JPH04267132A - Three dimensional object-forming device - Google Patents
Three dimensional object-forming deviceInfo
- Publication number
- JPH04267132A JPH04267132A JP3028435A JP2843591A JPH04267132A JP H04267132 A JPH04267132 A JP H04267132A JP 3028435 A JP3028435 A JP 3028435A JP 2843591 A JP2843591 A JP 2843591A JP H04267132 A JPH04267132 A JP H04267132A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- dimensional
- laser beam
- crystal spatial
- spatial light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 39
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000000465 moulding Methods 0.000 claims description 25
- 239000011347 resin Substances 0.000 abstract description 19
- 229920005989 resin Polymers 0.000 abstract description 19
- 230000005855 radiation Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0838—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Liquid Crystal (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は立体成形装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional molding apparatus.
【0002】0002
【従来の技術】従来の立体成形装置は、図6のように、
レーザ光源601をレーザ走査装置609を用いて2次
元的に走査して断面像を成形し、それを積層して立体を
成形するものであった。(たとえば、O plus
E(1990)12月号p.117を参照。)[Prior Art] A conventional three-dimensional molding device, as shown in FIG.
A laser light source 601 was scanned two-dimensionally using a laser scanning device 609 to form a cross-sectional image, and the images were laminated to form a three-dimensional object. (For example, O plus
E (1990) December issue p. See 117. )
【00
03】00
03]
【発明が解決しようとする課題】しかし、従来の立体成
形装置には、レーザ光を2次元的に走査して樹脂を硬化
させるために立体成形に時間がかかるという問題があっ
た。本発明は、このような問題点を解決するものであっ
て、その目的は、簡便な手段により高性能な立体成形装
置を提供するところにある。However, the conventional three-dimensional molding apparatus has a problem in that three-dimensional molding takes time because the resin is cured by two-dimensionally scanning laser light. The present invention is intended to solve these problems, and its purpose is to provide a high-performance three-dimensional molding device using simple means.
【0004】0004
【課題を解決するための手段】本発明の第1の立体成形
装置は、少なくとも、液晶空間光変調器と、該液晶空間
光変調器を駆動するための駆動装置と、該光硬化材料を
硬化させるための光源と、該光源からの光を該液晶空間
光変調器に導くための光学系とを備えて成ることを特徴
とする。[Means for Solving the Problems] A first three-dimensional molding apparatus of the present invention includes at least a liquid crystal spatial light modulator, a driving device for driving the liquid crystal spatial light modulator, and a curing material for curing the photocurable material. and an optical system for guiding light from the light source to the liquid crystal spatial light modulator.
【0005】本発明の第2の立体成形装置は、前記第1
の立体成形装置において、液晶空間光変調器が位相変調
型であることを特徴とする。[0005] A second three-dimensional molding apparatus of the present invention includes the first three-dimensional molding apparatus.
The three-dimensional molding apparatus is characterized in that the liquid crystal spatial light modulator is of a phase modulation type.
【0006】本発明の第3の立体成形装置は、前記第1
の立体成形装置において、液晶空間光変調器が振幅位相
同時変調型でることを特徴とする。[0006] A third three-dimensional molding apparatus of the present invention includes the first three-dimensional molding apparatus.
The three-dimensional molding apparatus is characterized in that the liquid crystal spatial light modulator is of a simultaneous amplitude and phase modulation type.
【0007】[0007]
【実施例】以下、実施例により本発明の詳細を示す。
(実施例1)図1に本発明の立体成形装置の構成を示す
。レーザ光源101からでたレーザ光112は、ビーム
エクスパンダ102とコリメートレンズ103によって
拡大された平行光になる。このレーザ光は、ECB(電
界制御複屈折)モードの液晶空間光変調器104に記録
された計算機ホログラムよって位相変調を受け、樹脂槽
105表面に立体の断面像を再生する。樹脂槽表面の未
硬化の樹脂106は、レーザ光の照射により硬化する。
成形物107をテーブル108に固定してz方向送り装
置109でテーブルを下方に送りながら、次々と樹脂槽
表面に現われる未硬化の樹脂槽を断面像の形に硬化させ
ていけば立体成形物が得られる。[Examples] The details of the present invention will be explained below with reference to Examples. (Example 1) FIG. 1 shows the configuration of a three-dimensional molding apparatus of the present invention. Laser light 112 emitted from laser light source 101 becomes parallel light that is expanded by beam expander 102 and collimating lens 103 . This laser light undergoes phase modulation by a computer-generated hologram recorded on the liquid crystal spatial light modulator 104 in ECB (electric field controlled birefringence) mode, and reproduces a three-dimensional cross-sectional image on the surface of the resin tank 105. The uncured resin 106 on the surface of the resin tank is cured by laser light irradiation. The molded product 107 is fixed to the table 108, and while the table is sent downward by the z-direction feeder 109, the uncured resin tanks that appear on the resin tank surface one after another are cured in the shape of a cross-sectional image, thereby forming a three-dimensional molded product. can get.
