JPS60155520A - Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process - Google Patents
Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption processInfo
- Publication number
- JPS60155520A JPS60155520A JP59012585A JP1258584A JPS60155520A JP S60155520 A JPS60155520 A JP S60155520A JP 59012585 A JP59012585 A JP 59012585A JP 1258584 A JP1258584 A JP 1258584A JP S60155520 A JPS60155520 A JP S60155520A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- adsorption
- adsorption tower
- pressure
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は圧力変動式吸着分離方式(PSA法)によって
、転炉又は高炉等の排ガス、少なくとも一酸化炭素、窒
素を含む原料ガスから高純度の一酸化炭素を得る方法に
関する。Detailed Description of the Invention The present invention provides a method for obtaining high-purity carbon monoxide from exhaust gas from a converter or blast furnace, or a raw material gas containing at least carbon monoxide and nitrogen, by a pressure fluctuation adsorption separation method (PSA method). Regarding.
vA鉄所において精錬容器から発生する排ガスは、比較
的多量のCOガスを含有している。その組成は転炉排ガ
ス、高炉排ガスについては下記に示づti112Il内
にある。The exhaust gas generated from the refining vessel in the vA ironworks contains a relatively large amount of CO gas. The composition of converter exhaust gas and blast furnace exhaust gas is within ti112Il as shown below.
COC02N2 82
転炉排ガス 60〜87%3〜20%3〜20%1〜1
0%高炉排ガス 20〜30%20〜30%40〜60
%1〜10%もし、これらの排ガスから高純度のCoガ
スを安価に回収できれば、合成化学原料、R1#R容器
内溶融金属中への吹込みガスとして用途が拓ける。合成
化学原料としてこのCoガスを考える際には、合成反応
が高温、高圧条件下で行なわれるのが通例であることか
ら、反応容器を損傷させる酸化性ガスの除去が必須であ
り、0028度を出来る限り低下させる必要がある。ま
た反応効率を上げるためには、通常反応に関与しないN
2も出来るだけ除去するのが望ましい。一方、溶融金属
の精錬の効率化を目的とする精錬容器内へのガス吹込み
操作は広く行なわれているが、溶融金属中の不純ガス成
分(’112 、 N2など)の濃度上昇を嫌う観点か
ら高価なArガスが使用されるのが通例である製鉄所内
で大量に発生する転炉ガス、高炉ガスから高純度Coガ
スを安価に回収できれば、これをArに代替することが
ほず可能である。この際、高純度CoガスのN2111
度は溶鉄の窒素濃度上昇を防ぐ観点から低いのが望まし
く、またCO29度も精錬容器内張り耐火物として汎用
されている炭素系耐火物の酸化yAfFAを防ぐ観点か
ら低いのが望ましい。COC02N2 82 Converter exhaust gas 60-87% 3-20% 3-20% 1-1
0% blast furnace exhaust gas 20-30% 20-30% 40-60
%1 to 10% If high-purity Co gas can be recovered at low cost from these exhaust gases, it can be used as a synthetic chemical raw material or as a gas to be blown into the molten metal in the R1#R container. When considering this Co gas as a raw material for synthetic chemicals, it is essential to remove oxidizing gases that can damage the reaction vessel, as the synthesis reaction is usually carried out under high temperature and high pressure conditions. It is necessary to reduce it as much as possible. In addition, in order to increase reaction efficiency, N, which does not normally participate in the reaction, is
It is desirable to remove 2 as much as possible. On the other hand, gas injection into a refining vessel for the purpose of improving the efficiency of refining molten metal is widely practiced, but from the viewpoint of not wanting to increase the concentration of impure gas components ('112, N2, etc.) in the molten metal. If high-purity Co gas can be recovered at a low cost from converter gas and blast furnace gas, which are generated in large quantities in steel plants, where expensive Ar gas is typically used, it is possible to replace it with Ar. be. At this time, high purity Co gas N2111
The temperature is desirably low from the viewpoint of preventing an increase in the nitrogen concentration of molten iron, and the CO29 temperature is also desirably low from the viewpoint of preventing oxidation of yAfFA in carbon-based refractories commonly used as refractory linings for refining vessels.
従来、上記排ガスを原料に高純度Coガスを回収するプ
ロセスとしては深冷分離法、あるいは調液法、Coso
rb法といった溶液吸収法が考えられている。しかしな
がら前者においては、低温と高圧を、後者においては高
温と高圧を必要とし、両者共に設備が複雑かつ高価にな
る欠点がある。また深冷分離法においてはN2とCOの
沸点が接近しているため、N2とCOの分離を完全に行
なうことも困難である。Conventionally, the processes for recovering high-purity Co gas using the above-mentioned exhaust gas as raw materials include the cryogenic separation method, the liquid preparation method, and the Coso
Solution absorption methods such as the rb method are being considered. However, the former requires low temperature and high pressure, and the latter requires high temperature and high pressure, and both have the drawback that the equipment is complicated and expensive. Furthermore, in the cryogenic separation method, it is difficult to completely separate N2 and CO because the boiling points of N2 and CO are close to each other.
