JPS60194378A - Superconductive quantum interference element circuit - Google Patents
Superconductive quantum interference element circuitInfo
- Publication number
- JPS60194378A JPS60194378A JP5161884A JP5161884A JPS60194378A JP S60194378 A JPS60194378 A JP S60194378A JP 5161884 A JP5161884 A JP 5161884A JP 5161884 A JP5161884 A JP 5161884A JP S60194378 A JPS60194378 A JP S60194378A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- terminal
- critical current
- superconductive
- inductances
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/035—Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
- G01R33/0354—SQUIDS
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、超伝導量子干渉素子(SQUID)回路に
おける製造歩留りの向上に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to improving manufacturing yield in superconducting quantum interference device (SQUID) circuits.
(従来技術〕
従来この種の装置として第1図に示すものがあった6図
において、3.4は直列に接続された超伝導インダクタ
ンス、5は上記超伝導インダクタンス3,4の接続点に
一定電流を供給するための電流供給端子、1,2は上記
超伝導インダクタンス3.4の両端とアース間に接続さ
れたジョセフソン素子であり、上記2個の超伝導インダ
クタンス3.4と上記2個のジョセフソン素子1.2と
で閉回路が形成されている。(Prior art) Conventionally, this type of device was shown in FIG. 1. In FIG. 6, 3.4 is a superconducting inductance connected in series, and 5 is a constant point at the connection point of the superconducting inductances 3 and 4. Current supply terminals 1 and 2 for supplying current are Josephson elements connected between both ends of the superconducting inductance 3.4 and the ground, and the two superconducting inductances 3.4 and the two above A closed circuit is formed with the Josephson element 1.2.
次に動作について説明する。Next, the operation will be explained.
第2図は上記ジョセフソン素子1.2の電流−電圧特性
を示し、図から明らかなように、上記素子1,2では零
電圧状態においては電流が、所定の臨界電流値IOまで
流れ、該電流値1oを超える電流を流すと、ジョセフソ
ン素子1.2は有限電圧状態へと変化する。FIG. 2 shows the current-voltage characteristics of the Josephson element 1.2, and as is clear from the figure, in the elements 1 and 2, in the zero voltage state, current flows up to a predetermined critical current value IO; When a current exceeding the current value 1o is applied, the Josephson element 1.2 changes to a finite voltage state.
また第3図は上記回路の電流供給端子5に外部から一定
電流を供給したときのジョセフソン素子1.2及び超伝
導インダクタンス3,4から形成される閉回路内の磁束
Φと電流供給端子5の電圧■との間の特性を示す。従っ
て、上記回路では、該第3図に示す特性曲線を利用して
磁場の検出を行なうことができ、しかもこの第3図の特
性曲線の周期は磁束量子Φo (−2,07X10−1
sWb)程度j
ス3,4の値をLとすると、該インダクタンスの値り及
び上記臨界電流値■0によって決定されるものであり、
また上記2個のジョセフソン素子1゜2の臨界電流値■
0は互いに等しくなければならない。Further, FIG. 3 shows the magnetic flux Φ in the closed circuit formed by the Josephson element 1.2 and the superconducting inductances 3 and 4 and the current supply terminal 5 when a constant current is supplied from the outside to the current supply terminal 5 of the above circuit. It shows the characteristics between the voltage and ■. Therefore, in the above circuit, the magnetic field can be detected using the characteristic curve shown in FIG. 3, and the period of the characteristic curve shown in FIG.
sWb) degree j If the value of s3 and 4 is L, it is determined by the value of the inductance and the critical current value ■0,
Also, the critical current value of the above two Josephson elements 1°2■
0 must be equal to each other.
従来の超伝導量子干渉素子回路は以上のように構成され
ているが、上記ジョセフソン素子1. 2の製造時にお
いて上記臨界電流値Ioを所望の値にすることは困難で
あり、しかも製造後に上記ジョセフソン素子1,2の臨
界電流値■0を変更することはできず、そのため上記従
来回路では製造時の歩留りが良くないという欠点があっ
た。The conventional superconducting quantum interference device circuit is configured as described above, and the Josephson device 1. It is difficult to set the critical current value Io to a desired value during the manufacture of the above-mentioned Josephson elements 1 and 2, and furthermore, it is impossible to change the critical current value 0 of the Josephson elements 1 and 2 after manufacture. However, there was a drawback that the yield during manufacturing was not good.
