JPS61116322A - Three-dimensional shape forming device - Google Patents
Three-dimensional shape forming deviceInfo
- Publication number
- JPS61116322A JPS61116322A JP59237058A JP23705884A JPS61116322A JP S61116322 A JPS61116322 A JP S61116322A JP 59237058 A JP59237058 A JP 59237058A JP 23705884 A JP23705884 A JP 23705884A JP S61116322 A JPS61116322 A JP S61116322A
- Authority
- JP
- Japan
- Prior art keywords
- resin material
- dimensional shape
- laser
- photocurable resin
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/121—Coherent waves, e.g. laser beams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0072—Roughness, e.g. anti-slip
- B29K2995/0073—Roughness, e.g. anti-slip smooth
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は液状光硬化型樹脂材とレーザビーム照射手段に
より、3次元立体情報を表示する立体模型形状を形成す
る立体形状形成装置に係り、特に液状光硬化型樹脂材に
対して、異なる2方向よりレーザビームを重畳照射して
露光硬化することにより、精度の良い高品位な立体模型
形状を形成する装置構成に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a three-dimensional shape forming apparatus for forming a three-dimensional model shape for displaying three-dimensional three-dimensional information using a liquid photocurable resin material and a laser beam irradiation means. In particular, the present invention relates to an apparatus configuration for forming a highly accurate, high-quality three-dimensional model shape by exposing and curing a liquid photocurable resin material by superimposing laser beams from two different directions.
3次元的な立体情報を表示する方法として、ホログラフ
ィ−による立体視表示、透視図表示、投影図表示及び等
高線表示等が開発され、一般に広く用いられている。こ
れらはホログラフィ−を除いて、何れも3次元情報を2
次元情報に変換する手順が含まれており、表示した立体
形状を直感的に把握し、充分に理解し得るには必ずしも
満足し得る技法とは言えない。As methods for displaying three-dimensional stereoscopic information, stereoscopic display using holography, perspective view display, projection view display, contour line display, etc. have been developed and are generally widely used. With the exception of holography, all of these methods can convert three-dimensional information into two
It includes a procedure for converting into dimensional information, and is not necessarily a satisfactory technique for intuitively grasping and fully understanding the displayed three-dimensional shape.
この点、前記ホログラフィ−は視覚的、直感的に上記の
技法より極めて有利であるが、立体形状を得るのに再生
装置が必要であり、又、実在しない仮想物体を表示する
ことが困難である。In this respect, the holography is visually and intuitively more advantageous than the above techniques, but it requires a reproduction device to obtain a three-dimensional shape, and it is difficult to display non-existent virtual objects. .
このようなことから立体情報を直感的に把握し理解し易
く表示するためには、模型等の立体形状を作成すること
が最善である。For this reason, in order to intuitively grasp 3D information and display it in an easy-to-understand manner, it is best to create a 3D shape such as a model.
立体模型形状を比較的容易に形成する方法として、樹脂
材収容容器内に光硬化型樹脂材を段階的に供給し、該樹
脂材供給毎にその光硬化型樹脂材をレーザビーム照射手
段等により選択的に光硬化させて複雑な立体模型形状を
積層状に形成する方法が提案されている。As a method for forming a three-dimensional model shape relatively easily, a photocurable resin material is supplied stepwise into a resin material storage container, and each time the resin material is supplied, the photocurable resin material is irradiated with a laser beam or the like. A method has been proposed in which a complex three-dimensional model shape is formed in a layered manner by selectively photocuring.
しかしこのような形成方法にあっては、光硬化型樹脂材
に照射されるレーザビームの光エネルギー(露光エネル
ギー)が、あるしきい値以上である場合に該光硬化型樹
脂材が硬化されるものであるが、このしきい値が微小に
変化することにより硬化部分が変化し、精度の良い立体
形状を形成する上で大きな障害となる不都合があり、こ
れら障害の解消が要望されている。However, in such a forming method, the photocurable resin material is cured when the light energy (exposure energy) of the laser beam irradiated to the photocurable resin material is equal to or higher than a certain threshold value. However, a small change in this threshold value causes a change in the hardened portion, which poses a problem that becomes a major hindrance to forming a highly accurate three-dimensional shape, and there is a need to eliminate these obstacles.
従来、光硬化型樹脂材を用い、レーザビーム照射手段に
よって3次元的な立体情報を表示する模型形状を形成す
る方法としては、第13図に示すように液状の光硬化型
樹脂材3を充満した収容容器1内の昇降支持台2を、所
定寸法分降下して該昇降支持台2上に一要分の光硬化型
樹脂材4をオーバーフローさせることにより供給する。Conventionally, as a method for forming a model shape that displays three-dimensional stereoscopic information using a photocurable resin material using a laser beam irradiation means, as shown in FIG. 13, a liquid photocurable resin material 3 is filled. The elevating support table 2 in the storage container 1 is lowered by a predetermined distance, and one portion of the photocurable resin material 4 is supplied by overflowing onto the elevating support table 2.
しかる後、−要分の光硬化型樹脂材4に対して、例えば
作成すべき模型形状を幾かの輪切り状に分割した断面情
報パターン信号の内の、第1情報パターン信号によって
レーザビーム5、又は光硬化型樹脂材4側をX、 Y方
向に移動走査してビーム照射を行い、選択的に露光硬化
せしめて第1硬化樹脂層4aを形成する。After that, - a laser beam 5 is applied to the essential photocurable resin material 4 using a first information pattern signal among cross-sectional information pattern signals obtained by dividing the model shape to be created into several slices, for example; Alternatively, the photocurable resin material 4 side is moved and scanned in the X and Y directions to irradiate it with a beam and selectively expose and cure it to form the first cured resin layer 4a.
