer diameter of gas supply pipe o, y s*, inner diameter o, s s
The yarn was fed with @WIsset from the annular slit at >. Discharge linear velocity O, Te Om/wa1 take-up f l 10
m1wm, )' Rat specific gravity OO was defeated. Junior high school 91
.. Gas is supplied into the body through forced inhalation. The dimensions of the obtained hollow fibers were 181μ in outer diameter and 40μ in thickness. After processing this stiffness at 110t' for 1 minute, it was stretched for 111 minutes at a temperature of -1Ot', followed by curvature at 110t'.
It was extended by 811, and the #P key extension was 0%. Fix it under tension for 80 seconds at @1 dew b°C. The obtained hollow fibers absorbed ethyl alcohol by volume s[mu], and the pore diameters measured with a mercury porosimeter were mostly o, os-o, and t[mu]. The porosity was 8%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第1閃は本発明噛維を紡糸する±めの結糸口金
の吐出口形状の一例を示す。 特許出願人 東洋結績株式会社 第1図      第2 r11
FIG. 1, the first row, shows an example of the shape of the discharge opening of the second tying nozzle for spinning the fibers of the present invention. Patent applicant: Toyo Keisatsu Co., Ltd. Figure 1 Figure 2 r11

Claims (1)

【特許請求の範囲】[Claims] (1)熱可塑性の結晶性重合体から成る実質的に0o0
1〜0.8μの貫通孔を有しない未延伸糸を長さ方向に
延伸することにより得た、長さ方向に配向した中空繊維
であり1該中空繊維−には延伸により生じた孔径(平均
)が0.01〜O,S声の貫通した微孔を有し1該繊維
壁における窒素のSO℃での透過量が0.o1〜z o
 o cc/−閣・1o帷■の値を有する配向した微孔
性中空繊維。
(1) Substantially 0o0 consisting of a thermoplastic crystalline polymer
It is a hollow fiber oriented in the length direction obtained by stretching in the length direction an undrawn yarn that does not have through holes of 1 to 0.8μ. ) has penetrating micropores of 0.01~0.S, and the amount of nitrogen permeation through the fiber wall at SO°C is 0.01. o1~z o
Oriented microporous hollow fibers with a value of o cc/-k.
JP4970582A 1982-03-26 1982-03-26 Microporous hollow fiber Pending JPS584810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4970582A JPS584810A (en) 1982-03-26 1982-03-26 Microporous hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4970582A JPS584810A (en) 1982-03-26 1982-03-26 Microporous hollow fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51050202A Division JPS5938322B2 (en) 1976-04-30 1976-04-30 Microporous hollow fiber and its manufacturing method

Publications (1)

Publication Number Publication Date
JPS584810A true JPS584810A (en) 1983-01-12

Family

ID=12838601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4970582A Pending JPS584810A (en) 1982-03-26 1982-03-26 Microporous hollow fiber

Country Status (1)

Country Link
JP (1) JPS584810A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192774A (en) * 1983-04-12 1984-11-01 東レ株式会社 Modification of hollow fiber
JPS59193102A (en) * 1983-04-16 1984-11-01 Asahi Medical Kk Selectively permeable hollow yarn
JPS636107A (en) * 1986-06-24 1988-01-12 Asahi Chem Ind Co Ltd Production of polypropylene ultrafine fiber
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192774A (en) * 1983-04-12 1984-11-01 東レ株式会社 Modification of hollow fiber
JPS59193102A (en) * 1983-04-16 1984-11-01 Asahi Medical Kk Selectively permeable hollow yarn
JPH0475052B2 (en) * 1983-04-16 1992-11-27
JPS636107A (en) * 1986-06-24 1988-01-12 Asahi Chem Ind Co Ltd Production of polypropylene ultrafine fiber
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
US9061250B2 (en) 2009-06-26 2015-06-23 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane
US9221020B2 (en) 2010-09-15 2015-12-29 Bl Technologies, Inc. Method to make yarn-reinforced hollow fiber membranes around a soluble core
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane

Similar Documents

Publication Publication Date Title
JPS5938322B2 (en) Microporous hollow fiber and its manufacturing method
US4401567A (en) Microporous polyethylene hollow fibers
US4055696A (en) Porous polypropylene hollow filaments and method making the same
US3871950A (en) Hollow fibers of acrylonitrile polymers for ultrafilter and method for producing the same
CA1167211A (en) Process for preparing hollow microporous polypropylene fibers
JPH0526528B2 (en)
GB2053792A (en) Preparing microporous hollow fibres
EP0124028A2 (en) Heterogeneous membrane and process for production thereof
JPH0211619B2 (en)
US4530809A (en) Process for making microporous polyethylene hollow fibers
JP2628788B2 (en) Method for producing microporous membrane and fusing resistant microporous membrane produced by the method
US7364659B2 (en) Preparation of asymmetric polyethylene hollow fiber membrane
JPS584810A (en) Microporous hollow fiber
CN1022804C (en) Novel preparation method of polypropylene hollow fiber microporous membrane
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JPS6342006B2 (en)
WO2017209151A1 (en) Porous hollow-fiber membrane and production process therefor
JPS6018329B2 (en) porous isotactic polypropylene hollow fiber
JPS6240441B2 (en)
JPS62269706A (en) Composite membrane of porous hollow polyolefin yarn and its production
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JP3475363B2 (en) Method for producing porous membrane
JPH08252441A (en) Polypropylene hollow yarn membrane and its production
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
WO2023027052A1 (en) Hollow fiber microporous membrane, and gas separation membrane module with same built thereinto