Nothing Special   »   [go: up one dir, main page]

JPS602645A - Magnetostrictive bimetal - Google Patents

Magnetostrictive bimetal

Info

Publication number
JPS602645A
JPS602645A JP58110165A JP11016583A JPS602645A JP S602645 A JPS602645 A JP S602645A JP 58110165 A JP58110165 A JP 58110165A JP 11016583 A JP11016583 A JP 11016583A JP S602645 A JPS602645 A JP S602645A
Authority
JP
Japan
Prior art keywords
magnetostrictive
weight
alloy
bimetal
magnetostriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58110165A
Other languages
Japanese (ja)
Other versions
JPH0472900B2 (en
Inventor
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58110165A priority Critical patent/JPS602645A/en
Publication of JPS602645A publication Critical patent/JPS602645A/en
Publication of JPH0472900B2 publication Critical patent/JPH0472900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials

Landscapes

  • Details Of Measuring And Other Instruments (AREA)

Abstract

PURPOSE:To obtain magnetostrictive bimetal having superior absolute stroke characteristics by providing a composition consisting of specified percentages of Co, Fe, Mn, Tb and Dy to an alloy having a positive coefft. of magnetostriction and a composition consisting of specified percentages of Co, Fe, Sm and Dy to an alloy having a negative coefft. of magnetostriction. CONSTITUTION:Magnetostrictive bimetal is composed of two kinds of alloys having positive and negative coeffts. of magnetostriction. The coefft. of magnetostriction is represented by the ratio of the quantity of strain/the strength of an applied magnetic field. A composition consisting of, by weight, 0.01-5% Co, 25-40% Fe, 1-15% Mn, 0.1-25% Tb and the balance essentially Dy is provided to said alloy having a positive coefft. of magnetostriction, and a composition consisting of, by weight, 5-40% Co, 2-35% Fe, 0.01-60% Sm and the balance essentially Dy is provided to said alloy having a negative coefft. of magnetostriction. Magnetostrictive bimetal having superior linearity, superior displacement history characteristics and stable characteristics is obtd.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は磁歪バイメタルに関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to magnetostrictive bimetals.

より詳しくは、湾曲特性、特にその絶対ストローク特性
に優れたTb−Dy−re系/ Sm−Dy−Fe系よ
り構成される磁歪バイメタルに関する。
More specifically, the present invention relates to a magnetostrictive bimetal made of Tb-Dy-re/Sm-Dy-Fe which has excellent bending properties, especially absolute stroke properties.

[発明の技術的背景とその問題点コ 近年の機械工作■二おける加工精度の向上(−は、目覚
しいものがあり、ミクロンからサブミクロンの時代に入
りつつある。電子デバイスなどC−おいては、サブミク
ロンの加工精度がめられることはぬすらしくない昨今で
あるが、メカトロニクスの時代を迎え、電子工学の分野
だけでなく機械工学の分野においても超微細加工、微小
変位制御の問題が重要に々りつつある。光情報処理、光
記録機器などの発達と相まって、微小変位制御素子はま
すますその必要性が増大する頃向C二ある。
[Technical background of the invention and its problems] Recent improvements in machining accuracy in machine work (-) have been remarkable, and we are entering an era from microns to sub-microns.In electronic devices, etc. Nowadays, it is no secret that submicron machining accuracy is required, but as we enter the era of mechatronics, issues of ultra-fine machining and minute displacement control have become important not only in the field of electronic engineering but also in the field of mechanical engineering. Coupled with the development of optical information processing, optical recording equipment, etc., the need for minute displacement control elements will continue to increase.

従来微小変位制御素子としては熱膨張型、圧電型、電歪
型、磁歪型のものが提案されているが、いずれもサブミ
クロンの精度を有し、微小変位制御素子としての優れた
特性を有しているが、その絶対ストロークに関しては、
十分満足のゆくものがないのが現状である。
Conventionally, thermal expansion type, piezoelectric type, electrostrictive type, and magnetostrictive type have been proposed as micro displacement control elements, but all of them have submicron precision and have excellent characteristics as micro displacement control elements. However, regarding the absolute stroke,
The current situation is that there is nothing that is completely satisfying.

[発明の目的] 本発明は、絶対ストローク特性に優れた磁歪バイメタル
を提供するもので、より詳しくは縁形性、変位履歴特性
【二優れ、安定した特性を示す磁歪バイメタルを提供す
るもので、以って微小変位制御素子のストローク特性を
著しるしく改善し、小型、軽量化を計ることを目的とす
る。
[Objective of the Invention] The present invention provides a magnetostrictive bimetal with excellent absolute stroke characteristics, and more specifically, provides a magnetostrictive bimetal with excellent edge formability, displacement history characteristics, and stable characteristics. Therefore, it is an object of the present invention to significantly improve the stroke characteristics of a minute displacement control element, and to reduce its size and weight.

