JPS60176901A - Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption - Google Patents
Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorptionInfo
- Publication number
- JPS60176901A JPS60176901A JP59030006A JP3000684A JPS60176901A JP S60176901 A JPS60176901 A JP S60176901A JP 59030006 A JP59030006 A JP 59030006A JP 3000684 A JP3000684 A JP 3000684A JP S60176901 A JPS60176901 A JP S60176901A
- Authority
- JP
- Japan
- Prior art keywords
- bed
- gas
- adsorption
- hydrogen
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
- B01D53/0476—Vacuum pressure swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/102—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/104—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/10—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/16—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/102—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/502—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40028—Depressurization
- B01D2259/4003—Depressurization with two sub-steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40035—Equalization
- B01D2259/40037—Equalization with two sub-steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40043—Purging
- B01D2259/4005—Nature of purge gas
- B01D2259/40052—Recycled product or process gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40058—Number of sequence steps, including sub-steps, per cycle
- B01D2259/40067—Seven
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/403—Further details for adsorption processes and devices using three beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/414—Further details for adsorption processes and devices using different types of adsorbents
- B01D2259/4141—Further details for adsorption processes and devices using different types of adsorbents within a single bed
- B01D2259/4145—Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Gases By Adsorption (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は圧力変動式吸着法(pressure−3wi
ng−Atlsorption : PSA)によって
、石油化学プラント・還元炉、焼鈍炉等のU1ガスにお
いて少なくとも水素ガスを含む混合ガス中の水素ガス濃
度を上昇させ、または水素ガスと同時に水素ガス以外の
第2難吸着ガスを同時に回収しうる安価な設備と安価な
運転費のもとに回収する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a pressure-3wi adsorption method.
(ng-Atlsorption: PSA) to increase the concentration of hydrogen gas in a mixed gas containing at least hydrogen gas in U1 gas of petrochemical plants, reduction furnaces, annealing furnaces, etc., or to simultaneously increase the concentration of hydrogen gas in a mixed gas other than hydrogen gas. This invention relates to inexpensive equipment that can simultaneously recover adsorbed gases and a method for recovering them at low operating costs.
PSA法とは高い圧力で吸着剤に気体を選択的に吸着さ
せ、低い圧力で脱着させる操作を繰返して混合ガスkm
縮・分離する方法である。2種以−ヒの気体混合物をあ
る吸着剤床に通した時その吸着剤は、その混合気体中に
含まれる成分に対し選択吸着性を有する。このため特定
の吸着剤を使用してPSA法により、混合ガス中の不純
物成分を吸着除去し、混合ガスの分離・濃縮が可能とな
る。The PSA method involves repeating the process of selectively adsorbing gas onto an adsorbent at high pressure and desorbing it at low pressure.
This is a method of shrinking and separating. When a mixture of two or more gases is passed through a bed of adsorbent, the adsorbent has selective adsorption properties for the components contained in the gas mixture. Therefore, the impurity components in the mixed gas can be adsorbed and removed by the PSA method using a specific adsorbent, and the mixed gas can be separated and concentrated.
圧力変動式吸着分離方法により、混合ガスから水素ガス
を吸着分離する方法は公知であり、古くから実施されて
いる。例えばエッソ社の特公昭38−25969および
特公昭39−208等なうo: +/cユニオンカーバ
イド社の特公昭38−23928、特公昭43−284
、および特公昭55−12295等に記されているが、
いづれも高い吸着圧力を用いて吸着分離回収をはかつて
いるだめに、混合ガスを圧縮するための動力エネルギー
を多く消費し、そのエネルギー回収のために複雑な工程
が考えられ装置、操作が複雑になる等の問題がある。本
発明の目的は、このような欠点を改良して簡便な装置操
作並びに混合ガスの圧縮動力の低下によって安価な水素
ガス或は水素ガスとその池のガスの2種混合ガスの回収
法を提供することにある。A method of adsorbing and separating hydrogen gas from a mixed gas using a pressure fluctuation adsorption separation method is well known and has been practiced for a long time. For example, Esso's Special Publication No. 38-25969 and Special Publication No. 39-208, etc. +/c Union Carbide Company's Special Publication No. 38-23928, Special Publication No. 43-284
, and the Special Publication No. 55-12295, etc.,
In both cases, high adsorption pressure is used for adsorption separation and recovery, which consumes a lot of power energy to compress the mixed gas, and requires complicated processes to recover that energy, making the equipment and operations complicated. There are problems such as: The purpose of the present invention is to improve such drawbacks and provide a method for recovering hydrogen gas or a mixture of two gases, hydrogen gas and pond gas, at low cost by simplifying the operation of the device and reducing the compression power of the mixed gas. It's about doing.
石油化学、還元炉、焼鈍炉等の水素ケ含む排ガスは現在
大気中に廃棄するか燃焼させている。この排ガスより水
索工不ルキを回収し資源エネルギーの節約に資している
が、まだごくわずかしか行なわれていない。そこで本発
明者らは水素並ひに水素と水素以外の一成分の混合ガス
の6慢度を上昇させると共に不純物成分を除去し、石油
化学、還元炉、焼鈍炉等の原料ガスとして利用すること
に着目しPSA法を鋭意検討した結果以下の事を発見し
た。Exhaust gases containing hydrogen from petrochemical, reduction furnaces, annealing furnaces, etc. are currently disposed of in the atmosphere or burned. Although water cable waste is recovered from this exhaust gas and contributes to resource and energy conservation, this practice is still very limited. Therefore, the present inventors raised the temperature of hydrogen or a mixed gas of hydrogen and one component other than hydrogen, removed impurity components, and used it as a raw material gas for petrochemicals, reduction furnaces, annealing furnaces, etc. As a result of intensive study of the PSA method, we discovered the following.