次に第14図に示すように再び前記昇降支持台2を所定
寸法分降下し、該昇降支持台2上の前記第1硬化樹脂層
4a上に新たな二層目の光硬化型樹脂材6を前記同様に
供給し、該光硬化型樹脂材6に対して、第15図に示す
ように第2情報パターン信号によって同様にレーザビー
ム5を照射して、選択的に露光硬化せしめ、第2硬化樹
脂層6aを形成する。Next, as shown in FIG. 14, the lifting support 2 is lowered by a predetermined distance again, and a new second layer of photocurable resin material 6 is placed on the first cured resin layer 4a on the lifting support 2. is supplied in the same manner as described above, and the photocurable resin material 6 is similarly irradiated with the laser beam 5 according to the second information pattern signal as shown in FIG. A cured resin layer 6a is formed.
以下同様にして第16図に示すように該昇降支持台2上
の前記第2硬化樹脂層6a上に、更に新たな三層目の光
硬化型樹脂材7を供給し、該光硬化型樹脂材7に対して
第17図に示すように第3情報パターン信号によってレ
ーザビーム5を照射して、選択的に露光硬化せしめ、第
3硬化樹脂層7aを形成することにより、最終的に該液
状の光硬化型樹脂材3中に積層状の立体硬化樹脂像が形
成される。Thereafter, in the same manner as shown in FIG. 16, a new third layer of photocurable resin material 7 is further supplied onto the second cured resin layer 6a on the lifting support table 2, and the photocurable resin is As shown in FIG. 17, the material 7 is irradiated with the laser beam 5 in accordance with the third information pattern signal, and is selectively exposed and cured to form a third cured resin layer 7a. A laminated three-dimensional cured resin image is formed in the photocurable resin material 3 .
この立体硬化樹脂像を液状光硬化型樹脂材3中より取り
出し、希アルカリ洗浄溶液で該液状光硬化型樹脂材3を
洗い流すことによって、第18図に示すように所望とす
る3次元的入党体情報を表示する模型形状8を作成して
いる。This three-dimensional cured resin image is taken out from the liquid photocurable resin material 3 and the liquid photocurable resin material 3 is washed away with a dilute alkaline cleaning solution to obtain a desired three-dimensional joined body as shown in FIG. A model shape 8 for displaying information is being created.
しかしながら、上記のようにレーザビーム照射手段によ
って3次元的な立体形状を形成する方法においては、液
状光硬化型樹脂材3に照射されたレーザビーム5は、該
樹脂材3内でその光エネルギー(露光エネルギー)が吸
収されながら深さ方向に透過され、該露光エネルギーの
値は樹脂材3の深さ方向に連続的に減衰変化する特性が
ある。However, in the method of forming a three-dimensional three-dimensional shape using a laser beam irradiation means as described above, the laser beam 5 irradiated onto the liquid photocurable resin material 3 absorbs its light energy ( The exposure energy is transmitted in the depth direction while being absorbed, and the value of the exposure energy has a characteristic of continuously attenuating and changing in the depth direction of the resin material 3.
又、一方、液状光硬化型樹脂材3としては、露光エネル
ギーが、あるしきい値以上であるレーザビーム5が照射
された部分のみが露光硬化される特性を有しており、こ
のような両者の特性関係から、照射するレーザビーム5
の露光エネルギーのしきい値が微小に変化することによ
り、該樹脂材3の深さ方向の露光硬化部と未露光硬化部
との境界領域が乱れ、全硬化部が変化して精度の良い立
体形状を形成する上で障害となる欠点があった。On the other hand, the liquid photocurable resin material 3 has a characteristic that only the portion irradiated with the laser beam 5 whose exposure energy is above a certain threshold value is exposed and cured. From the characteristic relationship, the laser beam 5 to be irradiated
Due to the slight change in the exposure energy threshold, the boundary area between the exposed hardened part and the unexposed hardened part in the depth direction of the resin material 3 is disturbed, and the entire hardened part changes to form a three-dimensional structure with high precision. There was a drawback that it became an obstacle in forming the shape.
上記問題点は、樹脂収容容器に供給された液状光硬化型
樹脂材に、レーザ光学系によりビーム照射を行って一1
該光硬化型樹脂材を選択的に硬化させ、立体形状を形成
する装置において、上記レーザ光学系からの2つのレー
ザビームを、立体形状形成データに基づいて前記液状光
硬化型樹脂材に、それぞれ異なる方向より重畳照射する
ようにした構成より成る本発明による立体形状形成装置
によって解決される。The above problem can be solved by irradiating the liquid photocurable resin material supplied to the resin storage container with a beam using a laser optical system.
In the apparatus for selectively curing the photocurable resin material to form a three-dimensional shape, two laser beams from the laser optical system are applied to the liquid photocurable resin material, respectively, based on the three-dimensional shape forming data. This problem is solved by the three-dimensional shape forming apparatus according to the present invention, which is configured to emit irradiation in a superimposed manner from different directions.
即ち、本発明においては、第2図の部分断面斜視図に示
すように2つのレーザビーム21.22の内、一方の第
2レーザビーム22は液状光硬化型樹脂材23の、例え
ば表面に対して垂直方向に、又他方の第2レーザビーム
22は該樹脂材23の側面に対して直交する方向にそれ
ぞれ形状形成データに基づいて照射し、両ビーム21.
