Nothing Special   »   [go: up one dir, main page]

JPS6022918B2 - Method for producing an addition compound of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl-ester and phenylalanine methyl ester - Google Patents

Method for producing an addition compound of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl-ester and phenylalanine methyl ester

Info

Publication number
JPS6022918B2
JPS6022918B2 JP9183478A JP9183478A JPS6022918B2 JP S6022918 B2 JPS6022918 B2 JP S6022918B2 JP 9183478 A JP9183478 A JP 9183478A JP 9183478 A JP9183478 A JP 9183478A JP S6022918 B2 JPS6022918 B2 JP S6022918B2
Authority
JP
Japan
Prior art keywords
phenylalanine methyl
ester
ome
phe
addition compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9183478A
Other languages
Japanese (ja)
Other versions
JPS5519051A (en
Inventor
義員 磯和
宗樹 大森
馨 森
哲也 市川
悠次 野中
啓一 木原
清孝 小山
平次郎 佐藤
滋哲 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Ajinomoto Co Inc
Sagami Chemical Research Institute
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc, Sagami Chemical Research Institute, Toyo Soda Manufacturing Co Ltd filed Critical Ajinomoto Co Inc
Priority to JP9183478A priority Critical patent/JPS6022918B2/en
Publication of JPS5519051A publication Critical patent/JPS5519051A/en
Publication of JPS6022918B2 publication Critical patent/JPS6022918B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明はジベプチドェステルとフェニルアラニンメチル
ェステルとの付加化合物を製造する方法に関するもので
あり、さらに詳しくは蛋白分解酵素を用いてN−ペンジ
ルオキシカルボニル−L−ァスパラギン酸(以下Z−L
−母pと略記する)とL−フェニルアラニンメチルェス
テル(以下L−Phe−OMeと略記する)とのジベプ
チドェステルにフェニルアラニンメチルェステル(以下
Phe−OMeと略記する)の付加した化合物(以下単
に付加化合物と略記する)を製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an addition compound of dibeptide ester and phenylalanine methyl ester. Aspartic acid (hereinafter referred to as Z-L)
- A compound in which phenylalanine methyl ester (hereinafter abbreviated as Phe-OMe) is added to dibeptide ester of L-phenylalanine methyl ester (hereinafter abbreviated as L-Phe-OMe) and L-phenylalanine methyl ester (hereinafter abbreviated as Phe-OMe). The present invention relates to a method for producing a compound (hereinafter simply abbreviated as an addition compound).

パパィンやキモトリプシンの様な蛋白分解酵素が蛋白分
解(ベプチド結合の切断)の逆反応であるべプチド結合
の生成反応に関与し得ることは古くから知られている。
It has been known for a long time that proteolytic enzymes such as papain and chymotrypsin can be involved in the reaction to generate peptide bonds, which is the reverse reaction of proteolysis (cleavage of peptide bonds).

例えば氏rgmanらはパパインを用いてァニドリの合
成を行っている。またFmPnはアミノ基をペンゾィル
基等で保護したロィシン等のモノァミノカルボン酸とカ
ルボキシル基をアミド又はアニリドとして保護したロィ
シンやグリシンをパパインやキモトリプシンを用いてべ
プチド結合させ得ることを明らかにしている ぐAdv
ancesmProtein Cnemistひ.第5
巻.35頁(1749)、AcademicPress
Inc.,NewYork.N.Y)。磯和らはアミノ
基をペンジルオキシカルボニル基で保護したアミノ酸と
カルボキシル基をェステル化したアミノ酸とをパパィン
、プロリシン、スプチリシンBPN等の酵素を用いてべ
プチド合成反応を行ったことを報告している(日本化学
会第35秋期大会予稿集、482頁及び486頁(19
76)、日本化学会)。また磯和ら及び本発明者払ま、
アミノ基を保護したアスパラギン酸又はグルタミン酸と
、カルボキシル基を低級ァルコキシ基等で保護してェス
テルとした他に官能基を持たないモノアミノモノカルボ
ン酸とを蛋白分解酵素の存在下で反応させ、更に反応生
成物とこのカルポキシル基をェステル化した他に官能基
をもたないモノアミノモノカルポン酸との付加化合物を
形成させ、これを分離孫取する方法を提案した(椿膿昭
52−727y号)。
For example, Mr. Rgman et al. have synthesized Anidri using papain. Furthermore, FmPn revealed that monoaminocarboxylic acids such as leucine whose amino group is protected with a penzoyl group, etc., and leucine or glycine whose carboxyl group is protected as an amide or anilide can be peptide-bonded using papain or chymotrypsin. I'm here Adv
ancemProtein Cnemist Hi. Fifth
roll. 35 pages (1749), Academic Press
Inc. , New York. N. Y). Isowa et al. reported that a peptide synthesis reaction was carried out using enzymes such as papain, prolysin, and sptilisin BPN with an amino acid whose amino group was protected with a pendyloxycarbonyl group and an amino acid whose carboxyl group was esterified. (Proceedings of the 35th Autumn Conference of the Chemical Society of Japan, pp. 482 and 486 (19
76), Chemical Society of Japan). Also, Isowa et al. and the inventors,
Aspartic acid or glutamic acid with a protected amino group is reacted with a monoamino monocarboxylic acid having no other functional group by protecting the carboxyl group with a lower alkoxy group etc. to form an ester in the presence of a proteolytic enzyme, and then We proposed a method for separating and recovering the reaction product by forming an addition compound with monoaminomonocarboxylic acid, which has no other functional group by esterifying the carpoxyl group (Tsubaki Yusho, 52-727y). issue).

