JPS60135573A - Method and device for sputtering - Google Patents
Method and device for sputteringInfo
- Publication number
- JPS60135573A JPS60135573A JP58243870A JP24387083A JPS60135573A JP S60135573 A JPS60135573 A JP S60135573A JP 58243870 A JP58243870 A JP 58243870A JP 24387083 A JP24387083 A JP 24387083A JP S60135573 A JPS60135573 A JP S60135573A
- Authority
- JP
- Japan
- Prior art keywords
- target
- plasma
- cathode
- sputtering apparatus
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/46—Sputtering by ion beam produced by an external ion source
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3266—Magnetic control means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Plasma Technology (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は半導体装置等の薄膜製造工程において行なわれ
るスパッタリング方法及びその装置に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sputtering method and apparatus used in a thin film manufacturing process for semiconductor devices and the like.
スパッタ成膜は、低圧の雰囲気ガス(例えばAr)全グ
ロー放’tllr、i起こして電離し、陰陽電極間に印
加された電界により、プラズマ状の雰囲気ガスイオンが
陰極′@1圧により加速され、陰極上におかれたターゲ
ット材料に衝突し、このイオンの衝突により放出された
ターゲット材料の構成原子または粒子は陽極近傍に設け
られた基板上に付着堆積してターゲット材料の薄膜を形
成するものである。In sputtering film formation, a low-pressure atmospheric gas (for example, Ar) causes total glow emission and ionization, and plasma-like atmospheric gas ions are accelerated by a cathode @1 pressure by an electric field applied between negative and negative electrodes. , which collides with the target material placed on the cathode, and the constituent atoms or particles of the target material released by the collision of ions adhere and deposit on the substrate provided near the anode to form a thin film of the target material. It is.
上記スパッタリング成膜を行うスパッタリング装置とし
ては、従来プレーナマグネトロン方式スパッタリング装
置が多用されている。Conventionally, a planar magnetron type sputtering apparatus is often used as a sputtering apparatus for performing the above sputtering film formation.
、3 。, 3.
第1図は、従来の良く知られたプレーナマグネトロン方
式スパッタリング装置の成膜部の構造を示す断面図で、
第2図は、陽陰電極近傍のスパッタリング状態を示す断
面図である。ターゲット材料(以下ターゲットという)
1の裏面にバッキングプレート2を配[7、その裏側に
ヨーり乙により磁気結合されたリング状磁極4と円柱状
磁極5が磁気回路を構成して配置され、この磁気回路を
内包しかつバッキングプレート2により密閉される構造
をした陰極6が設置され、この陰極6の外周には円環状
の絶縁板7を介してシールド8が取付られている。上記
陰極6は真空壁9に軸10全介;−電気的に絶縁されか
つ真空を保持しつる状態で設置され、この陰極6の上方
には陽槓11が配置されかつ陽陰極間に電源12が設置
される1、
上記構成のスパッタリングにおいては、ターゲット1の
表面で磁力線の分布は第2図に示すような半円環状磁界
分布16となり、陽極11と陰極8間に電圧全印加する
ことにより発生するプラズマは半円環状磁界分布13に
よって、その内部にプラズマが高密度に閉じ込められ、
第2図14に示す形状となる。このプラズマ中のイオン
は、ターゲット1の表面にほぼ垂直な電界によって加速
され、ターゲット1表面に衝突し、その結果ターゲット
1表面から順次その原子又は粒子がはじき出され侵食領
域15が形成される。FIG. 1 is a cross-sectional view showing the structure of the film forming part of a conventional well-known planar magnetron sputtering apparatus.