22が前記樹脂材23内部で重畳する形で選択的に走査
して露光硬化を行うようにする。That is, in the present invention, as shown in the partial cross-sectional perspective view of FIG. and the other second laser beam 22 is irradiated in a direction perpendicular to the side surface of the resin material 23 based on the shape forming data, and both beams 21.
22 are selectively scanned in such a manner that they overlap inside the resin material 23 to perform exposure and curing.
このようにすれば、第2レーザビーム21の照射方向(
樹脂材23に対する深さ方向)24での露光エネルギー
は、断面27で示され、かつ第3図の露光エネルギー分
布図におけるA分布曲線で示されるように、該樹脂材2
3の該深さ方向24に連続的に減衰変化される。In this way, the irradiation direction of the second laser beam 21 (
The exposure energy in the depth direction) 24 with respect to the resin material 23 is shown by the cross section 27, and as shown by the A distribution curve in the exposure energy distribution diagram of FIG.
The attenuation is continuously changed in the depth direction 24 of 3.
一方、該ビーム21の主走査方向25及び該主走査方向
25と水平に直交する副走査方向26での露光エネルギ
ーは、露光部と未露光部との間がレーザ光学系での光変
調器及びレーザビーム径に依存して急峻な分布となる。On the other hand, the exposure energy of the beam 21 in the main scanning direction 25 and the sub-scanning direction 26 horizontally orthogonal to the main scanning direction 25 is transmitted by an optical modulator and a laser optical system between the exposed area and the unexposed area. The distribution becomes steep depending on the laser beam diameter.
更に、第2レーザビーム22の照射方向26での露光エ
ネルギーは、第3図の露光エネルギー分布図におけるB
分布曲線で示されるように、該樹脂材23の深さ方向2
4では、レーザビーム径に依存した分布となり、又、主
走査方向25では光変調器の立ち上がりに依存した分布
となる。一方、副走査方向26では前記第ル−ザビーム
21の深さ方向の分布と同様な分布特性となる。Furthermore, the exposure energy in the irradiation direction 26 of the second laser beam 22 is B in the exposure energy distribution diagram in FIG.
As shown by the distribution curve, the depth direction 2 of the resin material 23
4, the distribution is dependent on the laser beam diameter, and in the main scanning direction 25, the distribution is dependent on the rise of the optical modulator. On the other hand, in the sub-scanning direction 26, the distribution characteristics are similar to the distribution of the first loser beam 21 in the depth direction.
このように上記2つの第1、第2レーザビーム21、2
2による露光により前記樹脂材23内部には3次元的な
露光エネルギー分布が生じ、断面27での全露光エネル
ギー分布は、第3図に示すようにA。In this way, the two first and second laser beams 21, 2
2, a three-dimensional exposure energy distribution occurs inside the resin material 23, and the total exposure energy distribution at the cross section 27 is A as shown in FIG.
B分布曲線の特性からC分布曲線の特性となり、樹脂材
23表面と露光部下端部とに急峻な変化領域を有する露
光エネルギー分布が出来る。The characteristics of the B distribution curve lead to the characteristics of the C distribution curve, resulting in an exposure energy distribution having a steep changing region on the surface of the resin material 23 and at the lower end of exposure.
従って、上記による露光操作後の樹脂材23には深さ方
向24、主走査方向25及び副走査方向26の何れの方
向においても、露光部と未露光部との境界に急峻な変化
領域を有する露光エネルギー分布が生じ、これら第1、
第2レーザビーム21.22の各露光エネルギーにおけ
るしきい値D(第3図参照)が微小に変化することがあ
っても、精度の良い高品位の立体形状の形成が可能とな
る。Therefore, the resin material 23 after the exposure operation as described above has a region of steep change at the boundary between the exposed portion and the unexposed portion in any of the depth direction 24, the main scanning direction 25, and the sub-scanning direction 26. Exposure energy distribution occurs and these first,
Even if the threshold value D (see FIG. 3) of each exposure energy of the second laser beam 21, 22 changes slightly, it is possible to form a three-dimensional shape with high precision and high quality.
以下図面を用いて本発明の実施例について詳細に説明す
る。Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図は本発明に係る立体形状形成装置の第1実施例を
示す概略構成斜視図である。FIG. 1 is a schematic perspective view showing a first embodiment of a three-dimensional shape forming apparatus according to the present invention.
同図において31はレーザビーム32を出射するレーザ
装置、33は光分哨器、34.35は反射鏡、36.3
7は光変調器、38〜41はレンズ、42は回転多面鏡
、43、44はfθレンズであり、レーザビーム32の
焦点を樹脂材の照射面に設定することができ、該焦点で
のレーザビーム径を微小径とすることができると共に、
ビーム露光エネルギーEeの集中照射が可能となる。4
5,46.47は走査用反射鏡であり、これらによりレ
ーザ光学系が構成されている。In the figure, 31 is a laser device that emits a laser beam 32, 33 is an optical sentinel, 34.35 is a reflecting mirror, and 36.3 is a laser device that emits a laser beam 32.
7 is an optical modulator, 38 to 41 are lenses, 42 is a rotating polygon mirror, and 43 and 44 are fθ lenses, which can set the focus of the laser beam 32 on the irradiation surface of the resin material, and the laser beam at the focus The beam diameter can be made very small, and
Concentrated irradiation of beam exposure energy Ee becomes possible. 4
5, 46, and 47 are scanning reflecting mirrors, which constitute a laser optical system.