[発明の概要] 本発明者らは、小型高性能の磁歪型微小変位素子を実現
することを目途に、バイメタル化を検討し、構成磁歪部
材およびバイメタル構造を鋭意検討した結果、磁気歪係
数(,3= dε/dH、歪量/印加磁場)の絶対値が
l X IQ=Oe刊以上でその符号が正負反対の二種
類の合金から構成され、△d(=Idl−d21 )と
印加磁場との積△d・Hが2 X 10−’以上の磁歪
バイメタルを試作し、その特性を評価したところ、従来
の微小変位素子の欠点であった絶対ストローク量が著し
るしく改善される事実を見、い出し本発明を完成するに
到った。
[Summary of the Invention] With the aim of realizing a small, high-performance magnetostrictive micro-displacement element, the present inventors investigated bimetalization, and as a result of intensive study of the constituent magnetostrictive members and bimetallic structure, the magnetostrictive coefficient ( , 3 = dε/dH, amount of strain/applied magnetic field) is composed of two types of alloys whose absolute value is l x IQ = Oe or more and whose signs are opposite, and △d (= Idl - d21 ) and the applied magnetic field. When we prototyped a magnetostrictive bimetal with a product △d・H of 2 x 10-' or more and evaluated its characteristics, we found that the absolute stroke amount, which was a drawback of conventional micro-displacement elements, was significantly improved. As a result, the present invention has been completed.

′: すなわち本発明は、dε/dH(歪量/印加磁場
)で表わされる磁気歪係数(d)の絶対値が1×10−
608−1以上でその符号が正負反対の二種類の合金か
ら構成され、△d (= 1dl−d21 )と印加磁
場との積△d、Hが2 X 10−’以上である磁歪バ
イメタル、より詳しくは、コバル) (Co) 0.0
1〜5重量係、鉄(Fe) 25−400重量% + 
マンガy (Mn) 1−15重量%、テルビウム(T
b) Q、1〜25重量%及び残部が実質的にジスプロ
シウム(Dy)よりなる磁気歪係数(d)が正の合金と
コバル) (Co) 5〜40重量%。
': That is, in the present invention, the absolute value of the magnetostriction coefficient (d) expressed as dε/dH (amount of strain/applied magnetic field) is 1×10−
608-1 or more, the magnetostrictive bimetal is composed of two types of alloys with opposite signs, and the product △d (= 1dl-d21) and the applied magnetic field, H, is 2 x 10-' or more. For details, see Cobal) (Co) 0.0
1-5 weight section, iron (Fe) 25-400% by weight +
Mangay (Mn) 1-15% by weight, Terbium (T)
b) An alloy with a positive magnetostriction coefficient (d) consisting of Q, 1 to 25% by weight and the balance substantially consisting of dysprosium (Dy) and Cobalt (Co) 5 to 40% by weight.

鉄(Fe) 2〜35重量%、サマリウム(Sm) 0
.01 ”60重量%及び残部が実質的にジスプロシウ
ム(Dy)より成る磁気歪係数(d)が負の合金とで、
構成されることを特徴とする磁歪バイメタルである○以
下本発明の詳細な説明する。まず本発明磁歪バイメタル
の主要要素である磁歪合金において、テルビウム、ディ
スプロシウム、サマリウムは希土類(ランタナイド)に
属し、鉄、ニッケル等の3d遷移金属と異なF)、4f
電子の強い軌道角運動量のため極めて大きい結晶異方性
を有し、すぐれた磁歪特性を得るための必須成分である
と同時C二すぐれた靭性を付与する合金主成分でもある
。し1カ1.ヵ、8.fヤ、つ4、アイニオ。ツウ4、
ヶ〜リウム単体、あるいはテルビウム−ディスプロシウ
ム合金、サマリウム−ディスプロシウム合金では、低温
領域では優れた磁歪特性を示すものの、室温以上の温度
領域では磁歪を示さず、満足した特性を得ることが不可
能である。
Iron (Fe) 2-35% by weight, samarium (Sm) 0
.. 01 "60% by weight and the balance is substantially composed of dysprosium (Dy) and has a negative magnetostriction coefficient (d),
The present invention will be described in detail below. First, in the magnetostrictive alloy that is the main element of the magnetostrictive bimetal of the present invention, terbium, dysprosium, and samarium belong to rare earth elements (lanthanides) and are different from 3d transition metals such as iron and nickel.
C has extremely large crystal anisotropy due to the strong orbital angular momentum of electrons, and is an essential component for obtaining excellent magnetostriction properties. At the same time, C is also the main component of the alloy that provides excellent toughness. shi1ka1. Ka, 8. fya, tsu4, ainio. Two 4,
Terbium alone, terbium-dysprosium alloy, and samarium-dysprosium alloy exhibit excellent magnetostriction properties at low temperatures, but do not exhibit magnetostriction at temperatures above room temperature, making it difficult to obtain satisfactory properties. It's impossible.

本発明ロー係る合金の主要合金(添加)元素である鉄、
コバルトおよびマンガンはテルビウムおよびディスプロ
シウム等とラーベス型金属間化合物を形成し、室温以上
の温度領域における磁歪特性を著しく向上せしめ満足し
得る特性g1至らしめるものである。
Iron, which is the main alloying (additional) element of the alloy according to the present invention,
Cobalt and manganese form a Laves type intermetallic compound with terbium, dysprosium, etc., and significantly improve magnetostriction properties in the temperature range above room temperature, resulting in satisfactory properties g1.

