Nothing Special   »   [go: up one dir, main page]

JPS61174775A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61174775A
JPS61174775A JP1591385A JP1591385A JPS61174775A JP S61174775 A JPS61174775 A JP S61174775A JP 1591385 A JP1591385 A JP 1591385A JP 1591385 A JP1591385 A JP 1591385A JP S61174775 A JPS61174775 A JP S61174775A
Authority
JP
Japan
Prior art keywords
layer
gaas
thickness
surface concentration
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1591385A
Other languages
Japanese (ja)
Inventor
Masahiko Sasa
佐々 誠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1591385A priority Critical patent/JPS61174775A/en
Publication of JPS61174775A publication Critical patent/JPS61174775A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • H01L29/365Planar doping, e.g. atomic-plane doping, delta-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a device characterized by a high speed and a large current, by providing semiconductor layers having large carrier affinity at the upper and lower sides of a quantum-well shaped potential structure, which supplies carriers, forming two-dimensional carrier gas in the vicinity of each heterojunction interface, and increasing surface concentration. CONSTITUTION:On semi-insulating GaAs, non-added GaAs 2, a quantum well structure 3, non-added GaAs 4 and N-type GaAs 5 are epitaxially grown. The quantum well structure 3 comprises non-added AlAs barriers 3a and 3c with a thickness of 1.5nm, a GaAs well 3b with a thickness of 1nm and 3d. The 3d is provided at the center of the well 3b. In the 3d, Si is added by about 3X10<12>/cm<2>. In this quantum well structure, the energy level of carriers in the layer 3 is enhanced. The surface concentration of the two-dimensional carrier gas in the vicinity of each heterojunction interface is largely increased. Since the two upper and lower layers are formed in the close proximity, the effect is multiplied. The increasing effect of the surface concentration is more effective for electrons than for holes. The effect is conspicuous when the thickness of the well 3 is 3nm or less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、特に高移動度の2次元状態のキャ
リアが高面濃度で形成され、高速度でかつ大電流が実現
される半導体装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor device, particularly a semiconductor device in which carriers in a two-dimensional state with high mobility are formed at a high surface concentration, and a high speed and large current can be realized. Regarding.

半導体装置の高速化等を目的として、砒化ガリウム(G
aAs)などの化合物半導体の実用化が進められ、更に
不純物ドーピング領域とキャリア移動領域とを空間的に
分離し、2次元状態の電子をキャリアとするヘテロ接合
電界効果トランジスタ等の高移動度の半導体装置が種々
開発されているが、従来の2次元電子ガスでは高いキャ
リア濃度が得られず、その増大が要望されている。
Gallium arsenide (G
The practical application of compound semiconductors such as aAs) is progressing, and the impurity doping region and the carrier movement region are spatially separated, and high mobility semiconductors such as heterojunction field effect transistors, which use two-dimensional electrons as carriers, are being developed. Although various devices have been developed, conventional two-dimensional electron gas cannot obtain a high carrier concentration, and there is a desire to increase the carrier concentration.

〔従来の技術〕[Conventional technology]

前記へテロ接合電界効果トランジスタの構造の一例を第
4図(alに示す。
An example of the structure of the heterojunction field effect transistor is shown in FIG. 4 (al).

本従来例では半絶縁性GaAs基板21上に、ノンドー
プのi型GaAs層22、これより電子親和力が小さい
砒化アルミニウムガリウム(AIXGa、−、As)層
23、及び不純物濃度が例えば2 X1018cm−”
程度のn型GaAs層24が設けられている。
In this conventional example, on a semi-insulating GaAs substrate 21, a non-doped i-type GaAs layer 22, an aluminum gallium arsenide (AIXGa,-, As) layer 23 having a lower electron affinity than the non-doped i-type GaAs layer 22, and an impurity concentration of, for example, 2 x 1018 cm-''
An n-type GaAs layer 24 of about 100 mL is provided.