又、48は液状光硬化性樹脂材49を収容する樹脂収容
容器、50は支持台、51は該支持台50を矢印Aの方
向及びBの方向に移動操作させる移動機構部、52は液
状光硬化性樹脂材49を供給する細長い形状を有する供
給口53を備えた樹脂材供給部である。Further, 48 is a resin storage container that accommodates the liquid photocurable resin material 49, 50 is a support base, 51 is a moving mechanism unit that moves the support base 50 in the directions of arrows A and B, and 52 is a liquid light This is a resin material supply section including a supply port 53 having an elongated shape through which a curable resin material 49 is supplied.
かかる装置構成においては、レーザ装置3■から出射さ
れたレーザビーム32は光分岐器(ビームスプリッタ)
33によって図示のように2つのレーザビーム32a、
32bに分けられる。In such a device configuration, the laser beam 32 emitted from the laser device 3
two laser beams 32a, as shown by 33;
It is divided into 32b.
この2つのレーザビーム32a、 32bは、それぞれ
光変調器36.37において立体形状を形成する形状デ
ータ信号に基づいて変調制御され、レンズ38゜39及
び40.41により通光なビーム径に変換され、回転多
面鏡42によって偏向され、更にfθレンズ43、44
及び走査用反射鏡45,46.及び47を介して樹脂収
容容器48内の液状光硬化型樹脂材49に対して、それ
ぞれ異なる方向より重畳照射し、更に主走査される。These two laser beams 32a and 32b are modulated and controlled by optical modulators 36 and 37, respectively, based on shape data signals that form a three-dimensional shape, and are converted into light-transmitting beam diameters by lenses 38, 39 and 40, 41. , is deflected by a rotating polygon mirror 42, and is further deflected by fθ lenses 43 and 44.
and scanning reflectors 45, 46. and 47, the liquid photocurable resin material 49 in the resin container 48 is irradiated in a superimposed manner from different directions, and is further main-scanned.
この際、前記樹脂収容容器48を載置している支持台5
0も、立体形状形成データ信号に基づいて移動機構部5
1が制御されて同時に矢印への方向に移動操作され、選
択的に露光硬化が行われる。At this time, the support stand 5 on which the resin storage container 48 is placed
0 also moves the moving mechanism section 5 based on the three-dimensional shape formation data signal.
1 is controlled and simultaneously moved in the direction of the arrow, and selective exposure and curing is performed.
さて、上記した装置を適用して3次元的な立体情報を表
示する所望の立体模型形状を形成するには、先ず第4図
に示すように支持台50上に載置された樹脂収容容器4
8に対する一方の第2レーザビーム21の主走査位置と
樹脂材供給部52の細長い形状の供給口53との副走査
方向の間隔をlだげ離間して配置し、樹脂収容容器48
の移動機構部51による副走査と、樹脂材供給部52の
供給口53からの一定量の液状光硬化型樹脂材49の供
給を開始する。Now, in order to form a desired three-dimensional model shape for displaying three-dimensional three-dimensional information by applying the above-described apparatus, first, as shown in FIG.
The main scanning position of one of the second laser beams 21 relative to 8 and the elongated supply port 53 of the resin material supply section 52 are spaced apart by l in the sub-scanning direction.
The sub-scanning by the moving mechanism section 51 and the supply of a certain amount of liquid photocurable resin material 49 from the supply port 53 of the resin material supply section 52 are started.
次に第5図に示すように樹脂材49供給開始後、樹脂収
容容器48が副走査により該樹脂材49の供給開始位置
より間隔β以上移動した時点より、形成すべき立体形状
のデータを基にして、図示しない制御回路より出力する
形状パターン信号によって光変調器36.37を駆動し
、前記供給された液状光硬化型樹脂材49の表面に対し
て垂直に第ル−ザビーム32aを、また同じくその樹脂
材49の側面に対して第2レーザビーム32bをそれぞ
れ照射して露光を開始する。Next, as shown in FIG. 5, after starting the supply of the resin material 49, from the time when the resin container 48 has moved by a distance β or more from the supply start position of the resin material 49 by sub-scanning, data of the three-dimensional shape to be formed is determined. Then, the optical modulators 36 and 37 are driven by a shape pattern signal outputted from a control circuit (not shown), and the first loose beam 32a is directed perpendicularly to the surface of the supplied liquid photocurable resin material 49. Similarly, the side surfaces of the resin material 49 are irradiated with the second laser beams 32b to start exposure.
ここで第ル−ザビーム32aの走査は、第1図に示すよ
うにC方向に行われるのに対して、第2レーザビーム3
2bの走査は逆にD方向に行われる。Here, the scanning of the first laser beam 32a is performed in the C direction as shown in FIG.
Scanning 2b is performed in the D direction conversely.
又、走査開始のタイミングも回転多面鏡42への各レー
ザビーム32a、 32bの入射位置に依存するために
異なり、前記液状光硬化型樹脂材49の各部への2つの
レーザビーム32a、 32bの露光は同時とはならな
いが、露光時間差が小さいため該樹脂材49の硬化特性
に与える影響は少ない。Furthermore, the timing of starting scanning is also different because it depends on the incident position of each laser beam 32a, 32b on the rotating polygon mirror 42, and the exposure of each part of the liquid photocurable resin material 49 with the two laser beams 32a, 32b is different. Although they are not simultaneous, since the exposure time difference is small, there is little influence on the curing characteristics of the resin material 49.