【0008】ECBモードの液晶空間光変調器はコンピ
ュータ111に接続された駆動装置110によって駆動
される。コンピュータは立体成形物の断面像からそのフ
レネル変換によって位相型ホログラムを計算する。駆動
装置はこのホログラムデータをもとにECBモードの液
晶空間光変調器に駆動信号を送る。このホログラムには
レンズ作用を持たせてあるので、ECBモードの液晶空
間光変調器と樹脂層の間にレンズが不要となる。The ECB mode liquid crystal spatial light modulator is driven by a driving device 110 connected to a computer 111. The computer calculates a phase hologram from the cross-sectional image of the three-dimensional molded object by Fresnel transformation. The drive device sends a drive signal to the ECB mode liquid crystal spatial light modulator based on this hologram data. Since this hologram has a lens function, no lens is required between the ECB mode liquid crystal spatial light modulator and the resin layer.
【0009】本実施例に用いたECBモードの液晶空間
光変調器は、各画素にTFT素子を備えたアクティブマ
トリックス方式である(第51回応用物理学会学術講演
会講演予稿集26a−H−10参照。)1つの断面像を
一度に硬化させるので、従来のような2次元的にレーザ
光を走査する方法よりはるかに短い時間で立体を成形で
きる。また位相型ホログラムで断面像を発生させること
により、振幅型の遮光マスクを使う場合に比べて光の利
用効率が高くなり、短時間で樹脂を硬化させることがで
きる。
(実施例2)図2に本発明の別の実施例の構成を示す。
位相型ホログラムに記録するレンズの焦点距離をかえる
ことにより、断面像の結像する位置を自由に変えること
ができる。この性質を利用することによって、z方向送
り装置が不要となり、装置が簡略化される。実施例1と
同じく拡大された平行なレーザ光は、ECBモードの液
晶空間光変調器に記録された計算機ホログラムによって
位相変調を受、今度は樹脂槽内部に立体の断面像を再生
する。レンズ焦点距離が少しずつ異なる位相型ホログラ
ムを次々に液晶空間光変調器に記録しながら、断面像を
再生してゆくことにより立体成形物を成形できる。
(実施例3)第3の実施例の構成は、図2におけるEC
Bモードの液晶空間光変調器を振幅位相同時変調型液晶
空間光変調器に置き換えたものである。図3に本実施例
で用いた振幅位相同時変調型液晶空間光変調器の構成を
2つ示す。図3(a)では、TN(ツイストネマティク
)モードの液晶空間光変調器301とECBモードの液
晶空間光変調器302を一対の平板マイクロレンズアレ
ー303、304からなるアフォーカル光学系を用いて
、光学的に接続した。図の中のfはレンズの焦点距離を
表わす。図3(b)では、2つの液晶空間光変調器30
1と302をレンズ305とレンズ307からなるアフ
ォーカル光学系を用いて、光学的に接続した。また、レ
ンズ305と307の間に空間フィルタ306を配置し
て、不要な光を除いた。TNモードの液晶空間光変調器
とECBモードの液晶空間光変調器はそれぞれTFT素
子を持ったアクティブマトリックス方式である。The ECB mode liquid crystal spatial light modulator used in this example is an active matrix type in which each pixel is equipped with a TFT element (Proceedings of the 51st Annual Conference of the Japan Society of Applied Physics 26a-H-10 ) Since one cross-sectional image is cured at a time, a three-dimensional object can be formed in a much shorter time than the conventional method of two-dimensionally scanning a laser beam. Furthermore, by generating a cross-sectional image using a phase-type hologram, the efficiency of light utilization is higher than when using an amplitude-type light-shielding mask, and the resin can be cured in a short time. (Embodiment 2) FIG. 2 shows the configuration of another embodiment of the present invention. By changing the focal length of the lens used to record on the phase hologram, the position where the cross-sectional image is formed can be freely changed. By utilizing this property, the z-direction feeding device becomes unnecessary and the device is simplified. As in Example 1, the expanded parallel laser beam undergoes phase modulation by a computer-generated hologram recorded on an ECB mode liquid crystal spatial light modulator, and this time a three-dimensional cross-sectional image is reproduced inside the resin tank. A three-dimensional molded object can be formed by sequentially recording phase-type holograms with slightly different lens focal lengths on a liquid crystal spatial light modulator and reproducing cross-sectional images. (Example 3) The configuration of the third example is the EC in FIG.