適当な吸着剤を選択することによって水素を含む混合ガ
スより水素を分離することは当業者にとつては常識的な
ことである。そのためPSA法により水素、炭酸ガス、
酸素或は窒素等を分離するためのlli願および特許が
存在する。It is common knowledge to those skilled in the art to separate hydrogen from a hydrogen-containing gas mixture by selecting an appropriate adsorbent. Therefore, hydrogen, carbon dioxide gas,
There are patent applications and patents for separating oxygen, nitrogen, etc.
しかしこれらはいづれも一般に複数の吸着床を用いて[
吸着−減圧一説着一加圧」の基本的な工程を繰返して行
なわれる上記の複数よりなる吸着床においても吸着、減
圧、脱着、加圧の工程が繰返される。一般に加圧は電気
エネルギーを使用するガス圧縮機により行なわれる。そ
のための加圧のための電気エネルギーの使用量は吸着床
の圧力に比例する。吸着床の圧力を高くすれば混合ガス
中の分離効率は増大するが電力費用も増大する。However, all of these generally require the use of multiple adsorption beds [
The steps of adsorption, depressurization, desorption, and pressurization are also repeated in the above-mentioned adsorption bed, which repeats the basic process of "adsorption - depressurization, one adhesion, one pressurization". Pressurization is generally accomplished by a gas compressor using electrical energy. The amount of electrical energy used for pressurization is proportional to the pressure of the adsorption bed. Increasing the pressure of the adsorption bed increases separation efficiency in mixed gases, but also increases electricity costs.
又吸着床の圧力を低くすれば電気エネルギーは節約出来
るが分離効率がなる。そこで一般に水素を含む混合ガス
から水素或は/または水素と水素以外の一成分の混合ガ
スを分離 am M製する場合高い圧力(9kg/、:
m2G以上ンで行なわれ、吸着後の吸着床内ガスを種々
工夫しエネルギーの回収につとめている。即ち一旦加圧
したエネルギの損失をいかに防ぐかに力をそいでいるが
、本発明者らは加圧エネルギを当初より少なくしていか
に効率よく分離・濃縮出来るかを鋭意検訓してきた結果
特開昭53−99091号の加圧の際のエネルギー全低
減する方法、或は吸着工程の開始時においても、吸着圧
以下で吸着工程を開始し、吸着工程中にその吸着圧を増
加させて混合ガスを分離する方法特開昭 を提案したも
のをも
とにPSA法における工程を幅広く研究を行ない本方法
を発見したもので、少なくとも水素を含む混合ガスより
不純物成分を除去して水素、或は/または水素と水素以
外の一成分の混合ガスを安価に製造する方法を提供する
ものである。Also, lowering the adsorption bed pressure can save electrical energy but increase separation efficiency. Therefore, in general, hydrogen or/or a mixed gas of hydrogen and one component other than hydrogen is separated from a mixed gas containing hydrogen at a high pressure (9 kg/,:
The process is carried out at m2G or more, and efforts are being made to recover energy by using various techniques for the gas in the adsorption bed after adsorption. In other words, we are focusing on how to prevent the loss of energy once pressurized, but the inventors of the present invention have worked hard to find out how to efficiently separate and concentrate by reducing the pressurizing energy. The method of reducing the total energy during pressurization as disclosed in Japanese Patent Publication No. 53-99091, or even at the start of the adsorption process, starts the adsorption process below the adsorption pressure and increases the adsorption pressure during the adsorption process to mix. This method was discovered after extensive research on the steps in the PSA method, based on the method proposed in JP-A-Sho (Japanese Patent Application Laid-Open No. 2002-120000). This method removes impurity components from a mixed gas containing at least hydrogen to produce hydrogen or The present invention provides a method for inexpensively producing a mixed gas containing hydrogen and one component other than hydrogen.
第1番目の発明は、少なくとも水素を含む混合ガスより
水素或は/捷たけ水素と水素以外の一成分の混合ガスを
吸着法を用いて濃縮するに際して少なくとも3つの床が
使用され、各床には混合ガス中の不純物成分の少なくと
も一つに対して選択吸着性を有する吸着剤が充填されて
おり、各床は入口端及び出口端余有し、その方法は
(1)均圧加圧]工程が終った床に原料ガスを導入して
、吸着工程の終点1だは終点近く或は吸着工程中に吸着
圧力に到達するように加圧を行ないながら吸着剤に不純
物成分を吸着させて水素或は、/1だは水素と水素以外
の一成分の混合ガス(以後製品ガスと云う)を得る吸着
(I+工程、(111吸着(IIl工程終った床と以下
の製品ガスによる加圧二[程(vI)が終った床とを連
絡させて、両法の圧力のほぼ平均化を実施する均圧工程
、(iii+ 均圧放圧工程が終った床を排気工程か終
った床と連結して前者の床からの減圧ガスを後者の床の
排気パーンガスとして用い大気圧付近に保持することに
より床内の残留ガス全放出する減圧工程、
(1v)床内全減圧排気装置を用いて減圧排気する排気
工程、
(VJ 排気を行ないながら均圧工程の終った床の減圧
工程中のガス全パーンガスとして用いながら排気を行な
う排気パージ工程、・
(■1) 排気パージ工程が縫った床に製品ガスを流し
て、その床の加圧を行なう製品ガスカロ圧工程、および
(Vlil 製品ガスによる加圧工程が終った床と吸着
工程が終った床とを連絡して、後者の床より放出される
ガス全前者の床に導入して前者の床を力0圧する吸着■
)均圧工程、
からなり、定期的に流れを変えて上記操作を、繰返して
なることf:%徴とした濃縮方法に関する。In the first invention, at least three beds are used when concentrating hydrogen or/a mixed gas of extracted hydrogen and one component other than hydrogen from a mixed gas containing at least hydrogen, using an adsorption method. is filled with an adsorbent that selectively adsorbs at least one of the impurity components in the mixed gas, each bed has an inlet end and an outlet end, and the method is (1) Equal pressure pressurization] A raw material gas is introduced into the bed where the process has been completed, and impurity components are adsorbed on the adsorbent while pressurizing to reach the adsorption pressure at or near the end point 1 of the adsorption process or during the adsorption process. Alternatively, /1 is adsorption (I+ step) to obtain a mixed gas of hydrogen and one component other than hydrogen (hereinafter referred to as product gas), (111 adsorption (II) pressurization with the bed after step IIl and the following product gas). A pressure equalization step where the pressure of both methods is approximately averaged by connecting the bed where step (vI) has been completed, and (iii+) connecting the bed where the pressure equalization and pressure relief step has been completed with the bed where the exhaust step has been completed. (1v) A depressurization process in which all residual gas in the bed is released by using the decompressed gas from the former floor as exhaust gas for the latter bed and maintaining it near atmospheric pressure. Exhaust process (VJ) Exhaust purge process in which exhaust is performed while using the entire gas during the depressurization process on the floor after the pressure equalization process as purging gas (■1) Product gas is removed from the floor where the exhaust purge process (Vlil) The bed where the pressurization process with the product gas has finished and the bed where the adsorption process has finished are connected, and the gas released from the latter bed is connected. Adsorption that introduces into all the former floors and brings the former floor to zero pressure■
) A pressure equalization step, and the above operation is repeated by changing the flow periodically.