更にこの場合、各レーザビーム32aと32bとの照射
露光開始の時間差は、主に前記移動機構部51による樹
脂収容容器48が間隔lだけ移動する時間に略等しく、
この時点より樹脂供給口53からの液状光硬化型樹脂材
49の供給と照射方向が異なる第1、第2レーザビーム
32a、 32bの露光硬化が同時にC方向とD方向に
平行して行われる。Furthermore, in this case, the time difference between the start of irradiation exposure between the laser beams 32a and 32b is approximately equal to the time it takes for the resin storage container 48 to move by the distance l mainly by the moving mechanism section 51,
From this point on, the supply of the liquid photocurable resin material 49 from the resin supply port 53 and the exposure and curing of the first and second laser beams 32a and 32b having different irradiation directions are simultaneously performed in parallel to the C direction and the D direction.
やがて第6図に示すように前記樹脂供給口53が該収容
容器48の他端に達し前記第1、第2レーザビーム32
a、 32bによる所定パターンの露光硬化が終了する
と共に、液状光硬化型樹脂材31の供給も停止し、樹脂
収容容器48の副走査も停止する。Eventually, as shown in FIG. 6, the resin supply port 53 reaches the other end of the container 48 and the first and second laser beams 32
When the exposure curing of the predetermined pattern by a and 32b is completed, the supply of the liquid photocurable resin material 31 is also stopped, and the sub-scanning of the resin container 48 is also stopped.
次に第7図に示すように液状光硬化型樹脂材49の供給
・露光硬化を行う樹脂材要分の厚さ寸法だけ前記移動機
構部51により樹脂収容容器48を降下させると共に、
次層の樹脂材表面が走査反射鏡45゜46を介してfθ
レンズ43の焦点位置となるようにレベル調整を行う。Next, as shown in FIG. 7, the resin storage container 48 is lowered by the moving mechanism 51 by the thickness of the resin material for which the liquid photocurable resin material 49 is supplied and exposed and cured.
The surface of the resin material of the next layer is exposed to fθ through the scanning reflector 45°46.
Level adjustment is performed so that the focal position of the lens 43 is achieved.
その後該樹脂収容容器48を第8図に示すように再び当
初の所定位置へ迅速に戻す。Thereafter, the resin container 48 is quickly returned to its original predetermined position as shown in FIG.
前記樹脂収容容器48が戻された後、直ちに上記第2図
乃至第6図により説明した工程を繰り返し、露光硬化樹
脂層を順次積層してこの積層状の立体硬化樹脂像を液状
光硬化型樹脂材31中より取り出し、例えば希アルカリ
洗浄溶液等により液状光硬化型樹脂材31を洗い流すこ
とによって、所望とする3次元的な立体情報を表示する
立体模型形状を比較的短時間で効率よく形成することが
可能となる。Immediately after the resin storage container 48 is returned, the steps explained in FIGS. 2 to 6 are repeated, and the exposed and cured resin layers are sequentially laminated to form a layered three-dimensional cured resin image using liquid photocurable resin. By removing the resin material 31 from the material 31 and washing away the liquid photocurable resin material 31 with, for example, a dilute alkaline cleaning solution, a three-dimensional model shape that displays desired three-dimensional stereoscopic information is efficiently formed in a relatively short time. becomes possible.
上記したように本実施例では光硬化型樹脂材49を照射
する第ル−ザビーム32aと第2レーザビーム32bと
の露光開始時間の違いを考慮してそれぞれの立体形状の
形成データ信号を制御し、露光走査することにより、主
走査方向及び副走査方向に限らず、樹脂材49の深さ方
向についても硬化部と未硬化部の境界部分にレーザビー
ム径に依存した急峻な露光エネルギー分布の変化領域が
設けられ、露光エネルギーのしきい値等のパラメータの
変化に対して、光硬化型樹脂材49の露光硬化部と未硬
化部との境界領域での変化の少ない立体形状を容易に形
成することができる。As described above, in this embodiment, the formation data signal of each three-dimensional shape is controlled in consideration of the difference in exposure start time between the first laser beam 32a and the second laser beam 32b that irradiate the photocurable resin material 49. By performing exposure scanning, a steep change in exposure energy distribution depending on the laser beam diameter is produced at the boundary between the cured and uncured areas not only in the main scanning direction and the sub-scanning direction but also in the depth direction of the resin material 49. A three-dimensional shape is easily formed in which the boundary area between the exposed hardened portion and the uncured portion of the photocurable resin material 49 does not change much with respect to changes in parameters such as the exposure energy threshold. be able to.
第9図は本発明に係る立体形状形成装置の第2実施例構
造を示す概略構成斜視図であり、第1図と同等部分には
同一符号を付した。FIG. 9 is a schematic perspective view showing the structure of a second embodiment of the three-dimensional shape forming apparatus according to the present invention, and parts equivalent to those in FIG. 1 are given the same reference numerals.
本実施例が第1図による第1実施例と異なる点は、レー
ザ装置31より出射したレーザビーム32を2分岐する
分岐器68をfθレンズ67のビーム出射側に配置した
構成とし、レーザ装置31より光変調器61、反射鏡6
2、レンズ63.64を通り回転多面鏡65で偏向され
、更に該fθレンズ67より立体形状の形成データ信号
に基づいて出射したレーザビーム32を光分岐器68に
よって異なる方向に2分岐し、この分岐された第1、第
2レーザビーム32a、 32bを第10図に示すよう
に樹脂収容容器48内に供給される光硬化型樹脂材49
の所定露光位置に重畳照射し、露光硬化するようにした
ことである。This embodiment is different from the first embodiment shown in FIG. The light modulator 61 and the reflecting mirror 6
2. The laser beam 32 that passes through lenses 63 and 64 is deflected by a rotating polygon mirror 65, and further emitted from the fθ lens 67 based on the three-dimensional shape formation data signal, is split into two different directions by an optical splitter 68. The branched first and second laser beams 32a and 32b are fed into a photocurable resin material 49 into a resin container 48 as shown in FIG.