以上の現状に鑑みて、本発明者らはより簡便なプロセス
で安価に高純度Coガスを回収する技術として吸着法に
よる方法の開発を試みた。In view of the above-mentioned current situation, the present inventors attempted to develop a method using an adsorption method as a technique for recovering high-purity Co gas at low cost through a simpler process.
前記排ガスの吸着法(PSA法)による吸着分離は、公
知であり、吸着剤に吸着しにくいガス成分(以後、難吸
着成分と云う)の回収を目的として特公昭38−239
28号、43−15045号などが出願されている。又
、吸着剤に吸着しやすいガス成分(以後易@着成分と云
うンを@着剤に吸着させ脱着して分離回収することによ
り易吸着成分を高純度で分離゛す°る方法も古くから実
施されている。例えばエチレンを易吸着成分とした具体
例および窒素分離への応用について等がある。The above-mentioned adsorption separation using the adsorption method (PSA method) of exhaust gas is well known, and was developed in Japanese Patent Publication No. 38-239 for the purpose of recovering gas components that are difficult to adsorb to adsorbents (hereinafter referred to as difficult-to-adsorb components).
No. 28, No. 43-15045, etc. have been filed. In addition, there has been a long-standing method of separating easily adsorbable components with high purity by adsorbing gas components that are easily adsorbed onto an adsorbent (hereinafter referred to as "adsorbing components"), and then separating and recovering the gas components by adsorbing them onto an adsorbent. Examples include specific examples using ethylene as an easily adsorbed component and applications to nitrogen separation.
従来から行なわれているガス混合物中の易吸着成分を吸
着剤に吸着させ回収する方法は通常法の操作を含んだも
のである。吸着加圧工程−還流工程−+B2B2着工順
次繰返づことによって吸着剤に易吸着成分に富んだガス
を取出すことが出来る。Conventional methods for recovering easily adsorbable components in a gas mixture by adsorbing them onto an adsorbent include operations of conventional methods. By repeating the adsorption pressurization process - reflux process - + B2B2 start in sequence, it is possible to extract a gas rich in easily adsorbable components to the adsorbent.
しかし今回の排ガスの様に共吸着しやすいガス成分の一
酸化炭素と窒素を含む混合ガスより窒素を除去し、高濃
度の一酸化炭素として回収精製するのは従来の方法では
困難である。However, using conventional methods, it is difficult to remove nitrogen from a mixed gas containing carbon monoxide and nitrogen, gas components that tend to co-adsorb, such as the exhaust gas in this case, and collect and purify it as highly concentrated carbon monoxide.
本出願人は、先に少なくともN2及びCO又はN2 、
CO2及びCOから成る混合ガスからPSA法によりN
2を除去する方法について出願を行なった(特願昭57
−159211号参照)。この先願昭57−15921
1号の方法においては、N2の除去率を上げるために、
吸着工程終了後、吸着剤に吸着されずに吸着塔内の空隙
に存在する難吸着成分(N2など)に富んだガスを吸着
塔外に放出する減圧・放圧工程に加えて、さらに難吸着
成分の少ない製品ガスを導入して難吸着成分をパージす
るパージ工程を採用しており、工程が複雑である難点が
あった。The applicant has previously disclosed that at least N2 and CO or N2,
N is extracted from a mixed gas consisting of CO2 and CO by the PSA method.
An application was filed for a method for removing 2 (Patent application 1982
-159211). Prior application 15921/1986
In method No. 1, in order to increase the N2 removal rate,
After the adsorption process is completed, in addition to the depressurization/release process in which gas rich in difficult-to-adsorb components (N2, etc.) that are present in the voids in the adsorption tower without being adsorbed by the adsorbent is discharged to the outside of the adsorption tower, an even more difficult-to-adsorb process is performed. This method employs a purge process in which a product gas with a small amount of components is introduced to purge the components that are difficult to adsorb, and the process is complicated.
そこで種々検討した結果、減圧・放圧工程を省略し、吸
着工程に引き続いて直ちに製品ガスパーンを行ない、次
いで、製品ガス回収を行なう簡単な工程を用いても先願
の方法に匹敵する純度の一酸化炭素ガスを精製・分離で
きることが判明した。As a result of various studies, we found that even if we use a simple process of omitting the depressurization/pressure release process, performing product gas purification immediately following the adsorption process, and then recovering the product gas, we could achieve purity comparable to the method of the previous application. It was found that carbon oxide gas can be purified and separated.