本発明者らは、これらの付加化合物のうち、Z‐L一A
spとL一Phe−OMeとを反応させて得られるジベ
プチドェステルとPhe−OMeとの付加化合物の製造
方法についてさらに詳しく検討した。特に工業的に実施
する際、原材料費に大きな影響のある酵素の使用量を低
減させるべく鋭意研究した。ところが少量の酵素を用い
て反応を行うと酵素が著しくあるいは完全に失活するこ
とを見し、出した。本発明者らは、この酵素失活現象を
究明した結果、この種の化学反応で当然必要と考えられ
る反応系の縄拝の継続が酵素活性維持に極めて有害であ
り、反応成分等を混和後、反応系を実質上静層状態に保
持すると酵素活性の低下を著しく抑制することができる
ことおよび静層状態を保持してもZ−L−AspとL−
Phe−OMeの縮合反応は進行し、しかも付加化合物
が高収率で得られることを発見して本発明を完成した。
Among these adduct compounds, the present inventors discovered that Z-L-A
The method for producing an addition compound of dibeptide ester and Phe-OMe obtained by reacting sp with L-Phe-OMe was studied in more detail. In particular, we conducted intensive research to reduce the amount of enzymes used, which has a large impact on raw material costs when implemented industrially. However, he discovered that when a small amount of enzyme was used in the reaction, the enzyme was significantly or completely inactivated. As a result of investigating this enzyme deactivation phenomenon, the present inventors found that the continuation of the reaction system, which is naturally necessary in this type of chemical reaction, is extremely harmful to maintaining enzyme activity. , when the reaction system is maintained in a substantially static phase state, the decrease in enzyme activity can be significantly suppressed, and even if the static phase state is maintained, Z-L-Asp and L-
The present invention was completed by discovering that the condensation reaction of Phe-OMe progresses and that an addition compound can be obtained in high yield.

即ち、本発明はZ−AspとPhe−OMeを金属プロ
テアーゼの存在下に水性媒体中で、反応系を実質上瀞層
状態に保持して反応させて、Z−船pとPhe−OMe
からなるジベプチドェステルを生成させ、さらにこのジ
ベプチドエステルとPhe一OMeとの付加化合物を形
成させることを特徴とするNーベンジルオキシカルポニ
ル−Lーアス/ぐルチルーL−フエニルアラニンメチル
エステルとPhe−OMeとの付加化合物の製造方法を
提供するものである。
That is, in the present invention, Z-Asp and Phe-OMe are reacted in an aqueous medium in the presence of a metalloprotease while the reaction system is maintained in a substantially cellar state, and Z-Asp and Phe-OMe are reacted.
N-benzyloxycarponyl-L-as/glucyl-L-phenylalanine methyl ester, which is characterized by producing a dibeptide ester consisting of A method for producing an addition compound with Phe-OMe is provided.

本発明の一方の出発物質であるZ−Aspはアミノ基を
ペンジルオキシカルボニル基で保護したL−又はDLー
アスパラギン酸である。
Z-Asp, one of the starting materials of the present invention, is L- or DL-aspartic acid in which the amino group is protected with a penzyloxycarbonyl group.

DL体を用いるとそのD体は反応せず反応媒体中に残る
。本発明の他方の出発物質であるPhe−OMeはカル
ボキシル基をメチルェステルとしたL−又はDL−フェ
ニルアラニンである。DL体を用いる場合、そのD体は
ジベプチドェステル中には入らないが、L体同様に生成
したジベプチドェステルと付加化合物を形成することが
できる。従ってDL体を使用するとジベプチドェステル
生成によって溶液中のL−Phe−OMeが消費され、
ジベプチドェステルとの付加反応には、より○一体に富
むPhe一OMeが関与することになる。
When the DL form is used, the D form does not react and remains in the reaction medium. Phe-OMe, the other starting material of the present invention, is L- or DL-phenylalanine in which the carboxyl group is a methyl ester. When the DL form is used, the D form does not enter the dibeptide ester, but can form an adduct with the dibeptide ester produced similarly to the L form. Therefore, when the DL form is used, L-Phe-OMe in the solution is consumed by dibeptide ester production,
The addition reaction with dibeptide ester involves Phe-OMe, which is more ○-rich.

この場合、後述する様にLLージベプチドェステルとL
−Phe一OMeとの付加化合物と、LL−ジベプチド
ェステルとD−Phe一OMeとの付加化合物の間には
水に対する溶解度に差があり、D−Phe−OMeとの
付加化合物が優先的に析出するので、得られる付加化合
物は○一Phe−OMeとの間 5のものがほとんど又
は大部分となる。本発明の両出発物質はそれぞれ遊離の
形で用いてもよいし、水に可溶な塩の形で用いてもよい
In this case, as described below, LL-dibeptidoester and L
There is a difference in solubility in water between the addition compound with -Phe-OMe and the addition compound with LL-dibeptide ester and D-Phe-OMe, and the addition compound with D-Phe-OMe is preferential. Therefore, most or most of the resulting adducts are those between ○1 and Phe-OMe. Both starting materials of the invention may be used in their respective free form or in the form of water-soluble salts.