A’1GaAs層23は、例えばGaAs層22との界
面近傍の厚さ約5nmの領域をノンドープとし、その他
の領域に濃度2X10”cm−3程度のドナー不純物を
含んで、この層からi型GaAs層22へ遷移した電子
によってペテロ接合界面近傍に2次元電子ガス22eが
形成される。なおこのためにAlGaAs1W23は電
子供給層と呼ばれる。
For example, the A'1 GaAs layer 23 has a non-doped region with a thickness of about 5 nm near the interface with the GaAs layer 22, and contains donor impurities at a concentration of about 2 x 10"cm-3 in the other regions, so that i-type GaAs can be formed from this layer. A two-dimensional electron gas 22e is formed near the Peter junction interface by the electrons transferred to the layer 22. For this reason, the AlGaAs1W23 is called an electron supply layer.

前記n型GaAs層24上にソース及びドレイン雪掻2
5が設けられ、この両電極間のn型GaAsJW24を
選択的にエツチングしAlGaAs層23に接して設け
られたゲート電極26により、前記2次元電子ガス22
eの面濃度を制御する。
A source and drain layer 2 is formed on the n-type GaAs layer 24.
The n-type GaAs JW 24 between these two electrodes is selectively etched, and the gate electrode 26 provided in contact with the AlGaAs layer 23 allows the two-dimensional electron gas 22 to be etched.
Control the areal density of e.

以上説明した如き従来のへテロ接合電界効果トランジス
タにおいては、2次元電子ガス22eの面濃度Nsに制
限がある。すなわち、n型^lGaAs電子供給層23
のドナー不純物濃度には限界があり、また不純物濃度を
増大させても2次元電子ガス22e中では電子が状態密
度が大きい領域で縮退しているためにフェルミ準位の変
化が小さく、2次元電子ガス22eの面濃度Nsが増加
しない飽和傾向を示す。
In the conventional heterojunction field effect transistor as described above, there is a limit to the surface concentration Ns of the two-dimensional electron gas 22e. That is, the n-type^lGaAs electron supply layer 23
There is a limit to the donor impurity concentration of The surface concentration Ns of the gas 22e shows a saturation tendency that does not increase.

この結果前記へテロ接合電界効果トランジスタでは温度
77Kにおいて、例えば2次元電子ガスの移動度1! 
= 8 X 10’ cm”/Vsecを得るためには
、その面濃度Ns = 6 X 10” cm−”程度
以下に制限されるなどキャリア濃度が不十分で電−流が
制約され、オーミックコンタクト抵抗、雑音指数の低減
、電力の増大などが困難である。
As a result, in the heterojunction field effect transistor, at a temperature of 77 K, the mobility of two-dimensional electron gas is, for example, 1!
= 8 x 10'cm"/Vsec, the surface concentration Ns is limited to about 6 x 10'cm" or less, and the current is restricted due to insufficient carrier concentration, and the ohmic contact resistance is , it is difficult to reduce the noise figure, increase the power, etc.

ヘテロ接合電界効果トランジスタの2次元電子ガス面濃
度を増大する構造を、本発明者等は先に特願昭58−2
01481によって提供している。
The present inventors previously proposed a structure for increasing the two-dimensional electron gas surface concentration of a heterojunction field effect transistor in Japanese Patent Application No. 58-2.
01481.

該発明による半導体基体は例えば第4図(b)に示す構
造を有する。すなわち、半絶縁性GaAs基板31上に
ノンドープのi型GaAsバッファI’1f32を介し
て、第1の電子供給層であるAlGaAs層33、ノン
ドープのi型GaAsチャネル層34、第2の電子供給
層であるAlGaAs層35が順次設けられている。
The semiconductor substrate according to the invention has, for example, the structure shown in FIG. 4(b). That is, an AlGaAs layer 33 which is a first electron supply layer, a non-doped i-type GaAs channel layer 34, and a second electron supply layer are formed on a semi-insulating GaAs substrate 31 via a non-doped i-type GaAs buffer I'1f32. AlGaAs layers 35 are sequentially provided.

