Nothing Special   »   [go: up one dir, main page]

JPS6122424B2 - - Google Patents

Info

Publication number
JPS6122424B2
JPS6122424B2 JP11092379A JP11092379A JPS6122424B2 JP S6122424 B2 JPS6122424 B2 JP S6122424B2 JP 11092379 A JP11092379 A JP 11092379A JP 11092379 A JP11092379 A JP 11092379A JP S6122424 B2 JPS6122424 B2 JP S6122424B2
Authority
JP
Japan
Prior art keywords
electrolyte
powder
mixture
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11092379A
Other languages
Japanese (ja)
Other versions
JPS5635372A (en
Inventor
Hirosuke Yamazaki
Teruo Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11092379A priority Critical patent/JPS5635372A/en
Publication of JPS5635372A publication Critical patent/JPS5635372A/en
Publication of JPS6122424B2 publication Critical patent/JPS6122424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、熱電池用電解質層又は正極活物質層
の製造法に関し、さらに詳しくは、粉末成形法に
よつて製造する場合の成形材料の調製方法を改良
することで、バラツキの小さな信頼性の高い熱電
池を提供することを目的とする。
Detailed Description of the Invention The present invention relates to a method for manufacturing an electrolyte layer or a positive electrode active material layer for a thermal battery, and more specifically, by improving a method for preparing a molding material when manufactured by a powder molding method. The purpose is to provide a highly reliable thermal battery with small variations.

熱電池は常温では固体であるが、高温に加熱さ
れると液体となる溶融塩を電解質とした電池であ
つて、その代表的な電解質としてはLiCl−KCl共
融混合塩(43:57重量%、融点352℃)やLiBr−
KBr共融混合塩(52:48重量%、融点330℃)等
がある。熱電池ではこれらの電解質を実用上無水
塩で用いるため、MgやCaなどの負極材料を使用
することが可能であり、したがつて高電圧、高率
放電、長期貯蔵性など諸特性に優れた特徴を有す
る電池である。
A thermal battery is a battery whose electrolyte is a molten salt that is solid at room temperature but becomes liquid when heated to high temperatures.A typical electrolyte is LiCl-KCl eutectic mixed salt (43:57% by weight). , melting point 352℃) and LiBr−
Examples include KBr eutectic mixed salt (52:48% by weight, melting point 330°C). Since these electrolytes are practically used in the form of anhydrous salts in thermal batteries, it is possible to use negative electrode materials such as Mg and Ca. This is a battery with unique characteristics.

この電池の電解質層の製造方法は大別して次の
2通りの方法が実施されている。その1つはアス
ベストペーパ、ガラスクロス、多孔質セラミツク
などの様な電解質層の基骨になるセパレータに、
電解質を溶融含浸する方法であり、他の1つはカ
オリン、アルミナなどの電解質保持材粉末と電解
質粉末との混合物を成形する方法である。本発明
は後者の電解質層の製造法の改良に関して提案す
るものである。
The method of manufacturing the electrolyte layer of this battery can be broadly classified into the following two methods. One is the separator that forms the backbone of the electrolyte layer, such as asbestos paper, glass cloth, porous ceramic, etc.
One is a method of melting and impregnating an electrolyte, and the other is a method of molding a mixture of an electrolyte holding material powder such as kaolin or alumina and an electrolyte powder. The present invention proposes an improvement in the manufacturing method of the latter electrolyte layer.

高性能化された熱電池は一般に下記の電池構成
をしていることは周知の通りである。
It is well known that high-performance thermal batteries generally have the following battery configuration.