本発明で使用される吸着剤は吸着床の下りより水分除去
用にシリカゲル、活性アルミナ混合ガス中の不純物成分
除去に活性炭ゼオライト糸物質(例えばA%X、 K型
モレキュラーシーフ、天然或は改質又は合成モルナナイ
ト、等lと3層以上に又、活性炭、ゼオライ系物質の粒
度全下層より順久小さくしたものを使用する。The adsorbent used in the present invention is silica gel for removing water from the bottom of the adsorption bed, activated carbon zeolite thread material (for example, A%X, K type molecular thief, natural or modified Alternatively, use synthetic mornanite, etc., in three or more layers, or activated carbon or zeolite material whose particle size is much smaller than the entire lower layer.
第2番目の発明は第1番目の発明の工8(1山すなわち
吸着(Il工程が終わった床と以下の製品ガスによる加
圧工程(1v)が終わった床とを連結して両法の圧力の
ほぼ平均化を実施する均圧工程の代わシに、吸着fIl
工程の終わった床と以下の製品ガスによる加圧工程(v
l)が終わった床とを連絡して両床の圧力のほぼ平均化
を実施すると同時に吸着(11工程の終わった吸着床の
床下部の原料ガス入口端より床内ガスの一部を放出する
均圧放出工程を実施する点で第1番目の発明と異なる。The second invention is to connect the step 8 of the first invention (one pile, that is, the bed where the adsorption (Il step has been completed) and the bed where the following pressurization step (1v) using the product gas has been completed, to obtain both methods. Instead of a pressure equalization step that approximately equalizes the pressure, the adsorption fIl
Pressure process (v
Connect the bed where step 1) has been completed to approximately equalize the pressure of both beds, and at the same time release a portion of the gas in the bed from the feed gas inlet end at the bottom of the adsorption bed where step 11 has been completed. This invention differs from the first invention in that an equal pressure discharge step is carried out.
(H,’ (iiil、(1v)、(v)、(vl)お
よび(vll)工程に関して、第1番目ノ発明と第2番
目の発明は同じである。The first invention and the second invention are the same with respect to the (H,' (iiil, (1v), (v), (vl), and (vll) steps).
以下本発明の工程を詳しく説明する。The steps of the present invention will be explained in detail below.
(1)吸着工程 吸着床の下部入口端の原料ガス入口バ
ルブより混合ガスを並流方向に導入し、該吸着床の圧力
全均圧加圧圧力より徐々に加圧しながら吸着さ一♂製品
ガスを上部出口端より抜きとる工程であって、この吸着
工程の初期に該吸着床の圧力が製品ガスのバッファタン
クの圧力より低い」烏合は製品ガスが逆流しない様にバ
ッファタンクの入口側に逆流防止バルブを用いて逆流を
防止する。(1) Adsorption process The mixed gas is introduced in parallel flow direction from the raw material gas inlet valve at the lower inlet end of the adsorption bed, and the product gas is adsorbed while gradually increasing the pressure from the total pressure equalization pressure of the adsorption bed. In this process, the pressure of the adsorption bed is lower than the pressure of the product gas in the buffer tank at the beginning of this adsorption process. Prevent backflow using a prevention valve.
吸着工程の終点捷たは終点近く或は吸着工程中に吸着剤
に不純物成分を吸着させて製品ガスを得る吸着(Tl
エイ呈
(111均圧(放出工程、吸着床の吸着(I+工程が終
了後、混合ガスの導入を停正し、吸着(II工程が終つ
た床と製品ガスによる加圧工程(vl)が終った床とを
連結して、両法の圧力がほぼ平均化を実施する均圧工程
。この場合内床の圧力のほぼ平均化と同時に吸着床の下
部の原料ガス入口端より入口端側の吸着剤間の空隙にあ
るガスと吸着剤より脱着してくるガスを放出しても良い
。床内圧力が平均すると放出バルブと均圧バルブを閉じ
均圧化を終了する。Adsorption (Tl
After the adsorption (I+ step of the adsorption bed is completed, the introduction of the mixed gas is stopped, and the pressure step (vl) using the bed where the adsorption (II step has ended and the product gas) is completed. A pressure equalization process in which the pressures of both methods are almost averaged by connecting the inner bed.In this case, the pressure of the inner bed is almost averaged, and at the same time the adsorption from the raw material gas inlet end to the inlet end side of the lower part of the adsorption bed The gas in the gap between the agents and the gas desorbed from the adsorbent may be released.When the pressure in the bed is averaged, the release valve and the pressure equalization valve are closed to complete the pressure equalization.