この発明は上記のような従来のものの欠点を除去するた
めになされたもので、ジョセフソン素子の代わりに臨界
電流を制御するための制御入力端子を有する超伝導三端
子素子を用いることにより、製造後に外部からその電気
特性を調節でき、製造時の歩留りを向上できる超伝導量
子干渉素子回路を提供することを目的とし、でいる。This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by using a superconducting three-terminal element having a control input terminal for controlling the critical current in place of the Josephson element, the manufacturing process can be improved. The purpose of this invention is to provide a superconducting quantum interference device circuit whose electrical characteristics can be adjusted from the outside later on, and whose manufacturing yield can be improved.
以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第4図は本発明の一実施例による超伝導量子干渉素子回
路の回路図を示し、第4図において、11゜12は超伝
導三端子素子、3,4は超伝導インダクタンス、5は電
流供給端子である。また13゜14は上記超伝導三端子
素子11.12の制御入力端子であり、上記超伝導三端
子素子11.12の臨界電流値1oを所望の値に制御す
るためのものである。FIG. 4 shows a circuit diagram of a superconducting quantum interference device circuit according to an embodiment of the present invention. In FIG. 4, 11° and 12 are superconducting three-terminal elements, 3 and 4 are superconducting inductances, and 5 is a current supply. It is a terminal. Reference numerals 13 and 14 are control input terminals for the superconducting three-terminal elements 11.12, which are used to control the critical current value 1o of the superconducting three-terminal elements 11.12 to a desired value.
次に作用効果について説明する。Next, the effects will be explained.
本実施例における超伝導三端子素子11.12は、その
臨界電流を制御するための制御入力端子13.14を有
することを除けば、従来回路のジョセフソン素子1,2
と同様の機能を有する。そのため超伝導三端子素子II
、12の電流−電圧特性は第2図に示すものと同じであ
る。また第4図に示す本実施例回路の電流供給端子5に
外部より一定電流を供給したときの、超伝導三端子素子
11.12及び超伝導インダクタンス3,4から形成さ
れる閉回路内の磁束Φと電流供給端子5の電圧Vとの特
性は第3図に示すものと同じであり、この第3図におり
る特性曲線を利用して従来回路と同様にして磁場の検出
を行なうことができる。The superconducting three-terminal element 11.12 in this embodiment is different from the Josephson elements 1, 2 of the conventional circuit, except that it has a control input terminal 13.14 for controlling its critical current.
It has the same function as . Therefore, superconducting three-terminal device II
, 12 are the same as those shown in FIG. Furthermore, when a constant current is supplied from the outside to the current supply terminal 5 of the circuit of this embodiment shown in FIG. The characteristics of Φ and the voltage V of the current supply terminal 5 are the same as those shown in Fig. 3, and the magnetic field can be detected in the same manner as the conventional circuit by using the characteristic curve shown in Fig. 3. can.
しかしながら本実施例回路では、超伝導三端子素子11
.12の零電圧状態での最大臨界電流値■0を制御入力
端子13.14に電流を流すことにより、外部から制御
でき、従って、2個の超伝導三端子素子11.12の臨
界電流値ioを相互に等しくでき、そのため該素子11
.12の製造歩留りを向上できる。However, in this embodiment circuit, the superconducting three-terminal element 11
.. The maximum critical current value 0 in the zero voltage state of 12 can be externally controlled by passing a current through the control input terminal 13.14, and therefore the critical current value io of the two superconducting three-terminal elements 11.12 can be mutually equal, so that the element 11
.. 12 manufacturing yield can be improved.
なお、上記実施例では超伝導量子干渉素子がDC−3Q
UID (直流型超伝導量子干渉素子)である場合につ
いて説明したが、RF−3QU rD(交流型超伝導量
子干渉素子)においても上記実施例と同様の効果を奏す
る。In the above embodiment, the superconducting quantum interference device is DC-3Q.