Ni又はFe/CaCrO4LiCl−KCl/Ca 上記電池系は優れた電池系ではあるが、活性化
して電解質が溶融状態になると、電解質中のLi+
イオンと負極Caとがイオン置換し、Li金属が生
成して負極Caと結合し、CaLi2の低融点合金(融
点230℃)ができ、これが多量に生成した場合は
電池構成外へ流出して短絡を発生させる欠点もも
ち合せている。この様な欠点を回避するために、
保持材の種類、保持材と電解質との混合比率の適
正化、混合方法と条件、粒径など種々の検討を加
えた結果、一応の安定化と電池特性が得られるよ
うになつた。
Ni or Fe/CaCrO 4 LiCl−KCl/Ca Although the above battery system is an excellent battery system, when activated and the electrolyte becomes molten, Li +
The ions and the negative electrode Ca undergo ion replacement, and Li metal is generated and combines with the negative electrode Ca to form a low melting point alloy of CaLi 2 (melting point 230°C). If a large amount of this is generated, it will flow out of the battery structure. It also has the disadvantage of causing short circuits. In order to avoid such drawbacks,
As a result of various studies such as the type of retaining material, the appropriate mixing ratio of the retaining material and electrolyte, the mixing method and conditions, and the particle size, it became possible to obtain a certain degree of stability and battery characteristics.

しかしながら、ほとんどのものは正常な放電特
性を示すが、時々ごくまれに放電途中に原因不明
の微小短絡を発生することがあり、その原因を発
〓〓〓〓
明者らはいろいろな角度から検討した結果、保持
材と電解質との混合物を加熱処理する工程におい
て問題を有していることが判明した。結論的に述
べれば加熱処理工程で、初め均一混合物であつた
状態が不均一混合状態となつて、場所によつて部
分的に電解質濃度が変化するためである。以下に
その説明を行う。
However, although most of them show normal discharge characteristics, occasionally a micro short circuit of unknown cause may occur during discharge.
As a result of investigation from various angles, the authors found that there was a problem in the process of heat treating the mixture of the holding material and the electrolyte. In conclusion, this is because during the heat treatment step, the initially homogeneous mixture becomes a non-uniform mixture, and the electrolyte concentration changes locally depending on the location. The explanation will be given below.

従来の電解質層の製造工程は、まず保持材35重
量%と電解質粉末65重量%とをボールミル混合機
で均一混合し、次いで内容積1の磁製容器に
600gの前記混合物を入れ、400〜800℃の任意な
温度、例えば700℃に温度調節された電気炉中に
て約60分間前後加熱処理し、冷却固化後取出し→
粉砕→加圧再成型という工程で製造していた。こ
の場合、混合物中の電解質は融点以上に熱せられ
るため溶融して保持材に均一に吸着されると問題
はないのであるが、溶融した一部は吸着される
が、他の一部が十分に吸着されきれずに容器底部
近傍に片寄つてくる現象がある。したがつて容器
上部では電解質比率が65重量%より低下し、反対
に底部では電解質比率が65重量%より上昇するこ
とになり、全体を混合すると保持材:電解質は
35:65になつているが、部分的にみれば両者の比
率は異つていることになる。このような電解質層
を用いた場合は、同一ロツト間でもバラツキが生
じるし、1枚の電解質層の各部分でもバラツキが
生じるので、前述の様な原因不明の微小短絡が発
生することは充分納得できる。
The conventional manufacturing process for an electrolyte layer is to uniformly mix 35% by weight of the retaining material and 65% by weight of the electrolyte powder in a ball mill mixer, and then put it into a porcelain container with an internal volume of 1.
Add 600g of the above mixture, heat it for about 60 minutes in an electric furnace controlled at any temperature between 400 and 800°C, for example 700°C, and take it out after cooling and solidifying →
It was manufactured through a process of pulverization and then pressurized remolding. In this case, the electrolyte in the mixture is heated above its melting point, so there is no problem if it melts and is evenly adsorbed to the holding material, but while some of the melt is adsorbed, the other part is not sufficiently There is a phenomenon in which the particles are not completely absorbed and end up near the bottom of the container. Therefore, the electrolyte ratio at the top of the container will be lower than 65% by weight, and conversely, at the bottom, the electrolyte ratio will be higher than 65% by weight.
The ratio is now 35:65, but if you look at it partially, the ratio between the two is different. When such an electrolyte layer is used, there will be variations even between the same lot, and there will also be variations in each part of a single electrolyte layer, so it is quite convincing that micro short circuits of unknown cause as mentioned above occur. can.