FIG. 2 is a cross-sectional view showing the sputtering state near the positive and negative electrodes. Target material (hereinafter referred to as target)
A backing plate 2 is disposed on the back surface of 1 [7, and on the back side thereof, a ring-shaped magnetic pole 4 and a cylindrical magnetic pole 5, which are magnetically coupled by a yoke B, are arranged to constitute a magnetic circuit, and the backing plate 2 includes this magnetic circuit and A cathode 6 having a structure sealed by a plate 2 is installed, and a shield 8 is attached to the outer periphery of the cathode 6 via an annular insulating plate 7. The cathode 6 is installed in a suspended state on a vacuum wall 9 with a shaft 10 fully interposed; it is electrically insulated and maintained in a vacuum, and an anode 11 is arranged above the cathode 6, and a power source 12 is placed between the anode and the cathode. 1. In sputtering with the above configuration, the distribution of magnetic lines of force on the surface of the target 1 becomes a semicircular annular magnetic field distribution 16 as shown in FIG. The generated plasma is highly densely confined inside by the semicircular annular magnetic field distribution 13,
The shape is shown in FIG. 214. The ions in the plasma are accelerated by an electric field substantially perpendicular to the surface of the target 1 and collide with the surface of the target 1. As a result, the atoms or particles are sequentially ejected from the surface of the target 1, forming an eroded region 15.
上記によってはじき出されたターゲット1の原子又は粒
子は、第1図に示す、基板ステージ16上基板17の表
面に付着し薄膜を形成する。The atoms or particles of the target 1 that have been repelled as described above adhere to the surface of the substrate 17 on the substrate stage 16, as shown in FIG. 1, to form a thin film.
また前記の侵食領域15け、以上の説明から明らかなよ
うに、スパッタリング工程の時間経過に伴って侵食度が
進むが、この侵食は通常第2図に示す構成のターゲット
構造では、ターゲットの特定の領域に限定されて進行す
る。Furthermore, as is clear from the above explanation, the degree of erosion in the eroded region 15 increases as time passes during the sputtering process, but this erosion normally occurs in a specific target area in the target structure shown in FIG. Proceed in a limited area.
以上のように、従来のプレーナマグネトロン方式スパッ
タリング装置では、高いプラズマ密度はターゲット上の
ごく一部でしか得られず、スパッタリングによる侵食は
ターゲットの一部に限られるため、基板へのターゲット
原子又は粒子の付着速度が遅くかつターゲットは、スパ
ッタリング工程の時間経過に伴い限られた部分のみが侵
食されるだめこの部分の侵食が所定の量だけ進むとター
ゲラトラ交換しなければならず、ターゲット使用率が低
く寿命が短かいものとなっていた。As described above, in conventional planar magnetron sputtering equipment, high plasma density can be obtained only in a small part of the target, and erosion due to sputtering is limited to a part of the target, so target atoms or particles on the substrate are The deposition rate is slow, and only a limited portion of the target is eroded as time passes during the sputtering process, so if this portion becomes eroded a certain amount, the target rattle must be replaced, resulting in a low target usage rate. It had a short lifespan.
本発明の目的は、前述した従来技術の欠点をなくシ、タ
ーゲット表面の全面に高密度のプラズマを発生させ、ス
パッタリング工程でのターゲット侵食領域をほぼターゲ
ット全域とし、基板へのターゲット原子又は粒子の付着
速度を増大させかつターゲットの使用率を増大させるス
パッタリング方法及びその装置全提供することにある。An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, generate high-density plasma over the entire target surface, make the target erosion area in the sputtering process almost the entire target area, and prevent target atoms or particles from reaching the substrate. An object of the present invention is to provide a sputtering method and apparatus for increasing deposition rate and target utilization.
即ち本発明は、ターゲット表面を高密度プラズマで覆い
、電界によりこのプラズマ中のイオンをターゲット表面
lこ衝突させ、ターゲットからはじき出された原子又は
粒子を基板に付着させて成膜することを特徴とするスパ
ッタリング方法である。That is, the present invention is characterized in that the target surface is covered with high-density plasma, the ions in the plasma are caused to collide with the target surface by an electric field, and the atoms or particles ejected from the target are attached to the substrate to form a film. This is a sputtering method.
また本発明は、マイクロ波の発振によって発生した高密
度プラズマ全ターゲット表面に移送してターゲット表面
を高密度プラズマで覆い、電界によりとのプラズマ中の
イオンをターゲット表面に衝突させ、ターゲットからは
じき出された原子又は粒子全基板に付着させて成膜する
ことを特徴とするスパッタリング方法である。In addition, the present invention transfers high-density plasma generated by microwave oscillation to the entire target surface, covers the target surface with high-density plasma, and uses an electric field to cause ions in the plasma to collide with the target surface so that they are not repelled from the target. This is a sputtering method characterized by forming a film by making the atoms or particles adhere to the entire substrate.