第1の電子供給1’i33は、例えばバッファ層32と
の界面近傍をノンドープとし、厚さ約20nmの領域に
濃度1〜5X10”am−3程度のドナー不純物を含み
、更にチャネル層34との界面近傍の厚さ約20nmの
領域をノンドープとしている。
The first electron supply 1'i33 is, for example, non-doped near the interface with the buffer layer 32, contains donor impurities at a concentration of about 1 to 5X10" am-3 in a region with a thickness of about 20 nm, and further has contact with the channel layer 34. A region with a thickness of approximately 20 nm near the interface is non-doped.

また第2の電子供給層35は前記従来例の電子供給層と
同様に、例えばチャネル層34との界面近傍の厚さ約5
 nmの領域をノンドープとし、その他の領域に1〜2
×10”am−’程度のドナー不純物を含む。
Further, the second electron supply layer 35 has a thickness of about 5 mm near the interface with the channel layer 34, for example, similar to the electron supply layer of the conventional example.
nm region is non-doped, and other regions are doped with 1 to 2 nm.
Contains donor impurities of the order of x10"am-'.

本構造においてチャネル層34は電子供給N35.33
とそれぞれへテロ接合を形成し、2次元電子ガスはその
上下2界面に形成される。しかしながらチャネル層34
の厚さが10nm程度以下であれば、上下の2次元電子
ガスは一層に融合する。この状態で、例えば2次元電子
ガスの移動度μ=6X10’cm2/Vsecにおいて
、面濃度NS= 1.2X10”c+n−”程度を得て
いる。
In this structure, the channel layer 34 supplies electrons with N35.33
and form a heterojunction, respectively, and two-dimensional electron gas is formed at the upper and lower interfaces. However, the channel layer 34
If the thickness is about 10 nm or less, the upper and lower two-dimensional electron gases will further fuse together. In this state, for example, when the mobility μ of the two-dimensional electron gas is 6×10′ cm 2 /Vsec, a surface concentration NS=1.2×10″c+n−″ is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

2次元電子ガスの面濃度を増大する努力は前記例の如く
重ねられているが、電流、電力を増大し、あるいはオー
ミック抵抗、雑音指数を低減するために、更に2次元電
子ガスの面濃度を増大することが要望されている。
Efforts have been made to increase the areal concentration of two-dimensional electron gas as in the example above, but in order to increase current and power, or reduce ohmic resistance and noise figure, efforts have been made to further increase the areal concentration of two-dimensional electron gas. There is a desire for this to increase.

また相補型回路を構成する場合等に、正孔についても同
様な2次元状態の面濃度の増大が必要である。
Furthermore, when constructing a complementary circuit, it is necessary to increase the surface concentration of holes in a similar two-dimensional state.

C問題点を解決するための手段〕 前記問題点は、1層の不純物を含むウェル層と2Nのノ
ンドープのバリア層とを有する量子井戸構造が、該バリ
ア層よりキャリア親和力が大きいノンドープの2層の半
導体層間に設けられ、該半導体層と該量子井戸構造との
界面近傍に2次元状態′のキャリアが形成されてなる本
発明による半導体装置により解決される。
Means for Solving Problem C] The problem is that the quantum well structure having one impurity-containing well layer and a 2N non-doped barrier layer has two non-doped layers having a higher carrier affinity than the barrier layer. This problem is solved by a semiconductor device according to the present invention, in which carriers in a two-dimensional state are provided between semiconductor layers and near the interface between the semiconductor layer and the quantum well structure.

〔作 用〕[For production]

本発明においては、不純物を含んでキャリアを供給する
半導体層を量子論的井戸形ポテンシャル構造とし、この
量子井戸構造を挟んで上下にキャリア親和力が大きい半
導体層を設けて、各へテロ接合界面近傍に2次元キャリ
アガスを形成する。
In the present invention, the semiconductor layer containing impurities and supplying carriers has a quantum well type potential structure, and semiconductor layers with high carrier affinity are provided above and below this quantum well structure, and the semiconductor layer near each heterojunction interface is A two-dimensional carrier gas is formed.

この量子井戸構造によりキャリア供給層内のキャリアの
エネルギー準位が高まり、各2次元キャリアガスの面濃
度が増大する。更に2次元キャリアガスが2層相互に近
接して形成されるために、その効果が倍増する。
This quantum well structure increases the energy level of carriers in the carrier supply layer and increases the surface concentration of each two-dimensional carrier gas. Furthermore, since two layers of two-dimensional carrier gas are formed close to each other, the effect is doubled.