磁気歪係数(d)が正の合金Cユおいて、鉄、マンガン
及びコバルトの合金成分範囲をそれぞれ25重量%以上
40重量%以下の鉄、1重量%以上15重量%以下のマ
ンガン、 0.01重量%以上 5重量%以下のコバル
トと限定する理由は、鉄、マンガンともにそれぞれ25
重量%未満の鉄、1重量−未満のマンガンでは十分な磁
歪特性の向上が得られず、40重量%な超える鉄では靭
性が著しく劣下し、脆弱になり、15重量%を超えるマ
ンガンでは磁歪特性が劣下する。また、低磁場特性の改
善のために添加されるコバルトは、5重量%を超えると
磁歪特性が劣下するため上記合金成分範囲C二限定する
In the alloy C with a positive magnetostriction coefficient (d), the alloy component ranges of iron, manganese and cobalt are respectively 25% to 40% by weight of iron, 1% to 15% by weight of manganese, 0. The reason why cobalt is limited to 0.01% by weight or more and 5% by weight or less is that both iron and manganese are each 25% by weight.
Iron with less than 1% by weight and manganese with less than 1% by weight will not provide sufficient improvement in magnetostrictive properties, iron with more than 40% by weight will significantly deteriorate toughness and become brittle, and manganese with more than 15% by weight will not improve magnetostrictive properties. Characteristics deteriorate. Further, cobalt added to improve low magnetic field characteristics is limited to the above alloy component range C2 because if it exceeds 5% by weight, the magnetostrictive characteristics deteriorate.

さらCユテルビウムの合金成分範囲を0゜1重量%以上
25重i%以下と限定する理由は、テルビウムの合金化
f二よりディスプロシウムのみの場合?ユ較べ鉄、マン
ガンおよびコバルトによる特性の向上が一層高められ、
磁気歪係数(d)が正の優れた磁歪合金が実現されるわ
けであるが、0.1 重fi %未満のテルビウムでけ
磁歪特性の向上が得られず、25重量%を越えるテルビ
ウムにおいてに、かえって磁歪特性の劣下が認められる
ことから、01v景チ以上25重祁−以下の範囲に限定
した0次C磁気歪係数(d)が負の合金Cおいて、鉄及
びコバルトの合金成分範囲をそれぞれ2重量−以上35
重量係以下の鉄、5車景係以上40重量%以下のコバル
トと限定する理由は、鉄、コバルトともl二それぞれ2
重景係未満の鉄5重量−未満のコバルトでは十分な磁歪
特性の向上が得られず、35重量%を超える鉄、401
景チを超えるコバルトにおいては、磁歪特性の劣下が認
められるため上記組成範囲(二限定した。
Furthermore, what is the reason for limiting the range of alloying components of C terbium to 0°1% by weight or more and 25% by weight or less when it is only dysprosium rather than alloying f2 of terbium? The properties of iron, manganese and cobalt are further enhanced compared to
Although an excellent magnetostrictive alloy with a positive magnetostriction coefficient (d) was realized, no improvement in magnetostrictive properties could be obtained with less than 0.1% terbium, and no improvement in the magnetostrictive properties was achieved with more than 25% terbium. However, since a deterioration of the magnetostrictive properties was observed, alloy C with a negative zero-order C magnetostriction coefficient (d), which was limited to a range of 01v to 25 to 25, had alloy components of iron and cobalt. Range 2 weight each - over 35
The reason why it is limited to iron with a weight percentage of less than 5% and cobalt with a weight percentage of 5% or more and 40% by weight or less is that both iron and cobalt are 12% each.
If the iron content is less than 5% by weight, cobalt content less than 5% by weight will not provide sufficient improvement in magnetostrictive properties;
For cobalt that exceeds Keiichi, deterioration of magnetostrictive properties is recognized, so the above composition range (2) was limited.

さらにサマリウムの合金成分範囲を0.01重fJ%以
上、60重針チ以下と限定する理由は、サマリウムの合
金化によりディスプロシウムのみの場合Cユ比べ、鉄、
コバル)による特性の向上が一層高められ、磁気歪係数
(d)が負の優れた磁歪合金が実現されるわけであるが
、o、oi重tチ未満のサマリウムでは負の磁歪特性の
向上が顕著でなく、60重量%を越えるサマリウム【二
おいては、かえって磁歪特性の劣下が認められることか
ら0.01重量%以上。
Furthermore, the reason why the range of alloying components of samarium is limited to 0.01 weight fJ% or more and 60 weight needles or less is that due to the alloying of samarium, when only dysprosium is used, iron,
However, samarium with less than o and oi weights does not improve the negative magnetostrictive properties. Samarium is not noticeable and exceeds 60% by weight (in contrast, samarium is 0.01% by weight or more because deterioration of magnetostrictive properties is observed on the contrary).

60重量%以下の範囲に限定した。The content was limited to 60% by weight or less.