本発明は少なくとも一酸化炭素ガス及び窒素ガスを含む
原料ガスから圧力変動式吸着分離法により窒素を除去し
高純度−酸化炭素ガスを回収する方法において、原料ガ
ス中の一酸化炭素に対して選択性を有する@n剤を収納
した2つ以上の吸着塔を用い、その方法は
(I) 原料ガスにより吸着塔を加圧し、(II )
ざらに原料ガスを吸着塔に流して吸着塔出口における易
吸着成分(−酸化炭素など)の濃度が吸着塔入口におけ
る易吸着成分の濃度に達する迄、或いは達した後適当な
ガスmまたは時間の間原料ガスを流しつづけるか、もし
くは両者の濃度が等しくなる点の少し前まで原料ガスを
流して吸着剤に易吸着成分を吸着させる吸着(I)工程
(III) 吸着(I>工程終了後、その吸着塔に製品
ガスを導入して難吸着成分(窒素など)をパージ1”
るパージ工程
(IV ) パージ工程を終った吸着塔を大気圧又はほ
ぼ大気圧造減圧し、さらに大気圧以下に排気して、吸着
剤に吸着されている易吸着成分を脱着させて製品ガスど
して回収する回収工程、及び
(V) 製品ガス回収が終った吸着塔と他の吸着(I)
工程の終った吸着塔を連絡して、後者の吸着塔のパージ
工程で排出されるパージガスをから成り、定期的に吸着
塔間の流れを変えて上記操作を繰返すことを特徴とした
方法に関する。The present invention provides a method for removing nitrogen from a raw material gas containing at least carbon monoxide gas and nitrogen gas by a pressure fluctuation adsorption separation method and recovering high purity carbon oxide gas. Using two or more adsorption towers containing @n agents having properties, the method is (I) pressurizing the adsorption towers with raw material gas, and (II)
Roughly feed the raw material gas into the adsorption tower until the concentration of easily adsorbed components (carbon oxide, etc.) at the outlet of the adsorption tower reaches the concentration of easily adsorbed components at the inlet of the adsorption tower, or after reaching the concentration of the easily adsorbed components (carbon oxide, etc.) Adsorption (I) step (III) in which the easily adsorbable components are adsorbed by the adsorbent by continuing to flow the raw material gas for a while, or by flowing the raw material gas until just before the point where the concentrations of both become equal. Product gas is introduced into the adsorption tower to purge difficult-to-adsorb components (nitrogen, etc.).
Purge step (IV) After the purge step, the adsorption tower is reduced to atmospheric pressure or nearly atmospheric pressure, and then evacuated to below atmospheric pressure to desorb the easily adsorbed components adsorbed on the adsorbent and release the product gas. and (V) the adsorption tower and other adsorption units after product gas recovery (I).
The present invention relates to a method characterized in that the adsorption towers that have completed the process are connected, the purge gas discharged in the purge process of the latter adsorption tower is connected, and the above operation is repeated by periodically changing the flow between the adsorption towers.
本発明の工程(I)は吸着塔に原料ガスを導入する吸着
塔の加圧工程である。本発明では回収1べきガスは易吸
着成分であるので高い吸着圧は必要でなく、Oka/
0112 ・0以上であれば良いが、一般に1kg/c
u+2 ・G@度で十分であり、それより低い吸着圧で
あっても良い。本発明の工程(I[>は吸着(I>工程
である。吸着塔出口における易吸着成分(COなど)の
濃度が吸着塔入口における易吸着成分の濃度と等しくな
った点ということは、吸着剤の破過点を意味する。回収
ずべき成分が易吸着成分であり、所定の吸着剤量のもと
て十分に多くの製品ガスを回収するためには破過終了或
いは、破過終了後においてもなおかつ吸着剤に残存する
吸着サイトに易吸着成分を吸着させることが必要であり
、破過終了後も一定の原石ガスΦを流ずが又は一定時間
原料ガスを流すことを要する。あるいは破過終了に達す
る少し前まで吸着を行なうにとどめても製品ガス純度の
観点からはかまわない場合もある。Step (I) of the present invention is an adsorption tower pressurization step in which a raw material gas is introduced into the adsorption tower. In the present invention, since the gas to be recovered is an easily adsorbed component, high adsorption pressure is not necessary, and Oka/
0112 ・It is fine if it is 0 or more, but generally 1 kg/c
An adsorption pressure of u+2 .G@degrees is sufficient, and a lower adsorption pressure may be used. The process of the present invention (I [> is adsorption (I> step). The point where the concentration of easily adsorbed components (such as CO) at the outlet of the adsorption tower becomes equal to the concentration of easily adsorbed components at the inlet of the adsorption tower means that This refers to the breakthrough point of the agent.The components to be recovered are easily adsorbed components, and in order to recover a sufficient amount of product gas with a predetermined amount of adsorbent, it is necessary to In addition, it is necessary to adsorb easily adsorbable components to adsorption sites remaining in the adsorbent, and even after breakthrough, it is necessary to not flow a certain amount of raw gas Φ or to flow raw material gas for a certain period of time. In some cases, it may be acceptable from the viewpoint of product gas purity to perform adsorption until just before the end of the process.