この本発明の量子井戸構造による2次元キャリアガス面
濃度増大の効果は正札より電子に大きく現れ、ウェル層
の厚さ3 nm程度以下において明らかであり、2 、
5 nm程度以下において特に顕著となる。
The effect of increasing the two-dimensional carrier gas surface concentration due to the quantum well structure of the present invention appears more strongly on electrons than on the front plate, and is obvious when the thickness of the well layer is about 3 nm or less.
This is particularly noticeable at a wavelength of about 5 nm or less.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第1図(a)は本発明による半導体基体を示す模式側断
面図、同図(blはその要部拡大図である。
FIG. 1(a) is a schematic side sectional view showing a semiconductor substrate according to the present invention, and FIG. 1(a) is an enlarged view of the main part thereof.

半絶縁性GaAs基板1上に、厚さ例えば0.5c程度
のノンドープのGaAs層2、下記の量子井戸構造3、
厚さ例えば15cmのノンドープのGaAs層4、及び
例えば厚さ50cm、不純物濃度I Xl018cm−
3程度のn型GaAs層5を、分子線エピタキシャル成
長方法により例えば成長温度520℃において順次エピ
タキシャル成長する。
On a semi-insulating GaAs substrate 1, a non-doped GaAs layer 2 with a thickness of, for example, about 0.5 cm, a quantum well structure 3 as described below,
A non-doped GaAs layer 4 with a thickness of, for example, 15 cm, and a thickness of, for example, 50 cm with an impurity concentration of IXl018 cm-
About 3 layers of n-type GaAs layers 5 are sequentially epitaxially grown using a molecular beam epitaxial growth method at a growth temperature of 520° C., for example.

量子井戸構造3は次の様に構成されている。すなわち、
バリア層3a及び3cは厚さ例えば1 、5 nmのノ
ンドープの砒化アルミニウム(AIAs)よりなる。
The quantum well structure 3 is constructed as follows. That is,
The barrier layers 3a and 3c are made of non-doped aluminum arsenide (AIAs) and have a thickness of, for example, 1.5 nm.

またウェル層3bは厚さ例えば1.OnmのGaAsよ
りなり、その中央付近にシリコン(St)のアトミック
プレーンドーピング(atomic plane do
ping) 3dを面密度約3x10+zcm−2に行
っている。
Further, the well layer 3b has a thickness of, for example, 1. Onm GaAs, with atomic plane doping of silicon (St) near the center.
ping) 3d to an areal density of approximately 3x10+zcm-2.

本実施例の各層の伝導帯のエネルギー準位及び2次元電
子ガスの分布は第2図の如き状態となる。
The energy level of the conduction band of each layer and the distribution of two-dimensional electron gas in this example are as shown in FIG.

ただし、同図は各半導体層を第1図と同一の符号で示し
、6ば2次元電子ガスの確率分布を示す。
However, in this figure, each semiconductor layer is indicated by the same reference numeral as in FIG. 1, and 6 indicates the probability distribution of the two-dimensional electron gas.

2層の2次元電子ガスは分離しているが極めて接近して
おり、この2層を1つの伝導路として取り扱うことが可
能である。
Although the two layers of two-dimensional electron gas are separated, they are very close to each other, and it is possible to treat these two layers as one conduction path.

本実施例について温度77Kにおいてホール効果による
測定を行い、電子面濃度Nsζ3X10”(2)−2、
電子移動度μ# 2 XIO’ cm”/Vsecを得
ている。この電子面濃度はアトミックプレーンドーピン
グされたStが完全にイオン化し、2次元電子ガスを生
成していることを示している。
In this example, measurement was performed using the Hall effect at a temperature of 77K, and the electron surface concentration Nsζ3X10''(2)-2,
The electron mobility μ# 2 XIO'cm''/Vsec is obtained. This electron surface concentration indicates that the atomically plane-doped St is completely ionized and a two-dimensional electron gas is generated.