1ii) 均圧(tiy:、出ン工程終了後の吸着床を
排気が終った床と連結して減圧放出するガス全排バー)
として用い床内全大気圧付近(Cなる1で床内の残留ガ
スを放出する減圧工程
(1■〕排気工程は大気圧伺近Cてなった吸着床を該吸
着床の下部のバルフ全介して減圧排気装置(真空ポンプ
、エジェクター、ブロワ−等)により床内のガスを好甘
しくけ向流方向に排気する工程(V)排気パージ工程は
減圧排気中に吸着床の製品取出し端側より減圧−[程に
おけろ減圧放出ガス全向流方向に通し吸着?’<11に
吸着している不純物成分を脱着排気する工程
(四製品ガス加圧工程は好壕しくけ製品ガスを向流方向
に加圧する。このとき床内に残留する微量の不純物成分
を床下部に押し下げる効果と次工程の均圧(,7111
圧]工程時に吸着帯の乱れを防ぐために製品ガス加圧バ
ルブにより最適量の製品ガスで吸着床を加圧する工程。1ii) Pressure equalization (tiy: a gas exhaust bar that connects the adsorption bed after the completion of the extraction process with the bed after exhaustion and releases it under reduced pressure)
The depressurization process (1) releases the residual gas in the bed at a temperature close to the total atmospheric pressure (C) in the bed. (V) The exhaust purge process is a process in which the gas in the bed is preferably exhausted in a countercurrent direction using a decompression exhaust device (vacuum pump, ejector, blower, etc.). Depressurization - [In the process of depressurization, the emitted gas is passed in all countercurrent directions for adsorption?' Pressure is applied in the direction of
Pressure] A process in which the adsorption bed is pressurized with the optimum amount of product gas using a product gas pressurization valve to prevent disturbance of the adsorption bed during the process.
(viil均圧(力日圧〕工程、吸着(I)工程終了後
の吸着床と製品ガスが終了後の床とを連結して、前者の
床内に残留ガスを後者の床に回収する工程で吸着床の原
料ガス入口端より並流で圧力が平均化(均等化)される
。この工程終了後前記(1)吸着(I)工程へ移行して
連続運転される。(viil pressure equalization (pressure) step, a step in which the adsorption bed after the adsorption (I) step is connected to the bed after the product gas has been removed, and the residual gas in the former bed is recovered into the latter bed. In this step, the pressure is averaged (equalized) in parallel flow from the raw material gas inlet end of the adsorption bed.After this step is completed, the process shifts to the adsorption (I) step (1) and is continuously operated.
本実施例は図のフローシートに示すよう0て3吸着床全
第1表の工程操作人に示すように7エ程を9ステツプに
よって実施した。In this example, 7 processes were carried out in 9 steps as shown in the flow sheet shown in the figure and 3 adsorption beds and the process operator shown in Table 1.
以下本発明の代表的な具体例である還元炉排ガス中の不
純物成分を除去し、水素ガスと窒素ガスの混合ガス全分
離回収する方法に基ついて、本発明の詳細な説明するが
本発明の方法は、これらの具体例に限定されるものでは
ない。The present invention will be described in detail below based on a typical example of the present invention, which is a method for removing impurity components in reduction furnace exhaust gas and completely separating and recovering a mixed gas of hydrogen gas and nitrogen gas. The method is not limited to these specific examples.
図は吸着法により還元炉排ガスから不純物成分(易吸着
成分)を除去し、難吸着成分の水素と水素以外の一成分
(窒素)を分離濃縮するフローシートである。The figure is a flow sheet for removing impurity components (components that are easily adsorbed) from reduction furnace exhaust gas using the adsorption method, and separating and concentrating hydrogen, which is a component that is difficult to adsorb, and one component other than hydrogen (nitrogen).
吸着床A、B、C,は不純物成分(易吸着成分)を選択
的に吸着する吸着剤が収納されている。吸着床A、B、
C,を減圧排気装置を用いて減圧排気k 300 To
rr以下好丑しくは100 Torr 〜50 Tot
rまで行うためにバルブ(19)、(2o)、(211
’if開き活性化を行う。今、吸着床Aに製品ガス全導
入、真空状態より昇圧させるためにバルブ(10)を開
くことによって行う。バルブ(1o)以外は、すべて閉
である。製品ガスカ旺E f、均圧力日圧終了圧に達す
るとバルブ(1o)は閉になり吸着圧力0.05 kg
/Cm2Gから3 kg/ cs 2G、好捷しくは0
.1kg/Cln2Gから1 kg/Cm2Gの吸着圧
力f11つ様にバルブ(1)と(2)が開かれ、原料ガ
ス中の不純物成分が吸着剤に選択吸着され、先っ);1
を吸着成分である水素が吸着床iij D端バルブ(2
)より排出され逆流防止バルブCVを通って製品タンク
に導入される。水素のみを濃縮回収する場合は第2難吸
着成分の窒素が破過(検出ンする前に吸着工程を終了す
れば良い。混合ガスを回収する場合はさらに吸着工程を
続行し第2難吸着成分(g素)が破過する1て捷たは、
混合ガスの希望濃度に達する点で吸着工程を終了する様
Vこ吸着時間或は製品ガス抜きとり風全設定すれば良い
。Adsorption beds A, B, and C contain adsorbents that selectively adsorb impurity components (easily adsorbed components). Adsorption beds A, B,
C, is decompressed using a decompression exhaust device k 300 To
rr or less preferably 100 Torr ~ 50 Tot
Valve (19), (2o), (211
'if open and activate. Now, the entire product gas is introduced into the adsorption bed A by opening the valve (10) to increase the pressure from the vacuum state. All except valve (1o) are closed. When the product gas capacity E f reaches the equalized daily pressure end pressure, the valve (1o) closes and the adsorption pressure is 0.05 kg.