一方処理量の条件を確認するために、50c.c.のル
ツボに30g(前記の1/20量)の混合粉末を入れ、
同様の熱処理条件で実施したところ、僅かな改善
は認められるものの比率が変化するという本質的
な改善がなされない事が判つた。
On the other hand, in order to confirm the processing amount conditions, 30g (1/20 of the above amount) of mixed powder was placed in a 50c.c. crucible.
When heat treatment was carried out under similar heat treatment conditions, it was found that although a slight improvement was observed, no essential improvement such as a change in the ratio was made.

その他の問題として、磁製容器の内面に保持材
や電解質が固着するため回収に手間取ること、大
量処理しようとした場合に、容器の内壁面と中心
部とでは大きな温度差が生じて、均質処理という
点では不充分であることなどがあつた。
Other problems include the fact that the holding material and electrolyte stick to the inner surface of the porcelain container, which takes time to collect, and when processing large quantities, there is a large temperature difference between the inner wall surface and the center of the container, resulting in homogeneous processing. In some respects, it was found to be insufficient.

本発明は上記欠点を改良し、バラツキの小さな
高信頼性の熱電池用電解質又は正極活物質層を提
供することにある。
The present invention aims to improve the above-mentioned drawbacks and provide a highly reliable electrolyte or positive electrode active material layer for thermal batteries with small variations.

以下、具体的な説明は図に示した本発明の代表
的実施例により詳述する。
Hereinafter, a detailed explanation will be given with reference to representative embodiments of the present invention shown in the drawings.

第1図は本発明に用いた素電池の構造図であ
る。
FIG. 1 is a structural diagram of a unit cell used in the present invention.

1はCaを主成分とする負極活物質で、負極集
電板2と圧着し電気導通状態にある。3は本発明
の電解質層でカオリン、アルミナ、アタパルガイ
トなどの無機質保持材粉末とLiCl−KCl電解質粉
末とを35:65重量%に秤取し、ボールミル混合機
にて十分に均一混合したのち前記混合物を金型内
に送り込んで、加熱処理前の予備加圧成形をして
固める。予備成形条件としては0.1〜3トン/cm2
の間の圧力で、金型内の粉末混合物の量は35gと
し、実際には1.2トン/cm2の圧力で直径30×高さ
さ30mmのブロツク成形体をつくつた。従来の容器
中で処理する場合の密度は約0.6g/c.c.であるが、
上記の場合は1.8g/c.c.と高密度となつている。尚
上記のブロツク成形体の大きさや密度は金型内に
入れる混合物の量や圧力で任意に変えることがで
きる。その後、700℃で20分間電気炉中で熱処理
をして取出し、次工程に適した粒径(−60メツシ
ユ)に粉砕し、その後電解質層の本成形を順に行
なう。4は正極活物質層でCaCrO4粉末と電解質
粉末とを主成分とし、前述した電解質層3とほぼ
同様な方法で製造される。すなわちCaCrO4粉末
70重量%と電解質粉末30重量%とを均一に混合
し、前記混合物を予備成形金型内に送り込んで、
加熱処理前の予備成形をして固める。こののち
400〜650℃の電気炉中で15分間熱処理し取出し→
粉砕→正極活物質層の本成形をし、電解質層3と
2層一体に成形を行なう。5は正極集電板でNi
やFe板からなる。
Reference numeral 1 denotes a negative electrode active material containing Ca as a main component, which is pressure-bonded to the negative electrode current collector plate 2 and is electrically conductive. 3 is the electrolyte layer of the present invention, in which inorganic retention material powder such as kaolin, alumina, attapulgite, etc. and LiCl-KCl electrolyte powder are weighed out in a ratio of 35:65% by weight, and after sufficiently uniformly mixing in a ball mill mixer, the above mixture is mixed. is sent into a mold and pre-pressurized and hardened before heat treatment. Preforming conditions are 0.1 to 3 tons/cm 2
The amount of powder mixture in the mold was 35 g at a pressure of 1.2 tons/cm 2 , and a block having a diameter of 30 mm and a height of 30 mm was produced at a pressure of 1.2 tons/cm 2 . The density when processed in a conventional container is approximately 0.6 g/cc, but
In the above case, the density is 1.8g/cc. Incidentally, the size and density of the above-mentioned block molded product can be arbitrarily changed by changing the amount and pressure of the mixture put into the mold. Thereafter, it is heat-treated in an electric furnace at 700°C for 20 minutes, taken out, and pulverized to a particle size (-60 mesh) suitable for the next process, after which the main forming of the electrolyte layer is performed in order. Reference numeral 4 denotes a positive electrode active material layer, which mainly contains CaCrO 4 powder and electrolyte powder, and is manufactured in substantially the same manner as electrolyte layer 3 described above. i.e. CaCrO 4 powder
70% by weight and 30% by weight of electrolyte powder are uniformly mixed, the mixture is fed into a preforming mold,
Preform and harden before heat treatment. After this
Heat treated in an electric furnace at 400-650℃ for 15 minutes and then taken out →
Pulverization→main molding of the positive electrode active material layer, and molding of the two layers together with the electrolyte layer 3 is performed. 5 is the positive electrode current collector plate made of Ni
and Fe board.