工程<fir)は吸@(1)工程を終った吸着塔内に製
品ガスを導入して、吸着塔内に残っている難吸着成分(
N2など)をパージする。この場合製品ガスの導入圧は
吸着圧より高くする必要があり、工程(IV )の製品
ガス回収工程に使用する減圧排気機器の背圧だけでは不
十分となるので、製品ガスを昇圧して導入する必飲があ
る。但し、製品ガスを減圧排気11器の背圧の圧力で例
えば合成化学原料とすることはまずなく、必ず、その用
途に向けての昇圧システムが製品ガス系統に併設される
から、その昇圧ガスを一部使用することで、特別の昇圧
システムを余分に設ける必要は通常ない。In the step <fir), the product gas is introduced into the adsorption tower that has completed the adsorption step (1), and the difficult-to-adsorb components (
N2, etc.). In this case, the introduction pressure of the product gas needs to be higher than the adsorption pressure, and the back pressure of the decompression exhaust equipment used in the product gas recovery process in step (IV) is not sufficient, so the product gas must be introduced with increased pressure. There is a must-drink. However, it is unlikely that the product gas will be used as a synthetic chemical raw material at the back pressure of the vacuum evacuation unit 11, and a pressure boosting system for that purpose will always be installed in the product gas system. With partial use, there is usually no need for an extra special boost system.
パージ工程に使用する製品ガスmと、その後に回収され
る製品ガスの純度には図1に示ず関係が見い出され、難
吸着成分を高水準で除去する限りでは、従来の減圧・放
圧工程の優にパージを行なう方法に比べて、僅かに多い
製品ガスを使用するだけで同等の製品ガス純度を達成で
きることがTl1aされ、この関係に基く操業を行なう
ことにより工程簡略化を達成できる。A relationship was found between the product gas m used in the purge process and the purity of the product gas recovered afterwards, which is not shown in Figure 1.As long as difficult-to-adsorb components are removed at a high level, conventional depressurization and depressurization processes Tl1a shows that it is possible to achieve the same product gas purity by using slightly more product gas than in a method that performs purge, and by operating based on this relationship, process simplification can be achieved.
工程(IV)はパージ工程を終った吸着塔を大気圧又は
ほぼ大気圧造減圧し、ざらに頁空ポンプ、プロワ−、エ
ゼクタ−等の減圧排気装置を用いて大気圧以下、好まし
くは300T orr以下迄排気し、この工程の間に吸
着剤から脱着してくる成分(Coなど)を回収する製品
ガス回収工程。この際、減圧工程の初期に吸着塔から放
出されるガスを回収せず放散しても良い。この場合、製
品ガス回収率は若干低下するが、製品ガス純瓜の向上が
得られる。Step (IV) is to reduce the pressure of the adsorption tower that has completed the purge step to atmospheric pressure or nearly atmospheric pressure, and then use a vacuum exhaust device such as a pneumatic pump, blower, ejector, etc. to reduce the pressure to below atmospheric pressure, preferably 300 Torr. A product gas recovery process in which components (such as Co) desorbed from the adsorbent during this process are recovered. At this time, the gas released from the adsorption tower at the beginning of the pressure reduction step may be diffused without being recovered. In this case, although the product gas recovery rate is slightly lowered, the purity of the product gas can be improved.
工程(V)はパージ工程において排出される、製品ガス
に対して、難吸着成分が富化された比較的易吸着成分純
度の良いガスを、製品ガス回収を終った他の吸着塔に導
入し、易吸着成分を吸着させる吸着(I)工程である。In step (V), a gas enriched with difficult-to-adsorb components and having a relatively high purity of easily adsorbable components is introduced into another adsorption tower that has finished product gas recovery, with respect to the product gas discharged in the purge step. This is an adsorption (I) step in which easily adsorbable components are adsorbed.
本発明で使用できる吸着剤として、活性炭、天然、改質
あるいは合成ゼオライトが挙げられる。 ′以下本発明
の代表的な具体例で必る転炉排ガス中のN2を除去し、
COを分離回収する方法に基づいて本発明の詳細な説明
するが、本発明の方法はこれらの具体例に限定されるも
のではない。Adsorbents that can be used in the present invention include activated carbon, natural, modified or synthetic zeolites. 'Remove N2 from the converter exhaust gas, which is necessary in the following representative examples of the present invention,
Although the present invention will be described in detail based on a method for separating and recovering CO, the method of the present invention is not limited to these specific examples.
第2図は吸着サイクルにより連続的に転炉排ガスから難
吸着成分であるN2を除去し、易吸着成分のCOを分1
111[111縮するフローシートである。Figure 2 shows that N2, a component that is difficult to adsorb, is continuously removed from the converter exhaust gas through an adsorption cycle, and CO, an easily adsorbable component, is removed by 1 part.
111 [This is a flow sheet that shrinks 111.
吸着塔A、Bは易吸着成分を選択的に吸着する吸着剤が
収納されている。吸着塔A、Bを真空ポンプ等で減圧排
気を300Torr以下好ましくは300〜30Tor
rの範囲連行い、今吸着塔Aに原料ガスを減圧状態より
昇圧工程にバルブ1を聞くことによって行う。このとき
バルブ2.3,4,5゜6、7.8.9.10.15.