/Cm2G to 3 kg/cs 2G, preferably 0
.. Valves (1) and (2) are opened at an adsorption pressure f1 of 1 kg/Cln2G to 1 kg/Cm2G, and impurity components in the raw material gas are selectively adsorbed by the adsorbent.
Hydrogen, which is an adsorbed component, is absorbed by the adsorption bed Iij D end valve (2
) and is introduced into the product tank through the backflow prevention valve CV. When only hydrogen is concentrated and recovered, the adsorption step can be completed before nitrogen, the second poorly adsorbed component, breaks through (detected).When recovering a mixed gas, the adsorption step is continued and the second difficultly adsorbed component When (g element) breaks through,
The adsorption time or the product gas removal air may be set so that the adsorption process ends when the desired concentration of the mixed gas is reached.
吸着工程終了後バルブ(1)(21は閉じられ、均圧放
圧のためのバルブ(7)(19)全開にし製品ガス加圧
終了床(B)とを連結し、吸着床Aの床内残留ガスを吸
着床Bの圧力が平均化する壕で行うと同時に吸着時の不
純物成分の吸着帯が吸着床出口端側V(移動しない様に
原料ガス人口端側のバルブ(10)」:り故圧し不純物
成分を大気側に放出する。吸着床A、Bが平均化すれば
バルブ(7)は閉じ、バルブ(13)全開にし、平塚ヒ
度の吸着床<A、)の残りガスを吸着床Cの排気パージ
ガスとして排気工程終了床Cのバー ンガス用として用
いろ。この時不純物成分の吸着液か多い場合は、バルブ
(10)からも少し放圧を続行しても良い(第2番目の
発明)。After the adsorption process is completed, the valves (1) (21) are closed, and the valves (7) (19) for pressure equalization are fully opened and the product gas is connected to the bed (B) after pressurization, and the inside of the adsorption bed A is closed. At the same time, the residual gas is removed in a trench where the pressure of the adsorption bed B is averaged, and at the same time, the adsorption zone of impurity components during adsorption is removed from the adsorption bed outlet end V (the valve (10) on the raw material gas end side so that it does not move). After the pressure is released, the impurity components are released to the atmosphere. When the adsorption beds A and B are averaged, the valve (7) is closed, and the valve (13) is fully opened to adsorb the remaining gas in the Hiratsuka adsorption bed <A,). Use it as the exhaust purge gas for bed C and the burn gas for bed C that has completed the exhaust process.At this time, if there is a large amount of adsorbed liquid for impurity components, you may continue to release the pressure a little from the valve (10). invention).
これは必らず行う必要はない。減圧放圧工程て吸着床A
が大気圧付近になるとバルブ(10) (J3) +〆
」閉じ、吸着床内の吸着剤間の空隙のガスを排気するた
めに威圧排気装置を用いて300 Torr以下好寸し
くは10 (JTorrから50 Torr!′C1r
LIEJ’Jl’気を行う。減圧排気終了後減圧放圧か
らの放出ガスによって吸着剤粒子間の空隙からの不純物
成分を脱着させろために減圧排気を行ないながら行う。This does not necessarily have to be done. Adsorption bed A in the depressurization process
When the pressure becomes close to atmospheric pressure, the valve (10) (J3) is closed, and a high-pressure exhaust device is used to exhaust the gas in the gaps between the adsorbents in the adsorption bed. From 50 Torr!'C1r
Do LIEJ'Jl'ki. After the evacuation is completed, evacuation is performed while evacuation is being carried out in order to desorb impurity components from the voids between the adsorbent particles by the gas released from the evacuation.
この時の排気バー7圧力は200 Torr以下好以下
上くは150 Torγ以下で行う。排気バーン終了後
バルブ(19)を閉じ製品ガス加圧を行うためにバルブ
(16)を開く。このとき、製品卯圧流縫を調節するだ
め、バルブ(221を用い、排気パーツで完全に除去し
きれずにわずかな残留不純物りy分を原料ガス入口端側
におしやるためゆっくりとカ旧玉を行う。製品ガス刀n
圧7終了後吸着工・j俣終了床Cとを連結して吸着工程
終了後床内に残留している水素を系外に放出することな
く回収する様に吸着床Af力[1圧するために用いる。At this time, the pressure of the exhaust bar 7 is set to 200 Torr or less, preferably 150 Torr or less. After the exhaust burn is completed, the valve (19) is closed and the valve (16) is opened to pressurize the product gas. At this time, in order to adjust the product pressure flow sewing, the valve (221) is used to slowly discharge the remaining impurities that could not be completely removed by the exhaust part to the raw material gas inlet end. Do the product gas sword n
After the completion of pressure 7, the adsorption process is connected to the end bed C, and after the completion of the adsorption process, the adsorption bed Af force [1 pressure use
上記操作をそれぞれの吸着床においてj−次繰返すこと
によって連続的に吸着剤に不純物成分を吸着させて水素
或は水素と窒素を分離濃縮することが出来る。By repeating the above operation j-th time in each adsorption bed, impurity components can be continuously adsorbed onto the adsorbent, and hydrogen or hydrogen and nitrogen can be separated and concentrated.
実施例1、
以下本発明をさらに具体的に説明するため還元炉排ガス
(H2= 52% N2−42% C0=5%CO2−
1% NH4−300pyym )の濃縮・精製を試み
た。Example 1 In order to further specifically explain the present invention, reduction furnace exhaust gas (H2 = 52% N2 - 42% C0 = 5% CO2 -
An attempt was made to concentrate and purify 1% NH4-300pyym).
M製工程として既述の如く「吸着−均圧放圧一減圧一排
気一排気バージー製品ガス加圧−均圧(吸着1■)」の
精製サイクルにもとついて実施した。As described above, the M-manufacturing process was carried out based on the purification cycle of "adsorption-equalization pressure relief-depressurization-exhaust-exhaust bargie product gas pressurization-equalization (adsorption 1)".