第2図は積層形熱電池の概略断面図である。 FIG. 2 is a schematic cross-sectional view of a stacked thermal battery.

6は第1図に示した素電池、7は素電池6と交
互に積層した発熱剤で、素電池6を加熱発電させ
るためにある。8は起動具で、起動用外部端子9
より信号電流を通じると火炎を発して、火道孔1
0を通つて各層の発熱剤7を着火せしめるために
ある。11は出力端子、12は断熱層、13は蓋
とケースとからなる外装体で、その嵌合部をイナ
ートガス溶接にて完全密閉構造としている。
6 is the unit cell shown in FIG. 1, and 7 is a heat generating agent laminated alternately with the unit cell 6, for heating the unit cell 6 and generating electricity. 8 is a starting tool, and external terminal 9 for starting
When a signal current is passed through, a flame is emitted and the vent hole 1
0 to ignite the exothermic agent 7 in each layer. 11 is an output terminal, 12 is a heat insulating layer, and 13 is an exterior body consisting of a lid and a case, the fitting portion of which is completely sealed by inert gas welding.

以上の構成において本発明の実施例では常態に
おいて不活性状態にあるが、使用に際しては起動
用外部端子9より信号電流を通じることで活性状
態となり、出力端子11より電力を取出すことが
できる。本発明の特徴は電解質層3および正極活
物質層4を製造する際に、保持材粉末と電解質粉
〓〓〓〓
末および正極活物質粉末と電解質粉末との混合物
を、予め予備成形にてブロツク成形体をつくり、
そののち加熱処理するところにある。
In the above configuration, in the embodiment of the present invention, it is normally in an inactive state, but when in use, it becomes active by passing a signal current from the starting external terminal 9, and power can be extracted from the output terminal 11. The feature of the present invention is that when manufacturing the electrolyte layer 3 and the positive electrode active material layer 4, the holding material powder and the electrolyte powder
A mixture of powder, cathode active material powder, and electrolyte powder is preformed to form a block body,
After that, it is subjected to heat treatment.

以下に本発明の効果を述べる。 The effects of the present invention will be described below.

本発明の場合は前述の様に予備成形したことに
より混合粉末物の密度が高くなつていて保持材粒
子と電解質粒子とが接近しているので、熱処理時
に溶融した電解質は保持材に吸着され易く、かつ
ブロツク成形体の形状は変形せず崩れない。一方
従来の容器で粉末状混合物を熱処理する場合は加
熱前のカサ高さより収縮し、前述のような容器底
部の電解質の片寄りが生ずる。本発明の場合は、
電解質の片寄りのない均一な熱処理物ができる。
In the case of the present invention, the density of the mixed powder is high due to the preforming as described above, and the holding material particles and electrolyte particles are close to each other, so that the electrolyte melted during heat treatment is easily adsorbed by the holding material. , and the shape of the block molded product does not deform or collapse. On the other hand, when a powdered mixture is heat-treated in a conventional container, it shrinks from its bulk height before heating, causing the electrolyte at the bottom of the container to become uneven as described above. In the case of the present invention,
A uniform heat-treated product with no uneven electrolyte distribution can be produced.