従って本明細書では両出発物質についての記載は実施例
および特記ある場合を除き、それぞれの水ZOに可溶な
塩を含むものである。本発明の方法の両出発物質の使用
濃度には格別の限定はないが、本発明の方法が本質的に
生成物を析出させることに依存するものであるので、こ
の濃度は比較的高い方が望ましい。
Therefore, in this specification, descriptions of both starting materials include their respective salts soluble in water ZO, except in Examples and unless otherwise specified. There is no particular limitation on the concentration of both starting materials used in the process of the invention, but since the process of the invention essentially relies on precipitating the product, this concentration should be relatively high. desirable.

しかし生成物Zの付加化合物は水に対する溶解度が小さ
いので(Z一L一Asp−L一Phe一〇MeとL一P
he一OMeとの付加化合物の場合20℃での溶解度0
.3夕/100?水程度、またD−Phe−OMeとの
付加化合物の場合20午0で0.2夕/100タ水程度
)可成4・2さし・濃度でも実施が可能である。具体的
には約0.001モル/そないし7モル/そ程度好まし
くは0.1モル/そないし4モル/そである。この雨成
分の使用比率も限定的でない。
However, since the addition compounds of product Z have low solubility in water (Z1L1Asp-L1Phe10Me and L1P
In case of addition compound with he-OMe, solubility at 20°C is 0.
.. 3 evenings/100? It can be carried out at a concentration of approximately 4.2 μm/100 μm of water (in the case of an addition compound with D-Phe-OMe). Specifically, it is about 0.001 mol/so to 7 mol/so, preferably 0.1 mol/so to 4 mol/so. The usage ratio of this rain component is also not limited.

しかし本発明の方法が結局はZ一L一Aspl分子とP
he2−OMe2分子とを結合させることにあるので、
この両原料はZ−L−Aspに対するL−Phe一OM
e又はDL一Phe−OMeの基準で化学量論上1:2
のモル比で、実際上は100:1乃至1:100好まし
くは5:1乃至1:5、最も好ましくは2:13乃至1
:4のモル比で用いるものである。本発明の反応は水性
媒体中、使用する蛋白分解酵素が酵素活性を示す舟条件
のもとで反応させるものである。
However, the method of the present invention ultimately yields Z-L-Aspl molecules and P
Since the purpose is to combine he2-OMe2 molecules,
Both raw materials are L-Phe-OM for Z-L-Asp.
stoichiometrically 1:2 on the basis of e or DL-Phe-OMe
In practice, the molar ratio is from 100:1 to 1:100, preferably from 5:1 to 1:5, most preferably from 2:13 to 1.
:4 molar ratio. The reaction of the present invention is carried out in an aqueous medium under conditions in which the protease used exhibits enzymatic activity.

水性媒体としては通常水溶液を使用する。As the aqueous medium, an aqueous solution is usually used.

その3際水に可溶の有機溶剤を併用してもよい。本発明
の方法で用いる触媒である酵素は活性中心に金属イオン
を有する金属プロテアーゼである。
A water-soluble organic solvent may be used in combination. The enzyme that is the catalyst used in the method of the present invention is a metalloprotease having a metal ion in its active center.

その例としては微生物起源のもの、例えば放線菌起源の
中性プロテアーゼ、プロリシン、サーモライシン、コラ
ゲナーゼ、クロタルスアストロックスプロテアーゼ等を
挙げることができる。粗製の酵素例えばサーモアーゼ(
商標)なども使用できる。その際爽雑するェステラーゼ
等の作用を抑えるため、ポテトインヒビターなどの阻害
剤を併用することができる。本発明の方法ではサーモラ
ィシンおよびサーモアーゼ(商標)が最も好ましい。本
発明の方法で使用する酵素の量は原料Z一L−$plモ
ルに対して酵素に含まれる蛋白質に換算して30ないし
3,000雌、好ましくは60なし、し2,500の9
である。
Examples include those of microbial origin, such as neutral protease of actinomycete origin, prolysin, thermolysin, collagenase, and Crotalus astrox protease. Crude enzymes such as thermoase (
Trademarks) can also be used. At this time, an inhibitor such as potato inhibitor can be used in combination to suppress the action of esterase, etc., which is harmful. Thermolysin and Thermoase™ are most preferred in the method of the invention. The amount of enzyme used in the method of the present invention is 30 to 3,000, preferably 60 to 9,000 in terms of protein contained in the enzyme per 1 L-$pl mole of raw material.
It is.

本発明で使用する金属プロテアーゼが酵素活性を示すp
H範囲はpH約4なし、し約9である。
The metalloprotease used in the present invention exhibits enzymatic activity.
The pH range is from about pH 4 to about 9.