活性アルミナ64に9 活性炭%“ペレット115ky
ゼオライト昂“ペレット240kgを充填した鋼製の吸
着床(24x 4.3m) k減圧排気して100 T
orγに保った後、上記排ガスを線速2.Ocm/se
cで床の下部より導入して濃縮・精製を実施した。Activated alumina 64 to 9% activated carbon pellets 115ky
Steel adsorption bed (24 x 4.3 m) packed with 240 kg of zeolite pellets and evacuated to 100 T
After maintaining the exhaust gas at a linear velocity of 2. Ocm/se
Concentration and purification were carried out by introducing the solution from the bottom of the bed at step c.
供給ガス量200m3に対し製品ガスとして105m3
回収した。このときの水素ガスの濃度75%、窒素ガス
25%、水素ガスの回収率としては約76%であ・一
実施例2゜
実施例1の装置を用いて「吸着(I)−均圧放圧−減圧
−排気−排気バージー製品ガス加圧−均圧(吸着(11
」の精製サイクルにもとづいて実施しだ。105m3 of product gas for 200m3 of supplied gas
Recovered. At this time, the concentration of hydrogen gas was 75%, the nitrogen gas was 25%, and the recovery rate of hydrogen gas was about 76%. Pressure - Depressurization - Exhaust - Exhaust bargie Product gas pressurization - Equal pressure (Adsorption (11)
It was carried out based on the refining cycle of ``.
活性アルミナ64 kg、活性炭%″ペレノ目5kg、
ゼオライト%“ペレット240kj7−i充填した鋼、
aの吸着床<24BX4.3−m)fc減圧JIIL気
して100 Torrに保った後還元炉排ガス(H2=
52%、A’2= 42%、C0=4%、002=2%
NJ−132000ppm)の精製・a稲を実施した
。64 kg of activated alumina, 5 kg of activated carbon%
Steel filled with zeolite% pellets 240kj7-i,
Adsorption bed of a<24B
52%, A'2=42%, C0=4%, 002=2%
Purification of NJ-132000ppm) and a-rice production were carried out.
供給ガス量194m”に対して製品ガスとして98m3
回収した。このときの水素、窒素の混合ガスの割合は水
素ガス80%、窒素ガス20%の濃度で水素ガス回収率
として約77.7%であった。98m3 of product gas for the supplied gas amount of 194m”
Recovered. At this time, the ratio of the mixed gas of hydrogen and nitrogen was 80% hydrogen gas and 20% nitrogen gas, and the hydrogen gas recovery rate was about 77.7%.
3床式の場合のザイクル構成例(第1番目の発明)は以
下の通りである。An example of cycle structure (first invention) in the case of a three-bed type is as follows.
別の態様のサイクル構成例(第2番目の発明う二重下の
通りである。An example of the cycle configuration of another aspect (the second invention is as shown below).
本発明では3つの床を使用した態様について説明したが
、4つ以上の床を使用しても良い。In the present invention, an embodiment using three beds has been described, but four or more beds may be used.
図は本発明方法全実施するための好ましい装置のフロー
シートである。
特許出願人 大阪酸素工業沫式会社
(外4名)
手 続 補 正 書
1.事件の表示
昭和59年特許願第3000.!S 号2、発明の名称
ろ、補正をする者
4、代理人
5袖正の対象
明細書の〔発明の詳細な説明〕の欄
6補正の内容
(1)明細書第10頁第16行〜14行全部を「のもの
を使用する。」に訂正する。
(2)明細書を次のように訂正する。
頁 行 訂正前 訂正後
゛6 11 エネルギを エネルギーを7 14 効率
がなる 効率が悪くなる。
7 19 エネルギを エネルギーを
トド
11 19 (放出工程 (放出)工程1411〜12
パルプ(10) パルプ(16)4 12
4 14
15 9 (7)(入9) (7)
15 16 平均化度 平均化後
身 上The figure is a flow sheet of a preferred apparatus for carrying out the entire method of the invention. Patent applicant Osaka Sanso Kogyo Shishiki Co., Ltd. (4 others) Procedures Amendment 1. Display of the incident 1982 Patent Application No. 3000. ! S No. 2, Name of the invention, Person making the amendment 4, Agent 5 Column 6, [Detailed description of the invention] of the subject specification to be corrected, Contents of the amendment (1) Page 10, line 16 of the specification Correct all 14 lines to ``Use the one.'' (2) The description shall be amended as follows. Page Line Before correction After correction゛6 11 Energy 7 14 Efficiency increases Efficiency decreases. 7 19 Energy Todo Energy 11 19 (Release process (Release) process 1411-12
Pulp (10) Pulp (16) 4 12 4 14 15 9 (7) (9) (7) 15 16 Averaging degree Averaging back body Top
Claims (1)
−!だは水素と水素以外の一成分の混合ガスを吸着法を
用いて濃縮するに際して、少なくとも3つの床が使用さ
れ、各床には混合ガス中の不純物成分の少なくとも一つ
に対して選択吸着性を有する吸着沖]が充填されており
、各床は入口端及び出口端を有し、その方法は (1)均圧加圧工程が終った床に原料ガスを導入して、
吸着工程の終点捷たは終点近く或は吸着工程中Oて吸着
圧力に到達するようにカロ圧を行ないながら吸着剤に不
純物成分を吸着させて水素或は/または水素と水素以外
の一成分の混合ガス(以後製品ガスと云う)を得る吸着
(II工程、の圧力のほぼ平均化を実施する均圧工程、
fiin 均圧工程が終った床を排気工程が終った床と
連絡して前者の床からの減圧ガスを後者の床の排気パー
ジガスとして用い大気圧付近に保持することにより床内
の残留ガスを放用する減圧工程、OV)床内全減圧排気
装置を用いて減圧排気する排気工程、 (V) 排気を行ないながら均圧工程の終った床の減圧
工程中のガスをパーツガスとして用いながら排気を行な
う排気パージ工程、 (■1)排気パージ工程が終った床に製品ガスを流して
、その床の加圧を行なう製品ガス加圧工程、および 切り 製品ガスによる加圧工程が終っンそ床と吸着工程
が終った床と全連絡して、後者の床よシ放出されるガス
を前者の床に導入して前者の床を加圧する一着叶均圧工
程、 からなり、定期的に流れを変えて上記操作を繰返してな
ることを特徴とした濃縮方法。 (2)少なくとも水素を含む混合ガスより水素或は/−
または水素と水素以外の一成分の混合ガスを吸着法を用
いて濃縮するに際して、少なくとも3つの床が使用され
、各床には混合ガス中の不純物成分の少なくとも一つに
対して選択吸着性を有する吸着剤が充填されており、各
床は入口端及び出口端を有し、その方法は (1)均圧加圧工程が終った床に原料ガスを導入して、
吸着工程の終点捷たは終点近く或は吸着工程中に吸着圧
力に到達するように加圧を行ないながら吸着剤に不純物
成分を吸着させて水素或は/またば水素と水素以外の一
成分の混合ガス(以後製品ガスと云う)を得る吸着(I
+工程、((1) 吸着(II工程が終った床と以下の
製品ガスによる加圧工程(Vθが終った床とを連絡させ
て、両法の圧力のほぼ平均化を実施すると同時に吸着(
Il工程の終った吸着床の床下部の原料ガス入口端より
床内ガスの一部を放出する均圧放圧工程、(iii)
均圧放圧工程が終った床を排気工程が終った床と連結し
て前者の床からの減圧ガス全後者の床の排気パージガス
として用い大気圧付近に保持することにより床内の残留
ガスを放出する減圧工程、 (Vl 床内を減圧排気装置を用いて減圧排気する排気