本発明の磁歪バイメタルは、前述のごとき正、負二種類
の磁気歪係数(d)を有する磁歪合金から構成されるわ
けであるが、近年富みC二その要求度が高まっている微
小変位素子、例えば自動焦点機構用変位素子の場合、顛
オーダの絶対ストロークがとれることが望ましいとされ
ている。
The magnetostrictive bimetal of the present invention is composed of a magnetostrictive alloy having two types of magnetostrictive coefficients (d), positive and negative, as described above. For example, in the case of a displacement element for an automatic focusing mechanism, it is said that it is desirable to be able to obtain a sequential absolute stroke.

一般Iニバイメタルの湾曲特性は次式で表わされ、ax
(変位量)=ユ!・△d−H 4χ (ここで1は板の長さく、)、 ”は板の厚み(關)で
ある。Δdlはバイメタルを構成する各々の磁歪合金の
磁気歪係数の差(1dl−d21 )であり、Hは印加
磁場(Oe)である。) 絶対ストローク(aX)として、鰭オーダ例えばSx 
= 1 mを得るため(ユは、J = 30 m 、 
i= 0.2藺の条件で、Δd −H= 2.96 X
 10””となる。
The bending characteristics of general I bimetals are expressed by the following formula, ax
(Displacement amount) = Yu!・Δd−H 4χ (where 1 is the length of the plate), ” is the thickness of the plate.Δdl is the difference in the magnetostriction coefficients of the magnetostrictive alloys that make up the bimetal (1dl−d21) and H is the applied magnetic field (Oe).) As the absolute stroke (aX), the fin order e.g. Sx
To obtain = 1 m (J = 30 m,
Under the condition of i = 0.2, Δd - H = 2.96
10"".

このように、実用上の諸条件を考慮し、本発明磁歪バイ
メタル構成部材の磁気歪係数(d)およびバイメタルの
湾曲係数(Δd、T()は規制される。
In this manner, the magnetostriction coefficient (d) of the magnetostrictive bimetal component of the present invention and the curvature coefficient (Δd, T() of the bimetal) are regulated in consideration of practical conditions.

次C二本発明の磁歪バ、イメタルの製造方法について例
示する。
Next, the method for manufacturing the magnetostrictive bar and Imetal of the present invention will be exemplified.

本発明の磁歪バイメタルは、上記組成の正、負勢々の符
号の磁気歪係数を有する合金材料を周知の方法C二よっ
て真空、不活性ガス、もしくui元ガス雰囲気中、融点
以上の温度で溶解した後、鋳造することC:より、正負
二種類の符号を有する磁歪合金の鋳造インゴットを各々
得る。
The magnetostrictive bimetal of the present invention is manufactured by preparing an alloy material having the above composition having magnetostrictive coefficients of positive and negative signs by a well-known method C2 in a vacuum, an inert gas, or a source gas atmosphere at a temperature above the melting point. After melting in step C, casting is performed to obtain cast ingots of magnetostrictive alloy having two types of signs, positive and negative.

この得られたインゴットより、適尚な寸法の板を各々切
断した後、これらの板の間にCoBDy4 。
After cutting plates of appropriate dimensions from the obtained ingot, CoBDy4 was placed between these plates.

Co4Dy7等のDyとFe、Coの共晶合金組成を有
する粉末をフィラー材C二用い、800℃〜1000℃
の間で、拡散接合を行かうことC′″−より磁歪バイメ
タルが得られる。
Using filler material C2, powder having a eutectic alloy composition of Dy, Fe, and Co such as Co4Dy7 was heated at 800°C to 1000°C.
By performing diffusion bonding between C'''-, a magnetostrictive bimetal is obtained.

このようにして得られた磁歪バイメタルは、湾曲係数(
△d、H)が2 X 10−4以上と極めて大きく、小
型にして、Hオーダの絶対ストロークを可能とし、かつ
合金のため耐疲労強度、耐衝撃性C1優れたものである
ため、特に大出力、高負荷の微小変位素子用駆動バイメ
タル■二適するものであるC[発明の実施例] 以下、本発明の磁歪バイメタルを実施例によって詳述す
る。
The magnetostrictive bimetal thus obtained has a curvature coefficient (
△d, H) is extremely large at 2 x 10-4 or more, making it possible to make an absolute stroke of H order, and because it is an alloy, it has excellent fatigue strength and impact resistance C1, so it is especially suitable for large Driving bimetal for micro-displacement element with high output and high load (2) C suitable for use [Embodiments of the invention] The magnetostrictive bimetal of the present invention will be described in detail below with reference to embodiments.

実施例I Co 1,2重8% 、 Mn 7.3重i% 、 F
e 28.1ii%。
Example I Co 1,2 weight 8%, Mn 7.3 weight i%, F
e 28.1ii%.

Tb 13重量%及び残部がDyから成る合金材料を真
空誘導溶解炉で溶解後鋳造を行ない、鋳造インゴットを
得た。
An alloy material consisting of 13% by weight of Tb and the balance being Dy was melted in a vacuum induction melting furnace and then cast to obtain a cast ingot.