一方本発明のジベプチドェステルとPhe−OMeとの
付加化合物形成反応もpH依存性があり、結局本発明の
方法は餌約4なし、し約8、最も好ましくは舟約6なし
、し約7で行うのが望ましい。本発明の方法では副反応
としてPhe−OMeの加水分解反応が起り得る。この
副反応はpHの低い方が著しくない。前述した様に出発
原料であるZ−船pおよびPhe−OMeは遊離型でも
塩でもよいが、この両成分を水性媒体中に溶解したとき
このpH条件に調整する必要がある。
On the other hand, the reaction of the present invention to form an adduct between dibeptide ester and Phe-OMe is also pH-dependent, and as a result, the method of the present invention can be carried out without baits of about 4 to about 8, most preferably without baits of about 6 to about It is preferable to do this at 7. In the method of the present invention, a hydrolysis reaction of Phe-OMe may occur as a side reaction. This side reaction is less noticeable at lower pH. As mentioned above, the starting materials Z-Fune p and Phe-OMe may be in free form or as salts, but when these two components are dissolved in an aqueous medium, it is necessary to adjust the pH conditions.

餌調節剤としては塩酸、硫酸、酢酸の様な慣用の無機酸
又は有機酸及び水酸化ナトリウム、水酸化カリウムの様
な水酸化アルカリ、炭酸ナトリウム、炭酸水素ナトリウ
ム、炭酸カリウム、炭酸水素カリウムの様なアルカリ炭
酸塩、アンモニア、トリメチルアミン、トリェチルアミ
ン、エタノールアミンの様な有機又は無機のアミン等の
慣用の無機又は有機の塩基を用いることができる。遊離
のZ一Asp又はPhe−OMeもこ0の目的で酸又は
塩基として使用することができる。また適当な緩衝剤を
使用してもよい。本発明の方法は温度10℃乃至90o
o、酵素活性を維持する観点から好ましくは20q0乃
至50ooで行うものである。
As feed conditioners, conventional inorganic or organic acids such as hydrochloric acid, sulfuric acid, acetic acid, alkali hydroxides such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, etc. Conventional inorganic or organic bases can be used, such as alkali carbonates, ammonia, organic or inorganic amines such as trimethylamine, triethylamine, ethanolamine. Free Z-Asp or Phe-OMe can also be used as an acid or base for this purpose. A suitable buffer may also be used. The method of the present invention is performed at a temperature of 10°C to 90°C.
o, preferably from 20q0 to 50oo from the viewpoint of maintaining enzyme activity.

ク 本発明の方法の反応時間は反応温度および酵素の使
用量によって変るので一義的に限定することはできない
が、通常10時間ないし250時間である。
H. The reaction time of the method of the present invention varies depending on the reaction temperature and the amount of enzyme used, so it cannot be specifically limited, but it is usually 10 hours to 250 hours.

本発明では反応系は、出発原料および酵素等を0混和後
反応終結まで実質上静層状態に保たれる。
In the present invention, the reaction system is maintained in a substantially static state after the starting materials, enzymes, etc. are completely mixed until the end of the reaction.

反応の途中で短時間多少の蝿梓をすることは許される。
本発明の方法では付加化合物は微細な針状あるいは柱状
結晶として析出する。
It is permissible to have some buzzing for a short period of time during the reaction.
In the method of the present invention, the adduct is precipitated as fine needle-like or columnar crystals.

静暦反応のため系全体に結晶が析出し、原料濃度が高い
ときは反応の終結時には系全体が固化した状態となる。
Because of the static reaction, crystals precipitate throughout the system, and when the raw material concentration is high, the entire system becomes solidified at the end of the reaction.

得られたスラリーは引続き固体が得られたときは破砕し
てスラリー化したのち固液分離してZ−L−Asp−L
一Phe−OMeとPhe−OMeとの付加化合物を固
体として採取することができる。得られた付加化合物は
破砕後、あるいはそのま)酸水溶液と混和し分解してZ
−L−粕p−Phe−OMeを固体成分とするスラリ−
にすることができる。本発明の方法によれば、少し、酵
素の使用量で極めて収率よくZ−L−松p‐L−Phe
−OMeとPhe−OMeとの付加化合物を製造するこ
とができる。
If a solid is obtained, the resulting slurry is crushed to form a slurry, followed by solid-liquid separation to form Z-L-Asp-L.
The addition compound of Phe-OMe and Phe-OMe can be collected as a solid. The obtained adduct is mixed with an acid aqueous solution (after crushing or as it is) and decomposed into Z
-Slurry containing L-lees p-Phe-OMe as a solid component
It can be done. According to the method of the present invention, Z-L-pine p-L-Phe can be produced in extremely high yield with a small amount of enzyme used.
-OMe and Phe-OMe addition compounds can be produced.

すなわち、酵素の失活を抑制することができるので、蝿
群を続けながら反応を行う場合に比べて反応の終綾時で
の収率が10%から20%高い。したがって酵素コスト
を低減させることができる。本発明の方法で原料として
DL体のZ−Aspを用いると○体は反応せず水性媒体
中に残るので、これより○体を回収すれば、Z−Asp
の光学分割を同時に行うことができる。また、同機にD
L体のPhe−OMeを用いるとジベプチドェステルと
D−Phe−OMeとの付加化合物が優先的に得られる
ので、この付加化合物を酸分解してD一Phe−OMe
を回収することにより、Phe−OMeの光学分割を同
時に行うことができる。本発明の方法で得られたZ−L
−船p−L−Phe−OMeとPhe−OMeとの付加
化合物は、鉱酸等と接触させると容易にZ‐L−船p−
L−Phe−OMeとPhe−OMeの塩に分解できる
That is, since deactivation of the enzyme can be suppressed, the yield at the end of the reaction is 10% to 20% higher than when the reaction is carried out while the flies are being fed continuously. Therefore, enzyme costs can be reduced. When the DL form of Z-Asp is used as a raw material in the method of the present invention, the ○ form does not react and remains in the aqueous medium, so if the ○ form is recovered from this, Z-Asp
optical separation can be performed simultaneously. Also, there was a D
When L-form Phe-OMe is used, an adduct of dibeptide ester and D-Phe-OMe is preferentially obtained, so this adduct is decomposed with acid to form D-Phe-OMe.
By collecting Phe-OMe, optical resolution of Phe-OMe can be performed simultaneously. Z-L obtained by the method of the present invention
The addition compound of -shipp-L-Phe-OMe and Phe-OMe easily becomes Z-L-shipp- when brought into contact with mineral acid etc.
It can be decomposed into L-Phe-OMe and Phe-OMe salts.