The B-mode liquid crystal spatial light modulator is replaced with a simultaneous amplitude and phase modulation type liquid crystal spatial light modulator. FIG. 3 shows two configurations of the simultaneous amplitude and phase modulation type liquid crystal spatial light modulator used in this example. In FIG. 3A, a TN (twisted nematic) mode liquid crystal spatial light modulator 301 and an ECB mode liquid crystal spatial light modulator 302 are connected using an afocal optical system consisting of a pair of flat microlens arrays 303 and 304. , optically connected. f in the figure represents the focal length of the lens. In FIG. 3(b), two liquid crystal spatial light modulators 30
1 and 302 were optically connected using an afocal optical system consisting of a lens 305 and a lens 307. Additionally, a spatial filter 306 was placed between lenses 305 and 307 to remove unnecessary light. The TN mode liquid crystal spatial light modulator and the ECB mode liquid crystal spatial light modulator are active matrix types each having a TFT element.
【0010】この振幅位相同時変調型液晶空間光変調器
を用いることによりほぼ完全な波面制御を行うことがで
きる。そこで、たとえばコンピュータで立体の表面形状
の光学変換像を計算し、このデータを記録した振幅位相
同時変調型液晶空間光変調器にレーザ光を照射すれば、
樹脂槽内に直接立体の表面像を再生することができる。
これを利用し、本実施例ではまず立体の表面を速やかに
硬化させた。ただし物体自身の陰になる部分の表面から
順に硬化させた。その後、この成形物を樹脂槽から取り
出し、強い光を照射して内部を硬化させた。
(実施例4)図4は本発明の第4の実施例の構成である
。これは実施例3における光学系を樹脂槽の周りに複数
配置することによって成形速度を上げるとともに複雑な
形状の形成を可能としたものである。たとえば図5のよ
うな断面が非連結な形状の立体でも、一度にその表面を
硬化できる。これによって、実時間に近い立体成形がで
きた。また一度に硬化できないような複雑な形状でも液
晶空間光変調器のデータを書き換えることによって、速
やかに成形することができる。By using this simultaneous amplitude and phase modulation type liquid crystal spatial light modulator, almost perfect wavefront control can be performed. Therefore, for example, if a computer calculates an optically converted image of a three-dimensional surface shape and irradiates a laser beam onto a simultaneous amplitude and phase modulation type liquid crystal spatial light modulator that records this data,
A three-dimensional surface image can be directly reproduced in the resin bath. Utilizing this, in this example, the three-dimensional surface was first hardened quickly. However, the material was hardened starting from the surface of the object itself, which was in the shadow. Thereafter, this molded product was taken out of the resin bath and the inside was cured by irradiating it with strong light. (Embodiment 4) FIG. 4 shows the configuration of a fourth embodiment of the present invention. This is achieved by arranging a plurality of optical systems in Example 3 around the resin tank, thereby increasing the molding speed and making it possible to form a complex shape. For example, even if a solid body has a non-connected cross section as shown in FIG. 5, its surface can be hardened at one time. This enabled three-dimensional molding to be performed in close to real time. Furthermore, even complex shapes that cannot be cured at once can be quickly formed by rewriting the data in the liquid crystal spatial light modulator.
【0011】なお、本発明の液晶空間光変調器を用いた
光学系は、空間の任意の点に光点を発生させることがで
きるため従来のようなレーザ光を走査する方式にも用い
ることができる。Furthermore, since the optical system using the liquid crystal spatial light modulator of the present invention can generate a light spot at any point in space, it can also be used in a conventional laser beam scanning method. can.