工程、 (Vl 排気を行ないながら均圧工程の終った床の減圧
工程中のガスをバーンガスとして用いながら排気を行な
う排気バーン工程、 (vO排気パージ工程が終った床すこ製品ガスを流して
、その床の加圧を行なう製品ガス加圧[程、お、Lび (Vlll 製品ガスによるカロ圧工程が終った床と吸
着工程が終った床と全連絡して、後者の床より放出され
るガスを前者の床に導入して前者の床を加圧する吸着Q
TI均圧工程、 からなり、足期的に流れを変えて、上記操作を繰返して
なることを特徴とした濃縮方法。[Scope of Claims] (1) Hydrogen or/or a mixed gas containing at least hydrogen
-! When concentrating a gas mixture of hydrogen and one component other than hydrogen using an adsorption method, at least three beds are used, and each bed has a selective adsorption property for at least one of the impurity components in the gas mixture. Each bed has an inlet end and an outlet end, and the method is (1) introducing the raw material gas into the bed where the pressure equalization and pressurization process has been completed;
At or near the end point of the adsorption process or during the adsorption process, impurity components are adsorbed on the adsorbent while applying Calo pressure to reach the adsorption pressure. a pressure equalization step to approximately equalize the pressure of adsorption (Step II) to obtain a mixed gas (hereinafter referred to as product gas);
fiin The bed where the pressure equalization process has been completed is connected to the floor where the exhaust process has been completed, and the reduced pressure gas from the former bed is used as the exhaust purge gas for the latter bed, and the residual gas in the bed is released by maintaining the pressure near atmospheric pressure. OV) Exhaust process that uses a full in-bed depressurization exhaust system to depressurize the exhaust, (V) Exhaust while performing exhaust while using the gas during the depressurization process of the bed that has finished the pressure equalization process as a part gas. (■1) A product gas pressurization process in which the product gas is passed through the bed where the exhaust purge process has finished and the bed is pressurized; The process consists of a pressure equalization process in which all the beds that have completed the adsorption process are connected, and the gas released from the latter bed is introduced into the former bed to pressurize the former bed, and the flow is periodically controlled. A concentration method characterized by repeating the above operation with different changes. (2) Hydrogen or/- from a mixed gas containing at least hydrogen
Or, when concentrating a mixed gas of hydrogen and one component other than hydrogen using an adsorption method, at least three beds are used, and each bed has selective adsorption properties for at least one impurity component in the mixed gas. Each bed has an inlet end and an outlet end, and the method is (1) introducing a raw material gas into the bed where the pressure equalization and pressurization process has been completed;
At or near the end point of the adsorption process or during the adsorption process, pressurization is applied to reach the adsorption pressure, and impurity components are adsorbed onto the adsorbent to form hydrogen or/or hydrogen and one component other than hydrogen. Adsorption (I) to obtain a mixed gas (hereinafter referred to as product gas)
+ step, ((1) Adsorption (II step) is connected to the bed where the following product gas pressurization step (V
(iii) a pressure equalization step in which a part of the gas in the bed is released from the raw material gas inlet end at the bottom of the adsorption bed after the Il step;
The bed where the pressure equalization and depressurization process has been completed is connected to the bed where the exhaust process has been completed, and all the depressurized gas from the former bed is used as exhaust purge gas for the latter bed, and the remaining gas in the bed is removed by maintaining it at near atmospheric pressure. (Vl An exhaust process in which the inside of the bed is depressurized and evacuated using a decompression exhaust device; (Vl An exhaust process in which the gas during the depressurization process of the bed after the pressure equalization process is used as burn gas while being exhausted) Burn process, (Vllll Product gas pressurization (Vlll) Product gas pressurization (Vllll) Product gas pressurization (Vllll) Product gas pressurization (Vllll) Product gas pressurization (Vlll) Adsorption Q is in communication with the bed where the adsorption process has been completed, and the gas released from the latter bed is introduced into the former bed to pressurize the former bed.