Z−L−松p−L−Phe−OMeは通常の方法、たと
えば水素化分解等で保護基であるN−ペンジルオキシカ
ルボニル基を除去することによって低カロリー甘味剤と
して期待されているL−アスパルチルーLーフェニルア
ラニンメチルェステルにすることができる。以下本発明
を実施例にて更に詳細に説明する。
Z-L-pine p-L-Phe-OMe is a L-Phe-OMe that is expected to be a low-calorie sweetener by removing the protecting group N-penzyloxycarbonyl group by conventional methods such as hydrogenolysis. It can be converted into aspartyl-L-phenylalanine methyl ester. The present invention will be explained in more detail below with reference to Examples.

実施例 1Z−L一ASp53.45夕(0.2モル)
、DL−Phe一OMe・HCI161.76夕(0.
75モル)および水酸化ナ 4トリウム水溶液500の
【(NaoH約0.75モル)を1その反応器に仕込み
pH6.7とした。
Example 1Z-L-ASp53.45 (0.2 mol)
, DL-Phe-OMe・HCI161.76 evening (0.
75 mol) and 500 ml of an aqueous sodium hydroxide solution (about 0.75 mol of NaoH) were charged into the reactor to adjust the pH to 6.7.

これにサーモアーゼ(商標、大和化成株式会社製、蛋白
含有量:15%、以下同じ)1夕および酢酸カルシウム
・1水塩0.雛夕を加えて混和し25℃で10独特間静
直して反応を行った。固化した反応混合物を破砕し、グ
ラスフィルターを用いて吸引炉適して湿結晶を得た。こ
のものの高速液体クロマトグラフ分析か夕 らZ−L一
ASp−L−Phe−〇MeとPhe−〇Meとの付加
化合物の収率は93.3%であった。この湿結晶がZ−
L−Asp−L−Phe−OMeとD−Phe−OMe
との1:1付加化合物から成ることを以下のことから確
認した。0 この緑結晶を水でよく洗った後、酢酸エチ
ル一nーヘキサン混合液溶媒から再結晶して得た物の物
性及び元素分析結果は融点:128〜133qC 〔Q〕客:−6.5(C=1、メタノール)タ 元素分
析値C32日37N309としての計算値(%)実測値
(%)C 63.24
63.35日 6.13
6.11O N 6.97
7.02赤外吸収スペクトル及び核
磁気共鳴スペクトルは袴願昭52−727計餅こ添付さ
れたZ−L−ふp−L−Phe−OMeとL−Phe−
OMeとの1:1付加化合物のそれらと実質的に一致し
た。
To this was added 1 night of Thermoase (trademark, manufactured by Daiwa Kasei Co., Ltd., protein content: 15%, same hereinafter) and 0.5 hour of calcium acetate monohydrate. The mixture was stirred with the addition of hinayu and allowed to stand still for 10 minutes at 25°C to carry out the reaction. The solidified reaction mixture was crushed and placed in a suction furnace using a glass filter to obtain wet crystals. High performance liquid chromatography analysis of this product revealed that the yield of the addition compound of Z-L-ASp-L-Phe-Me and Phe-Me was 93.3%. This wet crystal is Z-
L-Asp-L-Phe-OMe and D-Phe-OMe
It was confirmed from the following that it consisted of a 1:1 addition compound with. 0 After thoroughly washing this green crystal with water, the physical properties and elemental analysis results of the product obtained by recrystallizing from a mixed solvent of ethyl acetate and hexane are as follows: Melting point: 128-133qC [Q] Customer: -6.5 ( C = 1, methanol) Elemental analysis value C32 Days 37N309 Calculated value (%) Actual value (%) C 63.24
63.35th 6.13
6.11O N 6.97
7.02 Infrared absorption spectrum and nuclear magnetic resonance spectrum are Z-L-Fup-L-Phe-OMe and L-Phe-
virtually identical to those of the 1:1 addition compound with OMe.

即ち赤外吸収スペクトルについては3,260肌−1・
3,000〜3,200弧‐1・1,720肌‐1・1
,660伽‐1・1,630地‐1・1,540肌‐1
・1,430伽‐1・1,450弧‐1・1,390伽
‐1・1,220〜1,290地‐1、1,050仇‐
1、?40弧‐1及び695伽‐1に特徴があり、核磁
気共鳴スペクトルについては6値で2.75p岬、3.
02鞘肌、3.61脚肌、3.7P血、4.4〜4.8
P側、5.0或風、5.8松風及び7.3岬こ特徴があ
った。
In other words, the infrared absorption spectrum is 3,260 skin-1.
3,000-3,200 arc-1・1,720 skin-1・1
,660 佽-1 ・1,630 地-1 ・1,540 skin-1
・1,430 佽-1.1,450 甽-1.1,390 伽-1.1,220-1,290 地-1, 1,050 竇-
1.? There are characteristics in 40 arc-1 and 695 ka-1, and the nuclear magnetic resonance spectrum has 2.75p cape and 3.
02 sheath skin, 3.61 leg skin, 3.7P blood, 4.4-4.8
On the P side, there were characteristics of 5.0 Orukaze, 5.8 Matsukaze, and 7.3 Misakiko.