前記実施例と同様の構造で、GaAsウェル層3bの厚
さを変化させた場合の電子面濃度Nsの値を第3図に示
す。ウェル層が例えば10cm程度と厚い場合にはその
電子のエネルギー準位の上昇が少なく、電子面濃度Ns
の増加も僅かであるが、ウェル層が薄くなるに伴って効
果が増大し、ウェル層の厚さ3am程度以下において明
らかであり、2.5cm程度以下において特に顕著とな
る。
FIG. 3 shows the values of the electron surface concentration Ns when the thickness of the GaAs well layer 3b is changed in a structure similar to that of the above embodiment. When the well layer is thick, for example, about 10 cm, the increase in the energy level of its electrons is small, and the electron surface concentration Ns
Although the increase in the well layer is small, the effect increases as the well layer becomes thinner, and is obvious when the well layer thickness is about 3 am or less, and becomes particularly noticeable when the well layer thickness is about 2.5 cm or less.

なおウェル層のそれぞれの厚さによって得られる電子面
濃度Nsの値はウェル層の不純物ドーピングに支配され
、本実施例はSiのアトミックプレーンドーピングを適
用して従来の一様なドーピングの場合より高い電子面濃
度を得ている。
Note that the value of the electron surface concentration Ns obtained depending on the thickness of each well layer is controlled by the impurity doping of the well layer, and in this example, the value of the electron surface concentration Ns obtained by applying Si atomic plane doping is higher than that in the case of conventional uniform doping. Obtaining electronic surface concentration.

本実施例の半導体基体の構造はへテロ接合電界効果トラ
ンジスタなど各種の半導体装置に適用することが出来、
その電流を大幅に増加させることが可能となる。
The structure of the semiconductor substrate of this example can be applied to various semiconductor devices such as heterojunction field effect transistors.
It becomes possible to significantly increase the current.

まな正孔をキャリアとする同等の構造も可能であり、例
えば相補型回路等を構成する場合に適用して同様に電流
を増大する効果が得られる。
An equivalent structure in which holes are used as carriers is also possible, and the same effect of increasing the current can be obtained by applying it, for example, when configuring a complementary circuit or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、空間分離型ドーピン
グとへテロ接合界面により2次元状態としたキャリアの
面濃度を大幅に増大することが可能となり、ペテロ接合
電界効果トランジスタなど種々の半導体装置の電流、電
力の増大、オーミックコンタクト抵抗、雑音指数の低減
などを実現することが出来る。
As explained above, according to the present invention, it is possible to significantly increase the surface concentration of carriers in a two-dimensional state by spatially separated doping and the heterojunction interface, and this makes it possible to significantly increase the surface concentration of carriers in a two-dimensional state, which is useful for various semiconductor devices such as heterojunction field effect transistors. It is possible to increase current and power, reduce ohmic contact resistance, and reduce noise figure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(blは本発明の実施例を示す模式側
断面図、 第2図は本実施例のエネルギー準位及び2次元電子ガス
の分布の例を示す図、 第3図はウェル層の厚さと電子面濃度との相関の例を示
す図、 第4図(alはへテロ接合電界効果トランジスタの構造
の一従来例を示す模式側断面図、 第4図(b)は同トランジスタの半導体基体の他の従来
例を示す模式側断面図、 図において、 1は半絶縁性GaAs基板、 2及び4はノンドープのGaAs層、 3は量子井戸構造、 3a及び3cはAlAsバリア層、 3bはGaAsウェル層、 3dはSiアトミックプレーンドーピング、5はn型G
aAs1゜ 6は2次元電子ガスの分布を示す。 第 (閏 (の        Cb) 第 2 図 (′b)
Figures 1 (a) and (bl) are schematic side sectional views showing examples of the present invention; Figure 2 is a diagram showing an example of energy levels and two-dimensional electron gas distribution in this example; Figure 3 is a diagram showing examples of the distribution of two-dimensional electron gas; A diagram showing an example of the correlation between the thickness of the well layer and the electron surface concentration. A schematic side sectional view showing another conventional example of a semiconductor substrate of a transistor. In the figure, 1 is a semi-insulating GaAs substrate, 2 and 4 are non-doped GaAs layers, 3 is a quantum well structure, 3a and 3c are AlAs barrier layers, 3b is GaAs well layer, 3d is Si atomic plane doping, 5 is n-type G
aAs1°6 indicates a two-dimensional electron gas distribution. (Cb) Figure 2 ('b)