16はすべて開である吸る塔Bはこのステップではまだ
減圧状態を保持している。昇圧後、吸着項八に吸着圧力
kg/cm2−Gから3.0k(J/CIl+2−
Q、好ましくは0.2+<g、’am2− Gから2.
Oh/cm2− Gの吸着圧力を保つ様にバルブ3の開
度を調整した上で原料ガスを導入し、蝋吸着成分に富む
ガスはガスボルダ−13に回収される。一定時間或いは
一定原料ガスmのrx着(I)工程終了後、原料供給バ
ルブ1及び出口バルブ3を閉じ、引き続きバルブ7を問
いて、流m調節弁17により設定された流量で製品ガス
を吸着(I)工程の圧力以上の圧力で導入して、吸着剤
の空隙中に存在する難吸着成分をパージJ”る工程に入
る。この際、バルブ5を同時もしくは若干遅らせて開き
、パージ工程から排出されるガスを吸着塔Bに回収する
。尚、14は製品ガスの圧力を上げる昇圧機である。パ
ージ工程をあらかじめ設定した時間或いは所定のパージ
ガス量を流す追打なった後、バルブ7.5は閉じられる
。次いで、バルブ9,15を開き、吸着塔Aの圧力を大
気圧造降下させこの間に放出されるガス(脱着する易吸
着成分も含まれる)を製品ガスタンク11に回収し、さ
らに吸着塔Aの圧力が大気圧に達したら、バルブ15を
閉じ、減圧排気機器12につながるバルブ1Gを閉にし
て300Torr以下、好ましくは30T orrまで
減圧排気を行なって00分に富んだ製品ガスを回収する
。上記操作をそれぞれの吸着塔において順次繰返すこと
により連続的に吸着剤に対する易吸着成分であるCOガ
スを分離することができる。実施例1
本発明法にもとづいて一酸化炭素混合ガス(CO= 9
0%、N2=10%)の精製を試みた。精製工程として
は、既述のごとく、「吸着−パージ−減圧・排気−加圧
」のサイクルをとった。精製装置のフローは第2図のも
のである。吸着塔Δ。Adsorption towers A and B house adsorbents that selectively adsorb easily adsorbable components. The adsorption towers A and B are evacuated using a vacuum pump or the like to a pressure of 300 Torr or less, preferably 300 to 30 Torr.
The raw material gas is now fed into the adsorption tower A from a reduced pressure state to a pressure increasing step by turning on valve 1. At this time, valves 2.3, 4, 5°6, 7.8.9.10.15.
The suction column B, in which all 16 are open, still maintains a reduced pressure state in this step. After increasing the pressure, adsorption term 8 changes from adsorption pressure kg/cm2-G to 3.0k (J/CIl+2-
Q, preferably 0.2+<g, 'am2- G to 2.
After adjusting the opening degree of the valve 3 to maintain the adsorption pressure of Oh/cm2-G, the raw material gas is introduced, and the gas rich in wax adsorption components is collected in the gas boulder 13. After a certain period of time or after the end of the rx deposition (I) process of a constant raw material gas m, close the raw material supply valve 1 and outlet valve 3, and then check the valve 7 to adsorb the product gas at the flow rate set by the flow m control valve 17. (I) Enters the step of purging the difficult-to-adsorb components present in the voids of the adsorbent by introducing it at a pressure higher than the pressure of the step.At this time, open the valve 5 at the same time or with a slight delay, and from the purge step. The discharged gas is collected in the adsorption tower B. Reference numeral 14 is a booster that increases the pressure of the product gas.After the purge process has been carried out for a preset time or after a predetermined amount of purge gas is supplied, valve 7. 5 is closed.Next, the valves 9 and 15 are opened to reduce the pressure in the adsorption tower A to atmospheric pressure, and the gas released during this time (including easily adsorbed components that are desorbed) is collected into the product gas tank 11, and further When the pressure in the adsorption tower A reaches atmospheric pressure, close the valve 15, close the valve 1G connected to the decompression exhaust equipment 12, and perform depressurization and exhaust to 300 Torr or less, preferably 30 Torr, to release a product gas rich in 00 minutes. By repeating the above operation sequentially in each adsorption tower, it is possible to continuously separate CO gas, which is a component easily adsorbed onto the adsorbent.Example 1 Based on the method of the present invention, carbon monoxide mixed gas ( CO=9
0%, N2=10%) was attempted. As described above, the purification process was a cycle of "adsorption-purge-depressurization/exhaust-pressurization". The flow of the purification device is shown in FIG. Adsorption tower Δ.