次いで、この鋳造インゴットより150戸m厚×3藺巾
X30M1さの短柵状試料を切り出し、磁気歪係数(d
)正の板状磁歪部材を得た。
Next, from this cast ingot, a short fence-shaped sample of 150 mm thick x 3 mm wide x 30 M1 long was cut out, and the magnetostriction coefficient (d
) A positive plate-shaped magnetostrictive member was obtained.

なお上記短柵状試料切り出し前に、インゴットを800
℃で均質化処理することが望ましい。
In addition, before cutting out the above-mentioned short fence-shaped sample, the ingot was
It is desirable to homogenize at ℃.

上記板状磁歪部材と100μm厚X3m巾×30藺長さ
で磁気歪係数(d)負のニッケルの薄板を重ね合わせ、
その境界面H二CoBDy4金属間化合物組成を有する
粉末フィラー材を挿入後s 100Torrアルゴン圧
減圧下で800℃、2時間、拡散処理を行ない、両部材
の接合を行ない、バイメタルを得た。
The above-mentioned plate-shaped magnetostrictive member and a thin nickel plate having a negative magnetostriction coefficient (d) with a thickness of 100 μm, a width of 3 m, and a length of 30 μm are stacked,
After inserting a powder filler material having an intermetallic compound composition of H2CoBDy4 at the interface, a diffusion treatment was performed at 800° C. for 2 hours under a reduced argon pressure of 100 Torr to join the two members to obtain a bimetal.

本バイメタルを構成する両磁歪剖材の各々の磁気歪係数
(d) HlTb−Dy−Fe−Mn−Co合金がd 
1 = + 5xto Oe 、Ntがd2 = 0.
33 X 1O−60e−1であり、印加磁界H= 1
000eの下で、本磁歪バイメタルのΔd (= ld
l、−’21 ) X HO値は、5 X 10−’で
あった0 本磁歪バイメタルの変位(ストローク)特性としてn、
1000eの印加磁界においてSx (ストローク) 
= 1.35 mであり、湾曲特性は13.5 pm−
Oe−”であった○ 実施例2 Co 22.0重量% 、 Fe 9.50 M 量%
 、 Sm 49.3ifN係及び残部がDyから成る
合金材料を真空誘導溶解炉で溶解後鋳造を行ない、鋳造
インゴットを得た。
The magnetostrictive coefficient (d) of each of the magnetostrictive materials constituting this bimetal is d
1 = + 5xto Oe, Nt is d2 = 0.
33 x 1O-60e-1 and the applied magnetic field H=1
000e, Δd (= ld
The displacement (stroke) characteristic of the magnetostrictive bimetal is n,
Sx (stroke) at an applied magnetic field of 1000e
= 1.35 m and the curvature characteristic is 13.5 pm-
Example 2 Co 22.0% by weight, Fe 9.50 M%
, Sm 49.3ifN and the balance was Dy, and the alloy material was melted in a vacuum induction melting furnace and then cast to obtain a cast ingot.

次いで、この鋳造インゴットより150μm 厚X 3
mJ+巾×30龍長さの短棚状試料を切り出し、磁気歪
係数(d)負の板状磁歪部材を得た。
Next, 150 μm thick x 3 from this cast ingot
A short shelf-shaped sample of mJ+width×30 length was cut out to obtain a plate-shaped magnetostrictive member with a negative magnetostriction coefficient (d).

なお上記短柵状試料切り出し前IZインゴットな800
℃で均質化処理することが望ましい。
In addition, the IZ ingot 800 before cutting out the short fence-shaped sample mentioned above.
It is desirable to homogenize at ℃.

上記板状磁歪部材と100μm厚X3m巾×3ON長さ
で磁気歪係数f’d)正のFe−Co−U合金(Per
mendur)の薄板を重ね合わせ、その境界面にCo
B11y4金属間化合物組成を有する粉末フィラー材を
挿入後、100Torrアルゴン圧減圧下で800℃、
2時間の拡散処理を行ない5両部材の接合を行ない、バ
イメタルを得た。
Fe-Co-U alloy (Per
Co
After inserting the powder filler material having a B11y4 intermetallic compound composition, it was heated at 800°C under a reduced pressure of 100 Torr argon pressure.
A two-hour diffusion treatment was performed, and the five members were joined to obtain a bimetal.

本バイメタルを構成する両磁歪部材の各々の磁気歪係数
(d)は、Sm−Dy−Fe−Co合金がd2: 2.
5 XIQ−60e−” 、 re−Co−Vがdi 
= + 0.7 X IQ−’Oe−”であり、印加磁
界H= 1QQOeの下で、本磁歪バイメタルの△d 
(= 1dl−d21 ) x Hの値は3 X 10
−’であった。
The magnetostriction coefficient (d) of each of the magnetostrictive members constituting the present bimetal is d2:2 for the Sm-Dy-Fe-Co alloy.
5 XIQ-60e-”, re-Co-V is di
= + 0.7
(= 1dl-d21) x The value of H is 3 x 10
-' was.