Claims (2)

【特許請求の範囲】[Claims] (1)1層の不純物を含むウェル層と2層のノンドープ
のバリア層とを有する量子井戸構造が、該バリア層より
キャリア親和力が大きいノンドープの2層の半導体層間
に設けられ、該半導体層と該量子井戸構造との界面近傍
に2次元状態のキャリアが形成されてなることを特徴と
する半導体装置。
(1) A quantum well structure having one impurity-containing well layer and two non-doped barrier layers is provided between two non-doped semiconductor layers having a higher carrier affinity than the barrier layer, and the semiconductor layer and A semiconductor device characterized in that carriers in a two-dimensional state are formed near an interface with the quantum well structure.
(2)前記ウェル層の厚さが3ナノメートル以下である
ことを特徴とする特許請求の範囲第1項記載の半導体装
置。
(2) The semiconductor device according to claim 1, wherein the well layer has a thickness of 3 nanometers or less.
JP1591385A 1985-01-30 1985-01-30 Semiconductor device Pending JPS61174775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1591385A JPS61174775A (en) 1985-01-30 1985-01-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1591385A JPS61174775A (en) 1985-01-30 1985-01-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61174775A true JPS61174775A (en) 1986-08-06

Family

ID=11902017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1591385A Pending JPS61174775A (en) 1985-01-30 1985-01-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61174775A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186683A (en) * 1988-01-14 1989-07-26 Nec Corp Semiconductor device
JPH06188271A (en) * 1992-12-17 1994-07-08 Nec Corp Field effect transistor
JPH0794758A (en) * 1991-09-12 1995-04-07 Pohang Iron & Steel Co Ltd Manufacture of delta-doped quantum well type field-effect transistor
US6903383B2 (en) 2000-11-21 2005-06-07 Matsushita Electric Industrial Co., Ltd. Semiconductor device having a high breakdown voltage for use in communication systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186683A (en) * 1988-01-14 1989-07-26 Nec Corp Semiconductor device
JPH0794758A (en) * 1991-09-12 1995-04-07 Pohang Iron & Steel Co Ltd Manufacture of delta-doped quantum well type field-effect transistor
JPH06188271A (en) * 1992-12-17 1994-07-08 Nec Corp Field effect transistor
US6903383B2 (en) 2000-11-21 2005-06-07 Matsushita Electric Industrial Co., Ltd. Semiconductor device having a high breakdown voltage for use in communication systems

Similar Documents

Publication Publication Date Title
JP2604349B2 (en) Semiconductor device
JP3177951B2 (en) Field effect transistor and method of manufacturing the same
JP2689057B2 (en) Static induction semiconductor device
JPH084138B2 (en) Semiconductor device
JPS61174775A (en) Semiconductor device
JP2661556B2 (en) Field effect type semiconductor device
JP3447438B2 (en) Field effect transistor
JPS61147577A (en) Complementary semiconductor device
GB2279806A (en) Ohmic contacts for semiconductor devices
JPS59181069A (en) Semiconductor device
JP2652647B2 (en) Heterojunction field effect transistor
US6410946B1 (en) Semiconductor device with source and drain electrodes in ohmic contact with a semiconductor layer
JP3633587B2 (en) Manufacturing method of semiconductor device
JPH04277680A (en) Tunnel transistor and manufacture of the same
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JPS6376380A (en) Semiconductor device
JPH01120871A (en) Semiconductor device
JP2715868B2 (en) Field effect transistor
JPH04340233A (en) Semiconductor device
JPH0661245A (en) Semiconductor device
JPS60145671A (en) Integration type semiconductor device
JP3141841B2 (en) Heterojunction field effect transistor
JPS63155772A (en) Field effect transistor
JPH0327537A (en) Modulation-doped field effect transistor
GB2262385A (en) Velocity modulation transistor