Bにはそれぞれ350℃で活性化した改質モルデナイト
系ゼオライト0.51<gを収納し、真空ポンプで60
Torrまで真空排気を行なう。次いで、バルブ1を聞
いて、−酸化炭素混合ガスを吸着塔Aに導入し、吸着塔
Aの圧力を1.Okg/cn+2 ・G追加圧づる。引
ぎ続いてバルブ3を開き、吸着塔圧力1.0kO/ c
m2 ・Gを保持しつつ、連続的に混合ガスを流す。吸
着塔出口ガス純度が入口ガス純度とほぼ同じになった段
階でバルブ1,3を閉じる。B contains 0.51<g of modified mordenite zeolite activated at 350°C, and
Evacuate to Torr. Next, the -carbon oxide mixed gas is introduced into the adsorption tower A by listening to the valve 1, and the pressure of the adsorption tower A is set to 1. Okg/cn+2 ・G additional pressure is applied. Subsequently, valve 3 was opened, and the adsorption tower pressure was increased to 1.0 kO/c.
Flow the mixed gas continuously while maintaining m2 ・G. Valves 1 and 3 are closed when the purity of the gas at the outlet of the adsorption tower becomes approximately the same as the purity of the gas at the inlet.
次いで、製品ガスタンク中の高純度COガス(CO=
99.2%、N2 = o、g%)を昇圧l1114を
用いて2kg/cm2 ・G迄昇圧したものを、バルブ
7を間とすることにより吸着塔Aに導入し、この時塔上
から排出されるガスはバルブ5を開にして吸着塔Bに回
収する。所定のパージガスを流した後、バルブ7.5を
閉じ、順次(バルブ9,15聞)→(バルブ15閉、バ
ルブ16間)の工程により製品ガスを吸着塔Aから回収
する。バルブ15.16の切り替えは吸着塔圧力0.0
5に!17cm2 ・Gで行ない、また排気は40To
rr迄行なった。Then, high purity CO gas (CO=
99.2%, N2 = o, g%) was pressurized to 2 kg/cm2 ・G using a pressurizing l1114, and introduced into the adsorption tower A by opening valve 7, and at this time, it was discharged from the top of the tower. The gas is recovered to the adsorption tower B by opening the valve 5. After flowing a predetermined purge gas, the valve 7.5 is closed, and the product gas is recovered from the adsorption tower A through the steps of (valve 9, 15) → (valve 15 closed, valve 16). Switching of valves 15 and 16 is done when the adsorption tower pressure is 0.0.
To 5! 17cm2 ・G, and exhaust is 40To
I went to rr.
以上のサイクルを吸着塔A、Bで交互に繰り返した。こ
の工程の1サイクル当り供給された原料ガスは15.2
N yであり、製品ガスタンク11に回収されたC O
= 99.2%、N2 = 0.8%の高純度COガス
は9.8N更であった。但し、9.8N交の製品ガスの
内3.7N斐のガスをパージ工程に使用したので、見掛
は上の製品ガス回収量は6.INi、CO回収率は44
.2%となった。The above cycle was repeated alternately in adsorption towers A and B. The raw material gas supplied per cycle of this process is 15.2
N y and C O recovered in the product gas tank 11
= 99.2%, high purity CO gas with N2 = 0.8% was more than 9.8N. However, since 3.7 N of the 9.8 N of product gas was used in the purge process, the apparent amount of product gas recovered was 6. INi, CO recovery rate is 44
.. It became 2%.
実施例2
以下本発明をさらに具体的に説明するために転炉排jj
ス(G O= 82.6%、CO2= 5.7%、N
2=7.2%、1−12 = 4.5%)を除湿した後
、図2の装置で精製した実施例を示す。吸着剤は350
℃で活性化した合成ゼオライト、M S −5A O,
5kg/吸着塔である。また排気圧力は85Torr迄
行なった。精製工程は1サイクル当りの原料ガス供給量
は17.4Nl、製品ガスタンクに回収したC0=92
.8%、C02=6.4%、N2=0.8%の製品ガス
量は10.INl、パージ工程に使用した製品ガス量は
2.8Nlであり、見掛は上の製品ガス回収量は8.2
NCCO回収率は52,9%となった。尚、この場合、
CO2も易吸着成分であり、製品ガス中に回収されてい
る。別途CO2を除去すれば高純度COガスとするのが
可能である。Example 2 In order to explain the present invention more specifically, a converter exhaust jj
(G O = 82.6%, CO2 = 5.7%, N
2=7.2%, 1-12=4.5%) was dehumidified and purified using the apparatus shown in FIG. 2. Adsorbent is 350
Synthetic zeolite activated at °C, MS-5A O,
5 kg/adsorption tower. Further, the exhaust pressure was increased to 85 Torr. In the refining process, the raw material gas supply amount per cycle was 17.4Nl, and the CO recovered in the product gas tank was 92
.. 8%, C02=6.4%, N2=0.8%, the product gas amount is 10. INl, the amount of product gas used in the purge process is 2.8Nl, and the apparent amount of product gas recovered is 8.2Nl.
The NCCO recovery rate was 52.9%. In this case,
CO2 is also an easily adsorbed component and is recovered in the product gas. High purity CO gas can be obtained by separately removing CO2.
本発明の実施態様は次の通りである。Embodiments of the invention are as follows.