不磁歪バイメタルの変位(ストローク)特性としては、
1000e印加磁界2二おいて、SX(ストローク) 
= 0.8 msであり、湾曲特性としては、3,92
m0e−1であった。
The displacement (stroke) characteristics of non-magnetostrictive bimetals are as follows:
1000e applied magnetic field 22, SX (stroke)
= 0.8 ms, and the curve characteristic is 3,92
It was m0e-1.

実施例3 CoQ、5重量% 、 Mn 6.2重量% 、 Fe
 29.0重量%。
Example 3 CoQ, 5% by weight, Mn 6.2% by weight, Fe
29.0% by weight.

Tb12.5重量%及びDYから成る合金材料を真空誘
導溶解炉で溶解後鋳造を行ない、鋳造インゴットを得た
C 次いで、この鋳造インゴットより100μm 厚×3U
巾X30+u長さの短棚状試料を切り出し、磁気歪係数
(d)正の板状磁歪部材を得た。
An alloy material consisting of 12.5% by weight of Tb and DY was melted in a vacuum induction melting furnace and then cast to obtain a cast ingot.
A short shelf-shaped sample having a width of 30+u in length was cut out to obtain a plate-shaped magnetostrictive member with a positive magnetostriction coefficient (d).

i f4 Co 21.5 %r i % + P”e
 20.3 :1:111]V二 % + Sm12−
3重fj %及び残部がDyからなる合金材料を同様i
二真空誇導溶f’!r後鋳造を行ない、鋳造インゴット
を得た0 次いで、この鋳造インゴットより100μm 厚X 3
藺巾X30*a長さの短棚状試料を切り出し、磁気歪係
数(d)負の板状磁歪部材を得た。
i f4 Co 21.5 %ri % + P”e
20.3:1:111]V2% + Sm12-
Similarly, an alloy material consisting of triple fj% and the balance Dy
Two-vacuum pride melt f'! After casting, a cast ingot was obtained. Next, the thickness of the cast ingot was 100 μm.
A short shelf-shaped sample with a length of width X30*a was cut out to obtain a plate-shaped magnetostrictive member with a negative magnetostriction coefficient (d).

なお上記短柵状試料切り出し前Cニインゴットを800
℃で均質化処理することが望せしい。
In addition, the C nine ingot before cutting out the short fence-shaped sample was 800 mm.
It is desirable to homogenize at ℃.

上He(M気歪係数(dルが正負側符号の板状磁歪部材
を重ね合わせ、その境界面にCoBTJy4金属間化合
物紹成を有する粉末フィラー材を挿入後、 1QQTo
rrアルゴン圧減圧下で800℃、2時間の拡散処理を
行ない、両部材の接合を行ない、バイメタルな得た○ 本バイメタルを構成する両磁歪部材の各々の磁気歪係数
(d)は、Tb−Dy−Fe−Mn−Co合金がdl 
= +6.2 X 10 0e、、 Sm−Dy−Fe
−Co合金がd2=−3,IX 1O−60e−1であ
り、印加磁界H=lQQOeの下で、本磁歪バイメタル
の△d eldx−d21 ) x Hの値は、9 X
 10−’であった。
After superimposing the plate-shaped magnetostrictive members with positive and negative signs on the upper He(M magnetostrictive coefficient (d) and inserting a powder filler material having CoBTJy4 intermetallic compound introduction on the interface, 1QQTo
rr Diffusion treatment was performed at 800°C for 2 hours under reduced pressure of argon, and both members were bonded to obtain a bimetallic structure. Dy-Fe-Mn-Co alloy is dl
= +6.2 X 100e, Sm-Dy-Fe
-Co alloy has d2=-3, IX 1O-60e-1, and under the applied magnetic field H=lQQOe, the value of Δd eldx-d21 ) x H of this magnetostrictive bimetal is 9
It was 10-'.

不磁歪バイメタルの変位(ストローク)特性としては、
1000e印加磁界において、aX(ストローク)=3
uであり、湾曲特性としては、30μm0e−1であっ
た。
The displacement (stroke) characteristics of non-magnetostrictive bimetals are as follows:
At 1000e applied magnetic field, aX (stroke) = 3
u, and the curvature property was 30 μm0e−1.

比較例1 磁気歪係数(d)正の前記Fe−Co−V合金と磁気歪
係数(d)負のニッケルとのクラツド材を圧延により作
製した後、3m巾×30諸長さの短棚状試料を切り出し
、磁歪バイメタルを得た。得られたバイメタルの厚さは
2.00μmであった。
Comparative Example 1 A clad material of the Fe-Co-V alloy with a positive magnetostriction coefficient (d) and nickel with a negative magnetostriction coefficient (d) was produced by rolling, and then a short shelf shape of 3 m width x 30 lengths was produced. A sample was cut out to obtain a magnetostrictive bimetal. The thickness of the obtained bimetal was 2.00 μm.