【0012】0012
【発明の効果】本発明によれば、以下の効果が得られる
。
(1)液晶空間光変調器によって断面像を再生すること
により2次元的なレーザ光の走査が不要となり、立体成
形のための時間が大幅に短縮できる。また、振幅位相同
時変調型液晶空間光変調器を用いれば、立体像を直接結
像させることができるため、実時間に近い立体成形が可
能となる。
(2)位相型ホログラムにレンズ機能をもたせ、その焦
点距離を変えれば断面像を前後に振ることができるため
、送り装置などの可動部がいっさい不要となり、装置が
大幅に簡略化される。すなわち、部品点数が少なくなる
ので低コスト化や小型化が図れる。
(3)振幅位相同時変調型液晶空間光変調器を用いれば
、立体像を直接結像させることができるため、断面像を
積層する方法では成形が困難な形状でも容易に成形でき
る。[Effects of the Invention] According to the present invention, the following effects can be obtained. (1) By reproducing a cross-sectional image using a liquid crystal spatial light modulator, two-dimensional laser beam scanning becomes unnecessary, and the time for three-dimensional molding can be significantly shortened. Further, if a simultaneous amplitude and phase modulation type liquid crystal spatial light modulator is used, a three-dimensional image can be directly formed, so three-dimensional molding can be performed in close to real time. (2) By providing a phase-type hologram with a lens function and changing its focal length, the cross-sectional image can be swung back and forth, eliminating the need for any moving parts such as a feeding device, and greatly simplifying the device. In other words, since the number of parts is reduced, costs and size can be reduced. (3) If a simultaneous amplitude and phase modulation type liquid crystal spatial light modulator is used, a three-dimensional image can be directly formed, so even a shape that is difficult to mold using a method of stacking cross-sectional images can be easily molded.
【図1】本発明の立体成形装置の構成を示す側面図であ
る。FIG. 1 is a side view showing the configuration of a three-dimensional molding apparatus of the present invention.
【図2】本発明の立体成形装置の別の構成を示す側面図
である。FIG. 2 is a side view showing another configuration of the three-dimensional molding apparatus of the present invention.
【図3】(a)振幅位相同時変調型液晶空間光変調器の
構成を示す側面図である。(b)振幅位相同時変調型液
晶空間光変調器の別の構成を示す側面図である。FIG. 3(a) is a side view showing the configuration of a simultaneous amplitude and phase modulation type liquid crystal spatial light modulator. (b) It is a side view which shows another structure of an amplitude phase simultaneous modulation type liquid crystal spatial light modulator.
【図4】本発明の立体成形装置の別の構成を示す側面図
である。FIG. 4 is a side view showing another configuration of the three-dimensional molding apparatus of the present invention.
【図5】(a)立体成形物の例を示す斜視図である。
(b)平面502で成形物501を切断したときの断面
図である。FIG. 5(a) is a perspective view showing an example of a three-dimensional molded product. (b) is a cross-sectional view when the molded product 501 is cut along a plane 502;
【図6】従来の立体成形装置の構成を示す側面図である
。FIG. 6 is a side view showing the configuration of a conventional three-dimensional molding device.
101 レーザ光源
102 ビームエクスパンダ
103 コリメートレンズ
104 ECBモードの液晶空間光変調器105
樹脂槽
106 樹脂
107 成形物
108 テーブル
109 z方向送り装置
110 駆動装置
111 コンピュータ
112 レーザ光
301 TNモードの液晶空間光変調器302 E
CBモードの液晶空間光変調器303 マイクロレン
ズアレー
304 マイクロレンズアレー
305 レンズ
306 空間フィルタ
307 レンズ
501 成形物
502 平面
503 成形物の断面
601 レーザ光源
602 集光レンズ
609 レーザ走査装置
610 制御装置
611 コンピュータ
612 レーザ光101 Laser light source 102 Beam expander 103 Collimating lens 104 ECB mode liquid crystal spatial light modulator 105
Resin tank 106 Resin 107 Molded product 108 Table 109 Z-direction feed device 110 Drive device 111 Computer 112 Laser beam 301 TN mode liquid crystal spatial light modulator 302 E
CB mode liquid crystal spatial light modulator 303 Microlens array 304 Microlens array 305 Lens 306 Spatial filter 307 Lens 501 Molded article 502 Plane 503 Cross section of molded article 601 Laser light source 602 Condensing lens 609 Laser scanning device 610 Control device 611 Computer 612 laser light
Claims (3)
、少なくとも、液晶空間光変調器と、該液晶空間光変調
器を駆動するための駆動装置と、該光硬化材料を硬化さ
せるための光源と、該光源からの光を該液晶空間光変調
器に導くための光学系とを備えて成ることを特徴とする
立体成形装置。1. A three-dimensional molding device for molding a photocurable material, comprising at least a liquid crystal spatial light modulator, a driving device for driving the liquid crystal spatial light modulator, and a light source for curing the photocurable material. and an optical system for guiding light from the light source to the liquid crystal spatial light modulator.