The irradiation is carried out in a superimposed manner at a predetermined exposure position, and the irradiation is cured by exposure.
この実施例構成によれば、第ル−ザビーム32aの主走
査位置と樹脂材供給部52の細長い形状の供給口53と
の副走査方向の間隔lだけ樹脂収容容器48が移動する
時間に相等する第2レーザビーム32aと第2レーザビ
ーム32bとの露光開始時間差が解消され、レーザ光学
系の構成が簡単化されると共に、前記第1図による実施
例と同様の効果が得られる。According to the configuration of this embodiment, the time required for the resin storage container 48 to move by the distance l in the sub-scanning direction between the main scanning position of the first looser beam 32a and the elongated supply port 53 of the resin material supply section 52 is equivalent to The exposure start time difference between the second laser beam 32a and the second laser beam 32b is eliminated, the configuration of the laser optical system is simplified, and the same effects as in the embodiment shown in FIG. 1 can be obtained.
第11図は本発明に係る立体形状形成装置の第3実施例
構造を示す概略構成斜視図であり、第9図と同等部分に
は同一符号を付した。□
本実施例が第9図による第2実施例と異なる点は、fθ
レンズ67より立体形状の形成データ信号に基づいて出
射したレーザビーム32を走査用反射鏡46により反射
し、該走査用反射鏡46に対応する長さ形状の光分岐器
71によって異なる方向に2分岐し、この分岐された第
1、第2レーザビーム32a、 32bを更にそれぞれ
2次走査用反射鏡72により反射して第12図によって
明らかなように、樹脂収容容器48内に供給される光硬
化型樹脂材49の所定露光位置に重畳照射し、露光硬化
するようにしたことである。FIG. 11 is a schematic perspective view showing the structure of a third embodiment of the three-dimensional shape forming apparatus according to the present invention, and the same parts as in FIG. 9 are given the same reference numerals. □ The difference between this embodiment and the second embodiment shown in FIG. 9 is that fθ
The laser beam 32 emitted from the lens 67 based on the three-dimensional shape formation data signal is reflected by the scanning reflecting mirror 46, and split into two in different directions by the optical splitter 71 having a length corresponding to the scanning reflecting mirror 46. Then, the branched first and second laser beams 32a and 32b are further reflected by the secondary scanning reflecting mirror 72, respectively, and as shown in FIG. The mold resin material 49 is irradiated with light at a predetermined exposure position in a superimposed manner and cured by exposure.
又、本実施例では説明を簡単化するために光硬化型樹脂
材49の供給方法の図示、説明を省略しているが、前記
第1図及び第9図による第1.第2実施例で示した供給
方法は勿論のこと、従来例で示した供給方法を適用する
ことができる。Further, in this embodiment, in order to simplify the explanation, illustrations and explanations of the method of supplying the photocurable resin material 49 are omitted, but the method shown in FIGS. Not only the supply method shown in the second embodiment but also the supply method shown in the conventional example can be applied.
上記本実施例の装置構造においても前記第1図及び第9
図による第1.第2実施例と同様の効果が得られる。In the device structure of the present embodiment described above, FIGS.
Figure 1. The same effects as in the second embodiment can be obtained.
尚、以上の各実施例においては単一のレーザ装置からの
レーザビームを、レーザ光学系の前段、或いは後段に配
置された光分岐器により2分岐した2つのレーザビーム
を用いた場合の例で説明したが、本発明はこの例に限定
されるものではなく、例えば光分岐器を用いずに、2台
のレーザ装置によって2つのレーザビームを得るように
してもよい。In each of the above embodiments, the laser beam from a single laser device is split into two by an optical splitter placed before or after the laser optical system. Although described, the present invention is not limited to this example. For example, two laser beams may be obtained by two laser devices without using an optical splitter.
以上の説明から明らかなように、本発明に係る立体形状
形成装置によれば、液状光硬化型樹脂材を選択的に照射
して露光硬化を行うのに、2つのレーザビームによって
液状光硬化型樹脂材の所定露光位置に重畳照射し、所定
の走査により露光硬化することが出来るので、その硬化
部と未硬化部との境界の露光エネルギー分布が急峻とな
り、精度の良い高品位な所望とする3次元的な立体情報
を表示する立体模型形状を、効率良く容易に形成するこ
とが出来る優れた利点を有する。As is clear from the above description, according to the three-dimensional shape forming apparatus according to the present invention, two laser beams are used to selectively irradiate and cure the liquid photocurable resin material. Since it is possible to superimpose irradiation on a predetermined exposure position of the resin material and perform exposure curing by predetermined scanning, the exposure energy distribution at the boundary between the cured part and the uncured part becomes steep, achieving the desired high precision and high quality. It has an excellent advantage of being able to efficiently and easily form a three-dimensional model shape that displays three-dimensional three-dimensional information.