このバイメタルを構成する両磁歪部材の各々の磁気歪係
数(d)は、Fe−Co−V合金がdl = + Q、
7 X100e であり、ニッケルがd2 = −0,
33x 100e−1であり、印加磁界H= l QQ
 Oeの下で、本磁歪バイメタルの△’ (= 1dl
−d21 ) X Hの値1’tlX10−4であった
The magnetostriction coefficient (d) of each of the magnetostrictive members constituting this bimetal is dl = + Q,
7 X100e, and nickel is d2 = -0,
33x 100e-1 and the applied magnetic field H= l QQ
Under Oe, the magnetostrictive bimetal's △' (= 1dl
-d21) XH value was 1'tlX10-4.

本磁歪バイメタルの変位(ストローク)特性としては、
1000e印加磁界C二おいて、SX (ストローク)
 = 0.34 wxであり、湾曲特性としては、3μ
m0e−’であった。
The displacement (stroke) characteristics of this magnetostrictive bimetal are as follows:
1000e applied magnetic field C2, SX (stroke)
= 0.34 wx, and the curvature characteristic is 3μ
It was m0e-'.

[発明の効果] 以上の説明から明らかな通り、本発明の磁歪バイメタル
は、絶対ストローク特性に優れ、かつ線形性、変位履歴
特性に優れていると伴に、耐疲労強度、耐衝瞥性にも優
れているため、高負荷でかつ肋オーダーの絶対ストロー
クを必要とする例えば自動焦点機構用微小変位素子等と
して、その工業的価値は極めて犬である。
[Effects of the Invention] As is clear from the above explanation, the magnetostrictive bimetal of the present invention has excellent absolute stroke characteristics, excellent linearity and displacement history characteristics, and has excellent fatigue strength and impact resistance. Because of its excellent properties, its industrial value is extremely high for applications such as micro-displacement elements for automatic focusing mechanisms that require high loads and absolute strokes on the order of ribs.

代理人 弁理士 則 近 憲 佑(ほか1名)239−Agent: Patent attorney Noriyuki Chika (and 1 other person) 239-

Claims (1)

【特許請求の範囲】 (1)dε/dH(歪量/印加磁場)で表わされる磁気
歪係数(d)の符号が正負反対の二種類の合金から構成
され、かつ一方の磁気歪係数(d)が正の合金がコバル
ト(Co) 0.01 = 5 重量%、鉄(F’e)
 25〜40重量%、マンガン(Mn) 1〜15重量
%、テルビウム(Tb) Q、1〜25重量%及び残部
が実質的【−ジスプロシウム(Dy)よりなることを特
徴とする磁歪バイメタル (2)磁気歪係数(d)の符号が正負反対の二種類の合
金から構成され、磁気歪係数(d)が負の合金がコバル
ト(Co) s 〜40重量%、鉄(Fe) 2〜35
M量チ、サマリウム(8m) 0.01〜60重量%及
び残部が実質的【ニジスプロシウム(Dy)よりなるこ
とを特徴とする磁歪バイメタル (8) コバルト(Co) 0.01 = 5重量%、
鉄(Fe)25〜40重量%、マンガy (Mn) 1
−15重量%。 テルビウム(Tb) Q、1〜25重量%及び残部が実
質的g:ジスブロシウム(Dy)よりなる磁気歪係数(
d)が正の合金とコバル) (Co) 5〜40重量%
。 鉄(Fe) 2 、+ 35 重量% 、サマリウム(
Sm) 0.01〜60重量%及び残部が実質的fニジ
スプロシウム(Dy)よりなる磁気歪係数(d)が角の
合金とで構成されることを特徴とする磁歪バイメタル
[Scope of Claims] (1) The magnetostrictive coefficient (d) expressed by dε/dH (amount of strain/applied magnetic field) is composed of two types of alloys in which the signs of the magnetostrictive coefficient (d) are opposite in positive and negative, and one of the magnetostrictive coefficients (d ) is positive alloy is cobalt (Co) 0.01 = 5% by weight, iron (F'e)
Magnetostrictive bimetal (2) characterized in that it consists of 25 to 40% by weight, manganese (Mn) 1 to 15% by weight, terbium (Tb) Q, 1 to 25% by weight, and the balance substantially [-dysprosium (Dy)] It is composed of two types of alloys whose magnetostrictive coefficients (d) have opposite signs, positive and negative, and the alloys whose magnetostrictive coefficients (d) are negative are cobalt (Co) s ~ 40% by weight and iron (Fe) 2 ~ 35%.
Magnetostrictive bimetal (8) characterized in that M amount is 1, samarium (8 m) 0.01 to 60% by weight, and the remainder is substantially [dysprosium (Dy)] Cobalt (Co) 0.01 = 5% by weight,
Iron (Fe) 25-40% by weight, Mangay (Mn) 1
-15% by weight. Terbium (Tb) Q, 1 to 25% by weight and the balance being substantially g: Magnetostrictive coefficient consisting of disbrosium (Dy) (
d) positive alloy and cobal) (Co) 5 to 40% by weight
. Iron (Fe) 2, +35% by weight, samarium (
A magnetostrictive bimetal characterized in that the magnetostrictive coefficient (d) is composed of an alloy having an angle of 0.01 to 60% by weight and the remainder being substantially f-dysprosium (Dy).
JP58110165A 1983-06-21 1983-06-21 Magnetostrictive bimetal Granted JPS602645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110165A JPS602645A (en) 1983-06-21 1983-06-21 Magnetostrictive bimetal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110165A JPS602645A (en) 1983-06-21 1983-06-21 Magnetostrictive bimetal