また容器を使用しないで耐熱板上にブロツク成
形体を並べて熱処理することもできるので、容器
の壁面に固着するということもなくなり、回収が
非常に容易である。更に容器中で大量処理しよう
とした場合に温度分布を均一にするためには、小
さな容器に少量づつ入れて多数並べて処理する以
外になく工業的に無理であるが、本発明の場合は
小さなブロツクに固めてあるので従来に比べては
るかに均一な熱処理ができる。
Moreover, since the block moldings can be heat-treated by arranging them on a heat-resistant plate without using a container, they are not stuck to the wall of the container, and recovery is very easy. Furthermore, in order to make the temperature distribution uniform when processing a large amount in a container, the only way to achieve uniform temperature distribution is to put a small amount into small containers and process a large number of them side by side, which is industrially impossible, but in the case of the present invention, small blocks Because it is hardened, it can be heated much more uniformly than conventional methods.

本発明の電解質を用いて、第2図の積層形熱電
池を製作して放電試験を実施し信頼性を確認した
ところ、放電途中に発生していた微小短絡(ほと
んどの場合において1〜2セルが0.1〜0.5秒間短
絡する現象)は20個中皆無であり、従来電池の20
個中2〜3個発生していた現象はなくなつた。そ
の他の特徴として熱処理時間の短縮化がはかれ、
機械的に処理しやすく、容器の消耗がないなど多
くのことが挙げられる。
Using the electrolyte of the present invention, we fabricated the laminated thermal battery shown in Figure 2, conducted a discharge test, and confirmed its reliability.We found that a micro short circuit occurred during discharge (in most cases 1 to 2 cells). (short circuit phenomenon for 0.1 to 0.5 seconds) out of 20 batteries, compared to 20 batteries of conventional batteries.
The phenomenon that used to occur in 2 to 3 cases has disappeared. Other features include shortening of heat treatment time,
There are many advantages such as ease of mechanical processing and no consumption of containers.

一方正極活物質層も実施例で述べたごとく、電
解質層と同じ様に、正極活物質と電解質との比率
のバラツキ、加熱処理時の温度分布の安定化、容
器に固着することによる回収の困難さなど問題を
有していたが、本発明を使用することで上記欠点
は解消された。
On the other hand, as described in the examples, the positive electrode active material layer has the same problems as the electrolyte layer, such as variations in the ratio of the positive electrode active material and electrolyte, stabilization of temperature distribution during heat treatment, and difficulty in recovery due to sticking to the container. However, by using the present invention, these drawbacks have been overcome.

以上の実施例および効果で述べたごとく、本発
明によれば、目的とする電解質層および正極活物
質層の成形前材料を改良することができ、従つて
バラツキの小さな高信頼性の熱電池を提供するこ
とが可能となる。
As described in the above embodiments and effects, according to the present invention, it is possible to improve the material before forming the target electrolyte layer and positive electrode active material layer, and therefore to create a highly reliable thermal battery with small variations. It becomes possible to provide