ことを特徴とする請求項1記載の立体成形装置。2. The three-dimensional molding apparatus according to claim 1, wherein the liquid crystal spatial light modulator is of a phase modulation type.
型であることを特徴とする請求項1記載の立体成形装置
。3. The three-dimensional molding apparatus according to claim 1, wherein the liquid crystal spatial light modulator is of a simultaneous amplitude and phase modulation type.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3028435A JPH04267132A (en) | 1991-02-22 | 1991-02-22 | Three dimensional object-forming device |
EP91105263A EP0451681B1 (en) | 1990-04-05 | 1991-04-03 | Optical apparatus |
DE69128103T DE69128103T2 (en) | 1990-04-05 | 1991-04-03 | Optical device |
US08/359,713 US5497254A (en) | 1990-04-05 | 1994-12-20 | Optical apparatus including a liquid crystal modulator |
US08/571,417 US5682214A (en) | 1990-04-05 | 1995-12-13 | Optical apparatus for controlling the wavefront of a coherent light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3028435A JPH04267132A (en) | 1991-02-22 | 1991-02-22 | Three dimensional object-forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04267132A true JPH04267132A (en) | 1992-09-22 |
Family
ID=12248593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3028435A Pending JPH04267132A (en) | 1990-04-05 | 1991-02-22 | Three dimensional object-forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04267132A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5838468A (en) * | 1996-04-12 | 1998-11-17 | Nec Corporation | Method and system for forming fine patterns using hologram |
KR20030025044A (en) * | 2001-09-19 | 2003-03-28 | 엘지전자 주식회사 | 3-Dimensional Figure Marking System and Method for the Same |
DE102013113251A1 (en) | 2012-11-30 | 2014-06-05 | Hitachi, Ltd. | Control device for a railroad performance enhancer and control system for a railroad performance enhancer |
WO2016042792A1 (en) * | 2014-09-17 | 2016-03-24 | 株式会社東芝 | Stereolithographic apparatus and stereolithographic method |
WO2017047222A1 (en) * | 2015-09-17 | 2017-03-23 | ソニー株式会社 | Optical shaping device and method for producing shaped article |
JP2018070995A (en) * | 2016-10-24 | 2018-05-10 | ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング | Device for addition production of three-dimensional article |
KR20190141261A (en) * | 2017-05-12 | 2019-12-23 | 로렌스 리버모어 내셔널 시큐리티, 엘엘씨 | System and method for computer axis lithography (CAL) for three-dimensional printing |
WO2020028431A1 (en) * | 2018-07-31 | 2020-02-06 | Prellis Biologics, Inc. | Methods and systems for three-dimensional printing |
US10933579B2 (en) | 2017-03-10 | 2021-03-02 | Prellis Biologics, Inc. | Methods and systems for printing biological material |
JP2021074900A (en) * | 2019-11-05 | 2021-05-20 | Tianma Japan株式会社 | Optical molding apparatus and molding method |
US11085018B2 (en) | 2017-03-10 | 2021-08-10 | Prellis Biologics, Inc. | Three-dimensional printed organs, devices, and matrices |
US11767514B2 (en) | 2017-05-25 | 2023-09-26 | Prellis Biologics, Inc | Three-dimensional printed organs, devices, and matrices |
US12138863B2 (en) | 2022-03-25 | 2024-11-12 | Lawrence Livermore National Security, Llc | System and method for computed axial lithography (CAL) for 3D additive manufacturing |
-
1991
- 1991-02-22 JP JP3028435A patent/JPH04267132A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5838468A (en) * | 1996-04-12 | 1998-11-17 | Nec Corporation | Method and system for forming fine patterns using hologram |
KR20030025044A (en) * | 2001-09-19 | 2003-03-28 | 엘지전자 주식회사 | 3-Dimensional Figure Marking System and Method for the Same |
DE102013113251A1 (en) | 2012-11-30 | 2014-06-05 | Hitachi, Ltd. | Control device for a railroad performance enhancer and control system for a railroad performance enhancer |
WO2016042792A1 (en) * | 2014-09-17 | 2016-03-24 | 株式会社東芝 | Stereolithographic apparatus and stereolithographic method |
JP2016060071A (en) * | 2014-09-17 | 2016-04-25 | 株式会社東芝 | Stereolithographic apparatus and stereolithographic method |
US10899079B2 (en) | 2015-09-17 | 2021-01-26 | Sony Corporation | Optical shaping apparatus and method of producing shaped article |