この結晶を塩酸水溶液と混和し、スラリーにしてから炉
過分離した。得られたケークをよく水で洗ってから乾燥
したものは〔Q〕客:−14‐3(C=1 メタノール
)で赤外吸収スペクトル及び核磁気共鳴スペクトルは標
品Z−L‐笹p−L−Phe−OMeと一致した。
The crystals were mixed with an aqueous hydrochloric acid solution to form a slurry, and then separated in a furnace. The obtained cake was thoroughly washed with water and then dried [Q] Customer: -14-3 (C=1 methanol), and the infrared absorption spectrum and nuclear magnetic resonance spectrum were standard Z-L-Sasap- It was consistent with L-Phe-OMe.

一方炉液は炭素水素ナトリウムでアルカリ性にして、ジ
クロロメタンで抽出した。ジクロルメタン層は乾燥後ジ
クロロメタンを蒸発させた。
Meanwhile, the furnace liquid was made alkaline with sodium bicarbonate and extracted with dichloromethane. After drying the dichloromethane layer, dichloromethane was evaporated.

残さにメタノールを加えて塩化水素ガスを吹き込んだ。
次に濃縮後エーテルを加えて針状結晶を得た。このもの
は 〔Q〕客:−15.8(C=1 メタノール)で赤外吸
収スペクトル及び核磁気共鳴スペクトルは標品D−Ph
e−OMe・HCIと一致した。
Methanol was added to the residue and hydrogen chloride gas was blown into it.
Next, after concentration, ether was added to obtain needle-shaped crystals. This is [Q] customer: -15.8 (C=1 methanol) and the infrared absorption spectrum and nuclear magnetic resonance spectrum are standard D-Ph
It was consistent with e-OMe・HCI.

比較例 1反応中燈梓を継続したほかは実施例1と全く
同様にした。
Comparative Example 1 The procedure was exactly the same as in Example 1 except that Toazusa was continued during the reaction.

付加化合物の収率は72.8%であった。実施例 2Z
一L一ASp53.45夕(0.2モル)DL一Phe
一OMe・HCI140.19夕(0.65モル)およ
び水酸化ナトリウム水溶液500の上(NaoH約0.
65モル)を1その反応器に仕込みpH6.6とした。
これにサーモアーゼ(商標)0.7夕および酢酸カルシ
ウム・1水塩0.62夕を加えて混和し2500で14
0時間静遣して反応を行った。後処理は実施例1と同様
にして行い付加化合物を得た。付加化合物の収率は86
.4%であった。比較例 2 反応中縄梓を継続したほかは実施例2と全く同様にした
The yield of the addition compound was 72.8%. Example 2Z
1L-ASp53.45 (0.2 mol) DL-Phe
140.19 mol of OMe.HCI (0.65 mol) and 500 ml of aqueous sodium hydroxide solution (approximately 0.1 mol of NaOH).
65 mol) was charged into the reactor to adjust the pH to 6.6.
To this, add 0.7 liters of Thermoase (trademark) and 0.62 liters of calcium acetate monohydrate, mix and mix at 2500 ml.
The reaction was allowed to proceed for 0 hours. Post-treatment was carried out in the same manner as in Example 1 to obtain an addition compound. The yield of the addition compound is 86
.. It was 4%. Comparative Example 2 The same procedure as in Example 2 was carried out except that the rope was continued during the reaction.

付加化合物の収率は74.0%であった。実施例 3反
応を2000で20餌時間行うほかは実施例2と全く同
様にした。付加化合物の収率は92.0%であった。比
較例 3反応中櫨拝を継続したほかは実施例3と全く同
様にした。
The yield of the addition compound was 74.0%. Example 3 The reaction was carried out in the same manner as in Example 2, except that the reaction was carried out at 2000 ml for 20 feeding hours. The yield of the addition compound was 92.0%. Comparative Example 3 The procedure was exactly the same as in Example 3, except that the bowing was continued during the reaction.

付加化合物の収率は78.5%であった。実施例 4水
酸化ナトリウム水溶液、サモアーゼ(商標)および酢酸
カルシウムの使用量をそれぞれ300の‘(NaoH約
0.65モル)、0.5夕および0.44夕とし反応時
間を22餌時間としたほかは実施例3と同機にした。付
加化合物の収率は92.7%であった。比較例 4反応
中鷹拝を継続したほかは実施例4と全く同機にした。
The yield of the addition compound was 78.5%. Example 4 The amounts of sodium hydroxide aqueous solution, Samoase (trademark) and calcium acetate used were 300' (approximately 0.65 mol of NaoH), 0.5 and 0.44 hours, respectively, and the reaction time was 22 feeding hours. The other parts were the same as those in Example 3. The yield of the addition compound was 92.7%. Comparative Example 4 The aircraft was exactly the same as Example 4, except that the hawk worship was continued during the reaction.