A concentration method characterized by comprising: a TI pressure equalization step; and the above operations are repeated by periodically changing the flow.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59030006A JPS60176901A (en) | 1984-02-20 | 1984-02-20 | Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption |
AU39000/85A AU574133B2 (en) | 1984-02-20 | 1985-02-20 | Concentration and purification of hydrogen gas by adsorption process |
GB08504326A GB2154465B (en) | 1984-02-20 | 1985-02-20 | Gas separation method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59030006A JPS60176901A (en) | 1984-02-20 | 1984-02-20 | Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60176901A true JPS60176901A (en) | 1985-09-11 |
Family
ID=12291797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59030006A Pending JPS60176901A (en) | 1984-02-20 | 1984-02-20 | Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS60176901A (en) |
AU (1) | AU574133B2 (en) |
GB (1) | GB2154465B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012144628A (en) * | 2011-01-12 | 2012-08-02 | Air Water Inc | Method and device for removing nitrogen in gas essentially composed of methane |
JP2015110796A (en) * | 2015-01-29 | 2015-06-18 | エア・ウォーター株式会社 | Method and apparatus for removing nitrogen from gas including methane as main component |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2584150B1 (en) * | 1985-06-28 | 1988-04-08 | Inst Francais Du Petrole | REMOTE HANGING AND TENSIONING SYSTEM OF AN ELONGATED ELEMENT |
US4761167A (en) * | 1986-12-12 | 1988-08-02 | Air Products And Chemicals, Inc. | Hydrocarbon recovery from fuel gas |
GB8718129D0 (en) * | 1987-07-30 | 1987-09-03 | Boc Group Plc | Separation of gas mixtures |
FR2633846B1 (en) * | 1988-07-05 | 1991-04-19 | Air Liquide | PROCESS FOR TREATING A GAS MIXTURE BY PRESSURE VARIATION ADSORPTION |
FR2633847B1 (en) * | 1988-07-08 | 1991-04-19 | Air Liquide | PROCESS FOR TREATING A GAS MIXTURE BY ADSORPTION |
DE3829584A1 (en) * | 1988-09-01 | 1990-03-08 | Bayer Ag | SEPARATION OF GAS MIXTURES BY VACUUM SWING ADSORPTION IN A TWO-ADSORBER SYSTEM |
EP0380723B1 (en) * | 1989-02-01 | 1994-04-06 | Kuraray Chemical Co., Ltd. | Process for separating nitrogen gas by pressure swing adsorption system |
DD288533A5 (en) * | 1989-10-25 | 1991-04-04 | Veb Komplette Chemieanlagen Dresden,De | METHOD FOR SEPARATING GAS MIXTURES BY PRESSURE CHANGE ADSORPTION |
US5176722A (en) * | 1990-06-19 | 1993-01-05 | The Boc Group, Inc. | Pressure swing adsorption method for separating gaseous mixtures |
US5294247A (en) * | 1993-02-26 | 1994-03-15 | Air Products And Chemicals, Inc. | Adsorption process to recover hydrogen from low pressure feeds |
US7695545B2 (en) | 2007-03-14 | 2010-04-13 | Air Products And Chemicals, Inc. | Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1574801A (en) * | 1976-05-07 | 1980-09-10 | Boc Ltd | Gas separation |
JPS60191002A (en) * | 1984-03-07 | 1985-09-28 | Osaka Oxgen Ind Ltd | Method for concentrating hydrogen in mixed gas containing at least hydrogen by using adsorption method |
-
1984
- 1984-02-20 JP JP59030006A patent/JPS60176901A/en active Pending
-
1985
- 1985-02-20 AU AU39000/85A patent/AU574133B2/en not_active Ceased
- 1985-02-20 GB GB08504326A patent/GB2154465B/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012144628A (en) * | 2011-01-12 | 2012-08-02 | Air Water Inc | Method and device for removing nitrogen in gas essentially composed of methane |
JP2015110796A (en) * | 2015-01-29 | 2015-06-18 | エア・ウォーター株式会社 | Method and apparatus for removing nitrogen from gas including methane as main component |
Also Published As
Publication number | Publication date |
---|---|
AU3900085A (en) | 1985-09-12 |
GB8504326D0 (en) | 1985-03-20 |
GB2154465B (en) | 1987-10-14 |
GB2154465A (en) | 1985-09-11 |
AU574133B2 (en) | 1988-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU646704B2 (en) | Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification | |
EP0112640B1 (en) | Process for obtaining high concentration argon by pressure-swing-adsorption | |
KR100254295B1 (en) | Pressure swing adsorption process with a single adsorbent bed | |
JP2744596B2 (en) | Method for selectively separating relatively strong adsorbent components from relatively weak adsorbent components of feed gas mixture | |
US4539020A (en) | Methods for obtaining high-purity carbon monoxide | |
US4775394A (en) | Process for separation of high purity gas from mixed gas | |
JPS5922625A (en) | Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method | |
JPS63166702A (en) | Concentration of oxygen gas | |
JP3073917B2 (en) | Simultaneous pressure change adsorption method | |
CA1238868A (en) | Method for obtaining high-purity carbon monoxide | |
JPS60176901A (en) | Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption | |
JP3169647B2 (en) | Pressure swing type suction method and suction device | |
JP3101225B2 (en) | Pressure fluctuation adsorption type high purity carbon dioxide production method | |
JP3219612B2 (en) | Method for co-producing carbon monoxide and hydrogen from mixed gas | |
JPH01262919A (en) | Method for separating and recovering nitrogen and oxygen in air | |
EP1352680A2 (en) | Pressure swing adsorption process with controlled internal depressurization flow | |
JPS60155520A (en) | Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process | |
JP2587334B2 (en) | Method of separating CO gas not containing CH4 | |
JP3031797B2 (en) | Pressure fluctuation adsorption separation method | |
JPS6097022A (en) | Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method | |
JPH0112529B2 (en) | ||
JPS6097021A (en) | Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method | |
JPS62153388A (en) | Concentration of methane | |
JPH01234313A (en) | Production of carbon dioxide having high purity | |
JP2529928B2 (en) | Method for separating and recovering carbon monoxide gas |