Although the case of a UID (direct current type superconducting quantum interference device) has been described, the same effects as in the above embodiment can be achieved also in an RF-3QU rD (alternating current type superconducting quantum interference device).
また、上記実施例では超伝導三端子素子を用いた場合に
ついて説明したが、これはへテロ接合を用いた超伝導素
子とすることもできる。Furthermore, although the above embodiments have been described using a superconducting three-terminal element, this may also be a superconducting element using a heterojunction.
以上のように、この発明に係る超伝導量子干渉素子回路
によれば、該回路を臨界電流値を制御ず調整することが
でき、そのため素子の歩留りを向上できるという効果が
ある。As described above, according to the superconducting quantum interference device circuit according to the present invention, the circuit can be adjusted without controlling the critical current value, and therefore the yield of the device can be improved.
Claims (1)
と、該両超伝導インダクタンスの接続点に一定電流を供
給するための電流供給端子と、上記2個の超伝導インダ
クタンスの両端とアース間にそれぞれ接続され零電圧状
態において所定の臨界電流を有する2個の超伝導素子と
を備え、上記2個の超伝導インダクタンス及び2個の超
伝導素子から形成される閉回路による磁束と上記電流供
給端子の電圧との特性を利用して磁場の検出を行なう超
伝導量子干渉素子回路において、上記各超伝導素子とし
て上記臨界電流を制御するための制御入力端子を有する
超伝導三端子素子を用いたことを特徴とする超伝導量子
干渉素子回路。(1) Two superconducting inductances connected in series, a current supply terminal for supplying a constant current to the connection point of both superconducting inductances, and a connection between both ends of the two superconducting inductances and the ground. Two superconducting elements each connected to each other and having a predetermined critical current in a zero voltage state, magnetic flux generated by a closed circuit formed by the two superconducting inductances and the two superconducting elements, and the current supply terminal. In a superconducting quantum interference device circuit that detects a magnetic field by using the characteristics with respect to voltage, a superconducting three-terminal device having a control input terminal for controlling the critical current is used as each superconducting device. A superconducting quantum interference device circuit featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5161884A JPS60194378A (en) | 1984-03-15 | 1984-03-15 | Superconductive quantum interference element circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5161884A JPS60194378A (en) | 1984-03-15 | 1984-03-15 | Superconductive quantum interference element circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60194378A true JPS60194378A (en) | 1985-10-02 |
Family
ID=12891866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5161884A Pending JPS60194378A (en) | 1984-03-15 | 1984-03-15 | Superconductive quantum interference element circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60194378A (en) |
-
1984
- 1984-03-15 JP JP5161884A patent/JPS60194378A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60194378A (en) | Superconductive quantum interference element circuit | |
JPH026456B2 (en) | ||
US4413197A (en) | Four Josephson junction direct-coupled and gate circuit | |
JPS5840945U (en) | 3 Josephson junction direct connection type separation circuit | |
US3868515A (en) | Josephson device threshold gates | |
JPS6182533A (en) | Inverter | |
JPH0312708B2 (en) | ||
JPH08236824A (en) | Dc driving type superconducting quantum interference element | |
JPH0883935A (en) | Superconducting circuit | |
JPS61269301A (en) | Superconductive-coil device | |
JPH0529672A (en) | Circuit including superconducting field effect element | |
JPS6053966B2 (en) | josephson logic gate | |
JPH1056212A (en) | Trimming method for squid | |
JPS6367429B2 (en) | ||
JP2647233B2 (en) | Hall element | |
JPH0223033B2 (en) | ||
JPH0577352B2 (en) | ||
JPS60254912A (en) | Josephson latch circuit | |
JPS59191938A (en) | Current injection type not signal generating circuit using josephson effect | |
JPS58115937A (en) | Josephson logical circuit | |
JPS63219220A (en) | Exciting method for quantum magnetic flux parametron circuit | |
JPS59167124A (en) | Superconductive exclusive or circuit | |
JPH0531848B2 (en) | ||
JPH0342019B2 (en) | ||
JPH02183914A (en) | Superconducting wire and coil |