本発明は少なくとも一酸化炭素ガスおよび窒素ガスを含
む原料から圧力変動式吸着分離法により純度の良い一酸
化炭素ガスを精製分離する方法において、原料ガス中の
一酸化炭素に対して選択性を有する吸着剤を収納した2
つ以上の吸着塔を用い、原料ガスにより吸着塔を加圧し
、次いで原料ガスを吸着塔に流して吸着剤に易吸着成分
を吸着させ、次いで、該吸着塔の吸着圧力あるいはそれ
以上の圧力のもとに原料ガス中の難吸着成分及び/ある
いは所望の製品ガス中難吸着成分の濃度に応じた量の製
品ガスを導入して該吸着塔内の吸着剤量空隙の難吸着成
分を・ξ−ジし、次いで該吸着塔をほぼ大気圧まで減圧
し引き続き大気圧以下に排気する間に該吸着塔から排出
される易吸着成分に富むガスを製品ガスとして回収する
工程を、定期的に吸着塔間のガスの流れを変えて繰り返
すことを特徴とした一酸化炭素ガスの精製分離方法。The present invention provides a method for purifying and separating carbon monoxide gas of high purity from a raw material containing at least carbon monoxide gas and nitrogen gas by pressure fluctuation type adsorption separation method, which has selectivity to carbon monoxide in the raw material gas. 2 containing adsorbent
Using two or more adsorption towers, the adsorption tower is pressurized with raw material gas, then the raw material gas is passed through the adsorption tower to cause the adsorbent to adsorb easily adsorbed components, and then the adsorption pressure of the adsorption tower or higher pressure is increased. Initially, an amount of product gas corresponding to the concentration of the poorly adsorbed component in the raw material gas and/or the desired product gas is introduced to reduce the amount of the poorly adsorbed component in the adsorbent volume void in the adsorption tower. - The adsorption tower is periodically depressurized to approximately atmospheric pressure, and then the gas rich in easily adsorbable components discharged from the adsorption tower is recovered as a product gas while the adsorption tower is depressurized to approximately atmospheric pressure and then evacuated to below atmospheric pressure. A method for purifying and separating carbon monoxide gas, which is characterized by repeating the process by changing the flow of gas between columns.
第1図はパージガス量と製品ガス中の難吸着成分濃度と
の関係を示す。第1図における「見かけの製品ガス回収
量」とは「減圧排気により回収されるガス量」と「ノξ
−ジガス量」との差を意味する。第2図は本発明を実施
する好ましい装置のフローシートである。
特許出願人 川崎製鉄株式会社
同 大阪酸素工業株式会社
(外4名)
菓1図
(ハーゾ々゛スり/(見りIすの今しシiη1ス」U収
量〕幕2図
1FIG. 1 shows the relationship between the amount of purge gas and the concentration of poorly adsorbed components in the product gas. In Figure 1, the “apparent amount of product gas recovered” is the “amount of gas recovered by reduced pressure exhaust” and the “no ξ
- the amount of gas. FIG. 2 is a flow sheet of a preferred apparatus for carrying out the invention. Patent applicant: Kawasaki Steel Corporation Osaka Sanso Kogyo Co., Ltd. (4 others) Figure 1
Claims (1)
スから圧力変動式吸着分離法により窒素ガスを除去する
方法において、原料ガス中の一酸化炭素に対して選択吸
着性を有する吸着剤を収納した2つ以上の吸着塔を用い
、その方法は(I) 原料ガスにより吸着塔を加圧し、
(If) さらに原料ガスを吸着塔に流して吸着塔出口
における易吸着成分の濃度が吸着塔入口における易吸着
成分の濃度に達する迄、或いは達した後適当なガス聞ま
たは時間の間原料ガスを流しつづけるか、もしくは両者
の濃度が等しくなる点の少し前まで原料ガスを流して吸
着剤に易吸着成分を吸着させる吸@(1)工程(I[[
) 吸@(■)工程終了俊その吸着塔に製品ガスを導入
して難吸着成分をパージするパージ工程 (IV) パージ工程を終った吸着塔を大気圧又はほぼ
大気圧造減圧し、さらに大気圧以下に排気して、吸着剤
に吸着されている易吸着成分を脱着させて製品ガスとし
て回収する回収工程、及び (V) 製品ガス回収が終った吸着塔と他の吸着(I)
工程の終った吸着塔を連絡して、後者の吸着塔のパージ
工程で排出されるパージガスを前者の吸着塔に導入する
吸着(I)工程から成り、定期的に吸着塔間の流れを変
えて上記操作を繰返すことを特徴とした方法。[Scope of Claims] In a method for removing nitrogen gas from a raw material gas containing at least carbon monoxide gas and nitrogen gas by a pressure fluctuation adsorption separation method, an adsorption agent having selective adsorption properties for carbon monoxide in the raw material gas Using two or more adsorption towers containing the agent, the method is (I) pressurizing the adsorption tower with a raw material gas,
(If) The raw material gas is further passed through the adsorption tower until the concentration of easily adsorbed components at the outlet of the adsorption tower reaches the concentration of easily adsorbed components at the inlet of the adsorption tower, or after that, the raw material gas is supplied for an appropriate gas period or time. The adsorption process (I [[
) Purge step (IV) in which product gas is introduced into the adsorption tower to purge difficult-to-adsorb components as soon as the suction @ (■) step is completed. After the purge step, the adsorption tower is reduced to atmospheric pressure or almost atmospheric pressure, and then A recovery process in which the gas is evacuated to a pressure below atmospheric pressure to desorb easily adsorbed components adsorbed on the adsorbent and recovered as a product gas, and (V) the adsorption column after product gas recovery and other adsorption (I).