付加化合物の収率は65.7%であった。実施例 5Z
−L一Asplo.69夕(40ミリモル)、DL一P
he−OMe・HC128.04夕(130ミリモル)
および水酸化ナトリウム水溶液100の‘(NaoH
約130ミリモル)を内容積200の‘の反応器に仕込
みPH6.6 とした。これにサーモライシン32雌(
蛋白含有量:65%)および酢酸カルシウム・1水塩0
.12夕を加えて混和し30℃で20餌時間静直し反応
を行った。引続き実施例1と同機にして後処理を行い付
加化合物を得た。付加化合物の収率は82.5%であっ
た。比較例 5反応中燈梓を継続したほかは実施例5と
全く同様にした。
The yield of the addition compound was 65.7%. Example 5Z
-L-Asplo. 69 Yen (40 mmol), DL-P
he-OMe・HC128.04 (130 mmol)
and sodium hydroxide aqueous solution 100' (NaoH
About 130 mmol) was charged into a reactor with an internal volume of 200 mm and the pH was adjusted to 6.6. Add to this Thermolysin 32 female (
Protein content: 65%) and calcium acetate monohydrate 0
.. After adding 12 hours of water and mixing, the reaction was allowed to settle at 30°C for 20 hours. Subsequently, post-treatment was carried out in the same machine as in Example 1 to obtain an additional compound. The yield of the addition compound was 82.5%. Comparative Example 5 The procedure was exactly the same as in Example 5 except that Toazusa was continued during the reaction.

付加化合物の収率は71.0%であった。実施例 6Z
一L−Asplo.69夕(40ミリモル)、L−Ph
e−OMe・HC128.04夕(130ミリモル)お
よび水酸化ナトリウム水溶液60の【(NaoH約13
0ミリモル)を内容積200の‘の反応器に仕込みpH
6.4とした。これにサモアーゼ(商標)60爪9およ
び酢酸カルシウム・1水塩53の9を加えて混和し27
℃で188時間静遣して反応を行った。引続き実施例1
と同様にして後処理を行い付加化合物を得た。収率は9
3.0%であった。
The yield of the addition compound was 71.0%. Example 6Z
-L-Asplo. 69 (40 mmol), L-Ph
e-OMe.HC128.04 (130 mmol) and sodium hydroxide aqueous solution 60 [(NaoH about 13
0 mmol) into a reactor with an internal volume of 200 mm and pH
It was set at 6.4. Add Samoase (trademark) 60 nail 9 and calcium acetate monohydrate 53 9 to this and mix 27
The reaction was allowed to stand at ℃ for 188 hours. Continued Example 1
Post-treatment was carried out in the same manner as above to obtain an adduct. Yield is 9
It was 3.0%.

比較例 6 反応中胸粋を継続したほかは実施例6と全く同機にした
Comparative Example 6 The same machine as in Example 6 was used except that chest stimulation was continued during the reaction.

Claims (1)

【特許請求の範囲】 1 N−ベンジルオキシカルボニル−アスパラギン酸と
フエニルアラニンメチルエステルを金属ブロテアーゼの
存在下に水性媒体中で反応系を実質上静置状態に保持し
て反応させて、N−ベンジルオキシカルボニル−アスパ
ラギン酸とフエニルアラニンメチルエステルとのジペプ
チドエステルを生成させ、さらにこのジペプチドエステ
ルとフエニルアラニンメチルエステルとの付加化合物を
形成させることを特徴とするN−ベンジルオキシカルボ
ニル−L−アスパルチル−L−フエニルアラニンメチル
エステルとフエニルアラニンメチルエステルとの付加化
合物の製造方法。 2 N−ベンジルオキシカルボニル−アスパラギン酸1
モルに対して金属ブロテアーゼを酵素蛋白として30な
いし3,000mg用いる特許請求の範囲第1項記載の
製造方法。 3 水性媒体が水溶液である特許請求の範囲第1項又は
第2項記載の製造方法。 4 反応をpH6ないし7で行う特許請求の範囲第1項
から第3項までのいずれか1項記載の製造方法。 5 L体又はDL体のN−ベンジルオキシカルボニル−
アスパラギン酸およびL体のフエニルアラニンメチルエ
ステルを用いてLL体のジペプチドエステルとL体のフ
エニルアラニンメチルエステルとの付加化合物を形成さ
せる特許請求の範囲第1項から第4項までのいずれか1
項記載の製造方法。 6 L体又はDL体のN−ベンジルオキシカルボニル−
アスパラギン酸およびDL体のフエニルアラニンメチル
エステルを用いてLL体のジペプチドエステルとD体又
はD体に富むフエニルアラニンメチルエステルとの付加
化合物を形成させる特許請求の範囲第1項から第4項ま
でのいずれか1項記載の製造方法。
[Claims] 1 N-benzyloxycarbonyl-aspartic acid and phenylalanine methyl ester are reacted in an aqueous medium in the presence of a metalloprotease while keeping the reaction system substantially stationary to obtain N- N-benzyloxycarbonyl-L-, which is characterized by producing a dipeptide ester of benzyloxycarbonyl-aspartic acid and phenylalanine methyl ester, and further forming an addition compound of this dipeptide ester and phenylalanine methyl ester. A method for producing an addition compound of aspartyl-L-phenylalanine methyl ester and phenylalanine methyl ester. 2 N-benzyloxycarbonyl-aspartic acid 1
2. The production method according to claim 1, wherein 30 to 3,000 mg of metalloprotease is used as enzyme protein per mole. 3. The manufacturing method according to claim 1 or 2, wherein the aqueous medium is an aqueous solution. 4. The manufacturing method according to any one of claims 1 to 3, wherein the reaction is carried out at a pH of 6 to 7. 5 L-form or DL-form N-benzyloxycarbonyl-
Any one of claims 1 to 4, in which aspartic acid and L-form phenylalanine methyl ester are used to form an addition compound of LL-form dipeptide ester and L-form phenylalanine methyl ester. 1
Manufacturing method described in section. 6 L- or DL-form N-benzyloxycarbonyl-
Claims 1 to 4 in which aspartic acid and DL-form phenylalanine methyl ester are used to form an addition compound of LL-form dipeptide ester and D-form or D-rich phenylalanine methyl ester. The manufacturing method according to any one of the above.
JP9183478A 1978-07-27 1978-07-27 Method for producing an addition compound of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl-ester and phenylalanine methyl ester Expired JPS6022918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9183478A JPS6022918B2 (en) 1978-07-27 1978-07-27 Method for producing an addition compound of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl-ester and phenylalanine methyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9183478A JPS6022918B2 (en) 1978-07-27 1978-07-27 Method for producing an addition compound of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl-ester and phenylalanine methyl ester