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いた素電池の断面図であ
り、第2図は積層形熱電池の全体構成図を示す断
面図である。 1……負極活物質、3……電解質層、4……正
極活物質層、5……正極集電板。 〓〓〓〓
FIG. 1 is a sectional view of a unit cell used in the present invention, and FIG. 2 is a sectional view showing the overall configuration of a laminated thermal battery. 1... Negative electrode active material, 3... Electrolyte layer, 4... Positive electrode active material layer, 5... Positive electrode current collector plate. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 無機吸着剤からなる電解質保持材粉末と、溶
融塩からなる電解質粉末とを均一に混合したのち
この混合物を加圧成型によつて固める工程と、そ
の後前記成型体を加熱処理する工程と、成型体を
粉砕して所定の粒径にする工程と、その後にこの
粉末を再成型する工程とにより電解質層に形成す
ることを特徴とした熱電池の製造法。 2 正極活物質と電解質粉末とを均一に混合した
のちこの混合物を加圧成型によつて固める工程
と、その後前記成型体を加熱処理する工程と、成
型体を粉砕して所定の粒径にする工程と、その後
にこの粉末を再成型する工程とにより正極活物質
層を形成することを特徴とした熱電池の製造法。
[Claims] 1. A step of uniformly mixing an electrolyte holding material powder made of an inorganic adsorbent and an electrolyte powder made of a molten salt, and then solidifying this mixture by pressure molding, and then heating the molded body. 1. A method for producing a thermal battery, comprising forming an electrolyte layer through a treatment step, a step of pulverizing a molded body to obtain a predetermined particle size, and a step of subsequently remolding the powder. 2. After homogeneously mixing the positive electrode active material and electrolyte powder, the mixture is solidified by pressure molding, and then the molded body is heat-treated, and the molded body is pulverized to a predetermined particle size. 1. A method for producing a thermal battery, comprising forming a positive electrode active material layer by a step and a subsequent step of re-molding the powder.
JP11092379A 1979-08-29 1979-08-29 Preparation of thermal battery Granted JPS5635372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11092379A JPS5635372A (en) 1979-08-29 1979-08-29 Preparation of thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11092379A JPS5635372A (en) 1979-08-29 1979-08-29 Preparation of thermal battery

Publications (2)

Publication Number Publication Date
JPS5635372A JPS5635372A (en) 1981-04-08
JPS6122424B2 true JPS6122424B2 (en) 1986-05-31

Family

ID=14548043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11092379A Granted JPS5635372A (en) 1979-08-29 1979-08-29 Preparation of thermal battery

Country Status (1)

Country Link
JP (1) JPS5635372A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347028A (en) * 2004-06-01 2005-12-15 Matsushita Electric Ind Co Ltd Thermal battery
JP4884326B2 (en) * 2006-11-10 2012-02-29 学校法人同志社 Thermally activated molten salt capacitor
CN109011696B (en) * 2018-07-25 2020-12-08 中国科学院上海应用物理研究所 A kind of purification method of insoluble impurities in molten salt

Also Published As

Publication number Publication date
JPS5635372A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
KR101920851B1 (en) Liquid lithium
JPS62291873A (en) Manufacture of cathode for electrochemical cell and cathode manufactured thereby
US4221849A (en) Iron-lithium anode for thermal batteries and thermal batteries made therefrom
JPS5826464A (en) Battery and method of producing same
US4654195A (en) Method for fabricating molten carbonate ribbed anodes
US4368167A (en) Method of making an electrode
KR102489073B1 (en) Positive electrode active material for alkaline ion secondary batteries
US3471330A (en) Battery with an electrolyte of solid alkali particles
JPS6122424B2 (en)
US3663297A (en) Process for the preparation of sintered zinc powder battery electrodes
US3625773A (en) Method of producing beta-alumina electrolytes
JP2719352B2 (en) Method for manufacturing solid electrolyte tube for sodium-sulfur battery
JPH0449751B2 (en)
JPH0261095B2 (en)
JP2751279B2 (en) Manufacturing method of electrolyte layer for thermal battery
JPH06325773A (en) Manufacture of separator raw material for thermal cell
JPS6151380B2 (en)
JPS60127667A (en) Manufacturing of fused salt electrolyte battery
JPS6217950A (en) Manufacture of porous lithium-lead alloy electrode
JPH0740488B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
CN116514575A (en) A kind of beryllium oxide electrode material, beryllium-beryllium oxide cermet and preparation method thereof
JP3571514B2 (en) Cadmium oxide powder for nickel cadmium storage batteries
JPS5942422B2 (en) Thermal battery manufacturing method
JPS62139252A (en) Manufacture of lithium-aluminum alloy electrode
CN115513421A (en) A kind of preparation method of lead-graphene composite negative electrode lead paste