WO2017047222A1 (en) * | 2015-09-17 | 2017-03-23 | ソニー株式会社 | Optical shaping device and method for producing shaped article |
US11020903B2 (en) | 2016-10-24 | 2021-06-01 | Concept Laser Gmbh | Apparatus for additively manufacturing of three-dimensional objects |
JP2018070995A (en) * | 2016-10-24 | 2018-05-10 | ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング | Device for addition production of three-dimensional article |
US11919231B2 (en) | 2017-03-10 | 2024-03-05 | Prellis Biologics, Inc. | Three-dimensional printed organs, devices, and matrices |
US11085018B2 (en) | 2017-03-10 | 2021-08-10 | Prellis Biologics, Inc. | Three-dimensional printed organs, devices, and matrices |
US10933579B2 (en) | 2017-03-10 | 2021-03-02 | Prellis Biologics, Inc. | Methods and systems for printing biological material |
JP2022064974A (en) * | 2017-05-12 | 2022-04-26 | ローレンス・リバモア・ナショナル・セキュリティー・エルエルシー | System and method for computed axial lithography (cal) for 3d additive manufacturing |
JP2020519504A (en) * | 2017-05-12 | 2020-07-02 | ローレンス リバモア ナショナル セキュリティー, エルエルシー | System and method for computer axial lithography (CAL) for 3D additive manufacturing |
US11370173B2 (en) | 2017-05-12 | 2022-06-28 | Lawrence Livermore National Security, Llc | System and method for computed axial lithography (CAL) for 3D additive manufacturing |
KR20190141261A (en) * | 2017-05-12 | 2019-12-23 | 로렌스 리버모어 내셔널 시큐리티, 엘엘씨 | System and method for computer axis lithography (CAL) for three-dimensional printing |
US11767514B2 (en) | 2017-05-25 | 2023-09-26 | Prellis Biologics, Inc | Three-dimensional printed organs, devices, and matrices |
WO2020028431A1 (en) * | 2018-07-31 | 2020-02-06 | Prellis Biologics, Inc. | Methods and systems for three-dimensional printing |
JP2021074900A (en) * | 2019-11-05 | 2021-05-20 | Tianma Japan株式会社 | Optical molding apparatus and molding method |
US12138863B2 (en) | 2022-03-25 | 2024-11-12 | Lawrence Livermore National Security, Llc | System and method for computed axial lithography (CAL) for 3D additive manufacturing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6597475B1 (en) | Image recording apparatus and image recording method as well as recording medium | |
EP0451681B1 (en) | Optical apparatus | |
JPH04267132A (en) | Three dimensional object-forming device | |
CN100568353C (en) | Holographic optical information recording/reproducing device and holographic optical information recording/reproducing method | |
JP2000284671A (en) | Volume holographic memory optical information recording reproducing device | |
JP2003516565A (en) | Holographic printer | |
KR101942973B1 (en) | Apparatus for recording/reconstruction of holograms | |
KR100855287B1 (en) | Image-reproducing apparatus and image-reproducing method | |
AU2640699A (en) | Method and apparatus for forming hologram | |
JP2000285457A (en) | Volume holographic memory optical information recording/reproducing device | |
JPH1074033A (en) | Image recording method and device therefor as well as image reconstructing method and device therefor | |
JP3833842B2 (en) | Volume holographic memory and optical information recording / reproducing apparatus thereof | |
JPS61116322A (en) | Three-dimensional shape forming device | |
US6870651B2 (en) | Apparatus and method for generating a dynamic image | |
JP2002049002A (en) | Laser beam machine | |
KR101306184B1 (en) | 3 dimensional display apparatus and method for displaying 3 dimensional image | |
US7129007B2 (en) | Recording medium for hologram, hologram recording apparatus and hologram recording method | |
JP2000019935A (en) | Apparatus for manufacturing holographic stereogram and its manufacture | |
JPS63139729A (en) | Forming device for stereoscopic shape | |
KR101568766B1 (en) | 3 3 3 dimensional color display apparatus and method for displaying 3 dimensional color image | |
JPH04323011A (en) | Manufacture of stamper of compound eye lens board | |
CN115071128B (en) | Fast holographic 3D copying method and system based on Fourier transform | |
JP2004045628A (en) | Solid image recorder | |
JP2722857B2 (en) | How to make a lens plate | |
KR102219835B1 (en) | Method for manufacturing a holographic optical element |