Publications (2)

Publication Number Publication Date
JPS5519051A JPS5519051A (en) 1980-02-09
JPS6022918B2 true JPS6022918B2 (en) 1985-06-04

Family

ID=14037616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9183478A Expired JPS6022918B2 (en) 1978-07-27 1978-07-27 Method for producing an addition compound of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl-ester and phenylalanine methyl ester

Country Status (1)

Country Link
JP (1) JPS6022918B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203292A1 (en) * 1981-02-02 1982-09-16 G.D. Searle & Co., 60076 Skokie, Ill. METHOD FOR PRODUCING AMINO PROTECTED L-ASPARTYL-L-PHENYLALANINE ALKYL ESTERS
JPS58177952A (en) * 1982-04-12 1983-10-18 Ajinomoto Co Inc Crystallization of l-alpha-aspartyl-l-phenylalanine methyl ester
JPS5928493A (en) * 1982-08-06 1984-02-15 Toyo Soda Mfg Co Ltd Preparation of alkyl ester of aspartylphenylalanine

Also Published As

Publication number Publication date
JPS5519051A (en) 1980-02-09

Similar Documents

Publication Publication Date Title
US4165311A (en) Addition compound of dipeptide derivative and amino acid derivative
EP0127411A2 (en) Method of preparing alpha-l-aspartyl-l-phenylalanine methyl ester and its hydrochloride
EP0149594A2 (en) Enzymatic coupling of n-formyl amino acids and/or peptide residues
US4521514A (en) Process for producing an addition compound of a dipeptide ester and an amino acid ester
JPH07636B2 (en) Process for producing N-formyl-α-aspartyl phenylalanine
KR920002337B1 (en) Process for preparing alpha-l-aspartyl-l-phenylalanine methylester of hydrochloride
JPS62108900A (en) Production of alpha-l-aspartyl-l-phenylalanine hydrochlorideand alpha-l-aspartyl-l-phenylalanine methyl ester
JPS6022918B2 (en) Method for producing an addition compound of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl-ester and phenylalanine methyl ester
BE863245A (en) NEW ADDITIONAL COMPOUNDS OF A DIPEPTIDE DERIVATIVE AND AN AMINO-ACID DERIVATIVE, AND THEIR PREPARATION AND DECOMPOSITION PROCESS
KR890005064B1 (en) Process for the preparation of alpha-l-aspartyl-l-phenylalanine methylester
FR2547816A1 (en) PROCESS FOR THE SYNTHESIS OF ASPARTAME
JP2662287B2 (en) Method for separating α-L-aspartyl-L-phenylalanine methyl ester
EP1380570A1 (en) Process for producing n-formylamino acid and utilization thereof
JPS6022919B2 (en) Method for producing an addition compound of N-benzyloxycarbonyl-L-aspatyl-L-phenylalanine methyl ester and phenylalanine methyl ester
JP2508803B2 (en) Process for producing α-L-aspartyl-L-phenylalanine derivative
US4883900A (en) Process for the preparation of aspartame and agents for carrying it out
JP2923009B2 (en) Extraction method of amino acid ester
JPH05284991A (en) Production of methyl ester of n-benzyloxycarbonyl-alfa-l-aspartyl-l-phenylalanine
JPH09248197A (en) Production of dipeptide ester
JPS6274296A (en) Enzymic linking of n-acetyl-l-aspartic acid to l-phenylalanine alkyl ester
CA1100948A (en) Addition compound of dipeptide derivative and amino acid derivative
JP2000044534A (en) Production of n-protecting group amino acid
JPH07637B2 (en) Method for producing α-L-aspartyl-L-phenylalanine methyl ester or its hydrochloride
JPH0730049B2 (en) Process for producing diketopiperazine derivative
JPS5943159B2 (en) Optical resolution method for amino acid esters