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP27600593A Division JPH07122116B2 (en) 1993-10-08 1993-10-08 Magnetostrictive alloy
JP27600893A Division JPH07122117B2 (en) 1993-10-08 1993-10-08 Magnetostrictive alloy

Publications (2)

Publication Number Publication Date
JPS602645A true JPS602645A (en) 1985-01-08
JPH0472900B2 JPH0472900B2 (en) 1992-11-19

Family

ID=14528692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110165A Granted JPS602645A (en) 1983-06-21 1983-06-21 Magnetostrictive bimetal

Country Status (1)

Country Link
JP (1) JPS602645A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361969A2 (en) * 1988-09-29 1990-04-04 Kabushiki Kaisha Toshiba Super-magnetostrictive alloy
US5223046A (en) * 1988-09-29 1993-06-29 Kabushiki Kaisha Toshiba Super-magnetostrictive alloy
WO2008095448A1 (en) * 2007-02-07 2008-08-14 Grirem Advanced Materials Co., Ltd. A rare earth alloy, the preparing method and use thereof
JP2008206933A (en) * 2007-02-23 2008-09-11 Asami Taniguchi Sanitary product package bag
JP2008232359A (en) * 2007-03-22 2008-10-02 Namiki Precision Jewel Co Ltd Magnetostrictive gas valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492094A (en) * 1972-03-16 1974-01-09
JPS5153281A (en) * 1974-11-01 1976-05-11 Hitachi Cable SAAMOSUITSUCHI
JPS5153280A (en) * 1974-11-01 1976-05-11 Hitachi Cable KUITSUKUAKUSHONBAIMETARUSUITSUCHI
JPS5153251A (en) * 1974-11-01 1976-05-11 Hitachi Cable KADENRYUBOSHISOCHI
JPS5229977A (en) * 1975-09-01 1977-03-07 Hitachi Ltd Circuit breaker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492094A (en) * 1972-03-16 1974-01-09
JPS5153281A (en) * 1974-11-01 1976-05-11 Hitachi Cable SAAMOSUITSUCHI
JPS5153280A (en) * 1974-11-01 1976-05-11 Hitachi Cable KUITSUKUAKUSHONBAIMETARUSUITSUCHI
JPS5153251A (en) * 1974-11-01 1976-05-11 Hitachi Cable KADENRYUBOSHISOCHI
JPS5229977A (en) * 1975-09-01 1977-03-07 Hitachi Ltd Circuit breaker

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361969A2 (en) * 1988-09-29 1990-04-04 Kabushiki Kaisha Toshiba Super-magnetostrictive alloy
US5110376A (en) * 1988-09-29 1992-05-05 Kabushiki Kaisha Toshiba Super-magnetostrictive alloy
US5223046A (en) * 1988-09-29 1993-06-29 Kabushiki Kaisha Toshiba Super-magnetostrictive alloy
WO2008095448A1 (en) * 2007-02-07 2008-08-14 Grirem Advanced Materials Co., Ltd. A rare earth alloy, the preparing method and use thereof
JP2008206933A (en) * 2007-02-23 2008-09-11 Asami Taniguchi Sanitary product package bag
JP2008232359A (en) * 2007-03-22 2008-10-02 Namiki Precision Jewel Co Ltd Magnetostrictive gas valve

Also Published As

Publication number Publication date
JPH0472900B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
EP0361969B1 (en) Super-magnetostrictive alloy
JPS602645A (en) Magnetostrictive bimetal
JPH03183738A (en) Rare earth-cobalt series supermagnetostrictive alloy
JP2011003662A (en) Permanent magnet and method of manufacturing the same
JPH0630295B2 (en) permanent magnet
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPS59158574A (en) Control element for minute displacement
JPH1072637A (en) Composite magnetostrictive material and its production
US5223046A (en) Super-magnetostrictive alloy
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
CN1466232A (en) Novel rareearth super magnetostrictive material and preparation method thereof
JPH06316742A (en) Magnetostrictive alloy
JPH06316741A (en) Magnetostrictive alloy
JP4844998B2 (en) Composite material of Ni-Mn-Ga ferromagnetic shape memory alloy and plastic
JPH02156051A (en) Permanent magnet material
JPS61159710A (en) Permanent magnet
JP2689544B2 (en) Method for manufacturing giant magnetostrictive alloy and giant magnetostrictive material
JP3380575B2 (en) RB-Fe cast magnet
JP3212307B2 (en) Rare earth bonded magnet alloy
JP2023142656A (en) Magnetostrictive material and method for producing the same
JPS6133892B2 (en)
JPH08116633A (en) Bonded body of permanent magnet and member of different kind of material and bonding method
JPS63233505A (en) Rare earth magnet
JPH02173246A (en) Permanent magnet alloy and its production