The process consists of an adsorption (I) process in which the adsorption towers that have completed the process are connected and the purge gas discharged in the purge process of the latter adsorption tower is introduced into the former adsorption tower, and the flow between the adsorption towers is periodically changed. A method characterized by repeating the above operations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59012585A JPS60155520A (en) | 1984-01-26 | 1984-01-26 | Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59012585A JPS60155520A (en) | 1984-01-26 | 1984-01-26 | Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60155520A true JPS60155520A (en) | 1985-08-15 |
Family
ID=11809427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59012585A Pending JPS60155520A (en) | 1984-01-26 | 1984-01-26 | Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60155520A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2108628A1 (en) * | 1995-03-09 | 1997-12-16 | Isobusbar S L | Method for manufacturing electrical conduits and conduits obtained by this method |
JP2007014792A (en) * | 2006-08-23 | 2007-01-25 | Kobayashi Pharmaceut Co Ltd | Thermotherapy implement |
JP2009023907A (en) * | 2008-09-08 | 2009-02-05 | Kobe Steel Ltd | Gas separation method and gas separation apparatus |
JP2010069452A (en) * | 2008-09-22 | 2010-04-02 | Sumitomo Seika Chem Co Ltd | Method for separating carbon monoxide and carbon monoxide separation apparatus |
JP2011005493A (en) * | 2010-08-20 | 2011-01-13 | Sumitomo Seika Chem Co Ltd | Method for separating carbon monoxide and apparatus for separating carbon monoxide |
-
1984
- 1984-01-26 JP JP59012585A patent/JPS60155520A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2108628A1 (en) * | 1995-03-09 | 1997-12-16 | Isobusbar S L | Method for manufacturing electrical conduits and conduits obtained by this method |
JP2007014792A (en) * | 2006-08-23 | 2007-01-25 | Kobayashi Pharmaceut Co Ltd | Thermotherapy implement |
JP2009023907A (en) * | 2008-09-08 | 2009-02-05 | Kobe Steel Ltd | Gas separation method and gas separation apparatus |
JP2010069452A (en) * | 2008-09-22 | 2010-04-02 | Sumitomo Seika Chem Co Ltd | Method for separating carbon monoxide and carbon monoxide separation apparatus |
JP2011005493A (en) * | 2010-08-20 | 2011-01-13 | Sumitomo Seika Chem Co Ltd | Method for separating carbon monoxide and apparatus for separating carbon monoxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR880000513B1 (en) | Process for removing a nitrogen gas from mixture comprising n2 and co | |
US4775394A (en) | Process for separation of high purity gas from mixed gas | |
US5051115A (en) | Pressure swing adsorption process | |
US6752851B2 (en) | Gas separating and purifying method and its apparatus | |
US4539020A (en) | Methods for obtaining high-purity carbon monoxide | |
EP0273723A2 (en) | Separating a gas enriched in oxygen | |
JPS6026571B2 (en) | Method and apparatus for increasing the proportion of component gases in a gas mixture | |
CA1238868A (en) | Method for obtaining high-purity carbon monoxide | |
Hayashi et al. | Dynamics of high purity oxygen PSA | |
EP0640376A2 (en) | Method for recovering ethylene from ethylene oxide plant vent gas | |
JPH0268111A (en) | Improved pressure swing adsorbing method | |
JPS60176901A (en) | Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption | |
JP3169647B2 (en) | Pressure swing type suction method and suction device | |
JPS60155520A (en) | Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process | |
JPS6137970B2 (en) | ||
JP3219612B2 (en) | Method for co-producing carbon monoxide and hydrogen from mixed gas | |
JPH0112529B2 (en) | ||
JPH04227018A (en) | Manufacture of inert gas of high purity | |
JPS60103002A (en) | Method for purifying carbon monoxide and hydrogen in gaseous mixture containing carbon monoxide, carbon dioxide, hydrogen and nitrogen by adsorption | |
JPH0768119A (en) | Method for separation and recovery of carbon monoxide | |
JPS6139087B2 (en) | ||
JPS60155519A (en) | Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process | |
JP2529928B2 (en) | Method for separating and recovering carbon monoxide gas | |
JPS6097021A (en) | Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method | |
JPS6097022A (en) | Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method |