【図面の簡単な説明】
第1図は本発明に係る立体形状形成装置の第1実施例を
示す概略構成斜視図、
第2図は本発明の詳細な説明する部分断面模式第3図は
光硬化型樹脂材の深さ方向に対する照射レーザビームの
露光エネルギー分布
図、
第4図乃至第8図は第1図による立体形状形成装置によ
り、立体形状を形成する動作
の一実施例を順に説明するための要部
断面図、
第9図は本発明に係る立体形状形成装置の第2実施例を
示す概略構成斜視図、
第10図は第9図による立体形状形成装置により、立体
形状を形成する動作の一実施例を
説明するための要部断面図、
第11図は本発明に係る立体形状形成装置の第3実施例
を示す概略構成斜視図、
第12図は第11図による立体形状形成装置により、立
体形状を形成する動作の一実施例を
説明するための要部断面図、
第13図乃至第18図は従来の立体形状を形成する方法
を説明するための要部断面図であ
る。
図中、31はレーザ装置、32はレーザビーム、32a
は第2レーザビーム、32bは第2レーザビーム、33
、68.71は光分岐器、34.35.62は反射鏡、
36゜37、61は光変調器、38〜41及び63.6
4はレンズ、42、65は回転多面鏡、43.44.6
7はfθレンズ、45、46.47.69.72a、7
2bは走査用反射鏡、48は樹脂収容容器、49は液状
光硬化型樹脂材、50は支持台、51は移動機構部、5
2は樹脂供給部、53は樹脂材供給口をそれぞれ示す。
第1図
第2図
第3図
樹島紗の層しL方向上cl(mm)
第4 図・ 35 図寸、6図
第7図
第9図
第10図
第11図
第12図
第13図 第14−
第15図 第16図
第17図[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic perspective view showing a first embodiment of a three-dimensional shape forming apparatus according to the present invention. FIG. 2 is a partial cross-sectional diagram explaining the present invention in detail. Exposure energy distribution diagrams of the irradiated laser beam in the depth direction of the curable resin material, FIGS. 4 to 8 sequentially explain an example of the operation of forming a three-dimensional shape by the three-dimensional shape forming apparatus shown in FIG. 9 is a schematic configuration perspective view showing a second embodiment of the three-dimensional shape forming apparatus according to the present invention, and FIG. 10 is a three-dimensional shape forming apparatus according to FIG. 9 for forming a three-dimensional shape. 11 is a schematic configuration perspective view showing a third embodiment of the three-dimensional shape forming apparatus according to the present invention; FIG. 12 is a three-dimensional shape forming apparatus according to FIG. 11; FIGS. 13 to 18 are cross-sectional views of main parts for explaining an example of the operation of forming a three-dimensional shape by the apparatus; FIGS. 13 to 18 are cross-sectional views of main parts for explaining a conventional method of forming a three-dimensional shape; . In the figure, 31 is a laser device, 32 is a laser beam, 32a
is the second laser beam, 32b is the second laser beam, 33
, 68.71 is a light splitter, 34.35.62 is a reflector,
36° 37, 61 are optical modulators, 38 to 41 and 63.6
4 is a lens, 42 and 65 are rotating polygon mirrors, 43.44.6
7 is fθ lens, 45, 46.47.69.72a, 7
2b is a scanning reflecting mirror, 48 is a resin storage container, 49 is a liquid photocurable resin material, 50 is a support stand, 51 is a moving mechanism section, 5
Reference numeral 2 indicates a resin supply section, and reference numeral 53 indicates a resin material supply port. Fig. 1 Fig. 2 Fig. 3 Layering of Kijima gauze in L direction upper cl (mm) Fig. 4・35 Dimensions, Fig. 6
Fig. 7 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14- Fig. 15 Fig. 16 Fig. 17
Claims (1)
ザ光学系によりビーム照射を行って、該光硬化型樹脂材
を選択的に硬化させ、立体形状を形成する装置において
、上記レーザ光学系からの2つのレーザビームを、立体
形状形成データに基づいて前記液状光硬化型樹脂材に、
それぞれ異なる方向より重畳照射することを特徴とする
立体形状形成装置。In an apparatus for selectively curing a liquid photocurable resin material supplied to a resin storage container by irradiating a beam with a laser optical system to selectively harden the photocurable resin material and forming a three-dimensional shape, the laser optical system The two laser beams are applied to the liquid photocurable resin material based on three-dimensional shape formation data,
A three-dimensional shape forming device characterized by superimposed irradiation from different directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59237058A JPS61116322A (en) | 1984-11-09 | 1984-11-09 | Three-dimensional shape forming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59237058A JPS61116322A (en) | 1984-11-09 | 1984-11-09 | Three-dimensional shape forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61116322A true JPS61116322A (en) | 1986-06-03 |
Family
ID=17009791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59237058A Pending JPS61116322A (en) | 1984-11-09 | 1984-11-09 | Three-dimensional shape forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61116322A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63145015A (en) * | 1986-12-10 | 1988-06-17 | Fujitsu Ltd | Device for forming solid shape |
EP0366748A1 (en) * | 1988-04-11 | 1990-05-09 | Austral Asian Lasers Pty. Ltd. | Laser based plastic model making workstation |
US4942001A (en) * | 1988-03-02 | 1990-07-17 | Inc. DeSoto | Method of forming a three-dimensional object by stereolithography and composition therefore |
US5014207A (en) * | 1989-04-21 | 1991-05-07 | E. I. Du Pont De Nemours And Company | Solid imaging system |
US5089185A (en) * | 1989-07-07 | 1992-02-18 | Mitsui Engineering And Shipbuilding Co., Ltd. | Optical molding method |
US5135379A (en) * | 1988-11-29 | 1992-08-04 | Fudim Efrem V | Apparatus for production of three-dimensional objects by photosolidification |
US5204124A (en) * | 1990-10-09 | 1993-04-20 | Stanley Secretan | Continuous extruded bead object fabrication apparatus |
US5536467A (en) * | 1993-01-28 | 1996-07-16 | Eos Gmbh Electro Optical Systems | Method and apparatus for producing a three-dimensional object |
US5626919A (en) * | 1990-03-01 | 1997-05-06 | E. I. Du Pont De Nemours And Company | Solid imaging apparatus and method with coating station |
WO2004022318A2 (en) * | 2002-09-06 | 2004-03-18 | Novartis Ag | Method for making ophthalmic devices |
US10821668B2 (en) | 2018-01-26 | 2020-11-03 | General Electric Company | Method for producing a component layer-by- layer |
US10821669B2 (en) | 2018-01-26 | 2020-11-03 | General Electric Company | Method for producing a component layer-by-layer |
-
1984
- 1984-11-09 JP JP59237058A patent/JPS61116322A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63145015A (en) * | 1986-12-10 | 1988-06-17 | Fujitsu Ltd | Device for forming solid shape |
US4942001A (en) * | 1988-03-02 | 1990-07-17 | Inc. DeSoto | Method of forming a three-dimensional object by stereolithography and composition therefore |
EP0366748A1 (en) * | 1988-04-11 | 1990-05-09 | Austral Asian Lasers Pty. Ltd. | Laser based plastic model making workstation |
US5135379A (en) * | 1988-11-29 | 1992-08-04 | Fudim Efrem V | Apparatus for production of three-dimensional objects by photosolidification |
US5014207A (en) * | 1989-04-21 | 1991-05-07 | E. I. Du Pont De Nemours And Company | Solid imaging system |
US5089185A (en) * | 1989-07-07 | 1992-02-18 | Mitsui Engineering And Shipbuilding Co., Ltd. | Optical molding method |
US5626919A (en) * | 1990-03-01 | 1997-05-06 | E. I. Du Pont De Nemours And Company | Solid imaging apparatus and method with coating station |
US6174156B1 (en) | 1990-03-01 | 2001-01-16 | Dsm N.V. | Solid imaging apparatus and method with coating station |
US6340297B1 (en) | 1990-03-01 | 2002-01-22 | Dsm N.V. | Solid imaging apparatus with coating station |
US6733267B2 (en) | 1990-03-01 | 2004-05-11 | Dsm Desotech, Inc. | Solid imaging apparatus and method with coating station |
US5204124A (en) * | 1990-10-09 | 1993-04-20 | Stanley Secretan | Continuous extruded bead object fabrication apparatus |
US5536467A (en) * | 1993-01-28 | 1996-07-16 | Eos Gmbh Electro Optical Systems | Method and apparatus for producing a three-dimensional object |
WO2004022318A2 (en) * | 2002-09-06 | 2004-03-18 | Novartis Ag | Method for making ophthalmic devices |
WO2004022318A3 (en) * | 2002-09-06 | 2004-06-17 | Novartis Ag | Method for making ophthalmic devices |
JP2006500243A (en) * | 2002-09-06 | 2006-01-05 | ノバルティス アクチエンゲゼルシャフト | Method for manufacturing an ophthalmic device |
US7860594B2 (en) | 2002-09-06 | 2010-12-28 | Novartis Ag | Method for making opthalmic devices |
US10821668B2 (en) | 2018-01-26 | 2020-11-03 | General Electric Company | Method for producing a component layer-by- layer |
US10821669B2 (en) | 2018-01-26 | 2020-11-03 | General Electric Company | Method for producing a component layer-by-layer |
US11623398B2 (en) | 2018-01-26 | 2023-04-11 | General Electric Company | Multi-level vat for additive manufacturing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5234319B2 (en) | Stereolithography apparatus and stereolithography method | |
JPS61114818A (en) | Apparatus for forming solid configuration | |
JPS61116322A (en) | Three-dimensional shape forming device | |
JPS61114817A (en) | Apparatus for forming solid configuration | |
CN101209583A (en) | Optical modeling apparatus | |
KR101704553B1 (en) | A head assembly for 3D printer comprising an array of laser diodes and a polygon mirror a scanning method therewith. | |
US12122090B2 (en) | Method and apparatus for isotropic stereolithographic 3D printing with a variable speed and power hybrid light source | |
JPH0675925B2 (en) | 3D shape forming device | |
JP4582894B2 (en) | Optical three-dimensional modeling apparatus and modeling method | |
JPS63141725A (en) | Apparatus for forming three dimensional shape | |
JPH04267132A (en) | Three dimensional object-forming device | |
KR102218252B1 (en) | Stereolithography machine with improved optical group | |
JPH04113828A (en) | Manufacture of large-sized stereo-resin model and device therefor | |
JPS61217219A (en) | Three-dimensional configuration forming device | |
JPS61116320A (en) | Three-dimensional shape forming device | |
JP2009166448A (en) | Optical shaping apparatus and optical shaping method | |
JPS61116321A (en) | Three-dimensional shape forming device | |
JPS63145016A (en) | Device for forming solid shape | |
JPS63139729A (en) | Forming device for stereoscopic shape | |
JPS6299753A (en) | Formation of three-dimensional shape | |
KR100236566B1 (en) | Multi photosolidification method and apparatus | |
JPS63141724A (en) | Forming three dimensional shape | |
JP3170832B2 (en) | Optical molding method | |
JPS6232009A (en) | Method for forming solid shape | |
JPH1142713A (en) | Light molding apparatus |