また本発明は、陽陰電極間に電圧全印加してプラズマ全
発生しプラズマ中のイオンを電界によって加速しターゲ
ット表面に衝突させる手段に、マイクロ波(例えば2.
45 Q Hz )によって高密度のプラズマを発生さ
せ、このプラズマを陽陰電極部へ移送する手段を設け、
ターゲット上の全面を高密度プラズマでお\うことによ
り、ターゲット侵食領域をはツタ−ゲット全域とするこ
とで基板へのターゲット原子又は粒子の・ 7 ・
〔発明の実施例〕
以下本発明の第1の一実施例を第3図と第4図により説
明する。第6図は第1の一実施例のスパッタリング成膜
部の構造を示す断面図で、第4図は、その陽陰電極近傍
のスパッタリング状態を示す断面図である。ターゲット
21の裏面にバッキングプレート22を配置し、これに
密接して陰極23が設置され、該陰極23の外周は円板
状絶縁物25と円筒状絶縁物26を介して陽極27が設
置されている。上記陽陰電極は陰極23の軸28により
真空壁29に電気的に絶縁されかつ真空を保持しうる状
態で設置され、この陽陰電極間に電源60が設置される
。Further, the present invention uses microwaves (for example, 2.0.
45 Q Hz) to generate high-density plasma, and provide means for transporting this plasma to the positive and negative electrode sections,
By covering the entire surface of the target with high-density plasma, the target erosion region is made to cover the entire target area, thereby reducing the amount of target atoms or particles to the substrate. One embodiment of No. 1 will be explained with reference to FIGS. 3 and 4. FIG. 6 is a cross-sectional view showing the structure of the sputtering film forming part of the first embodiment, and FIG. 4 is a cross-sectional view showing the sputtering state in the vicinity of the positive and negative electrodes. A backing plate 22 is placed on the back surface of the target 21, a cathode 23 is placed in close contact with the backing plate 22, and an anode 27 is placed around the outer periphery of the cathode 23 via a disc-shaped insulator 25 and a cylindrical insulator 26. There is. The anode and cathode electrodes are electrically insulated from the vacuum wall 29 by the shaft 28 of the cathode 23 and installed in a state capable of maintaining a vacuum, and a power source 60 is installed between the anode and cathode electrodes.
また、基板31は基板ホルダろ2上にターゲット21と
相対向する位置に配置され、基板ホルダ32の軸ろ6に
より真空壁29に電気的に絶縁されかつ真空を保持しう
る状態で取付られている。また陽陰電極部35の横の真
空壁に窓64を設け、ここに高密度プラズマ発生部Aが
設置しである。Further, the substrate 31 is placed on the substrate holder roller 2 at a position opposite to the target 21, and is attached to the vacuum wall 29 by the shaft roller 6 of the substrate holder 32 in a state where it is electrically insulated and capable of maintaining a vacuum. There is. Further, a window 64 is provided in the vacuum wall next to the positive and negative electrode sections 35, and the high-density plasma generation section A is installed here.
上記高密度プラズマ発生部Aは、マイクロ波・ 8 ・
発生源35とマイクロ波を導びくための導波管66およ
びマイクロ波をプラズマ発生室37へ導入するための導
波管38より成り、プラズマ発生室37と導波管3Bは
マイクロ波導入部材39全介し、この部分でプラズマ発
生室37が真空を保持されるように取付られている。ま
たプラズマ発生室37には、雰囲気ガスの導入口4Oが
設けられ、かつ外周部には、導入されるマイクロ波によ
って電子サイクロトロン共鳴条件(マイクロ波周波数2
.45 G Ilzだと磁場強度875 G )となる
磁場強さをもった磁石41が設置され、かつマイクロ波
導入部材39のマイクロ波発振源35側には、マイクロ
波発生室ろ7へマイクロ波のうち電子ザイクロトロン共
鳴に有効な布置偏波のみを導入するような磁場強度を持
つ磁石42が設置されている。The high-density plasma generation section A is made up of a microwave generation source 35, a waveguide 66 for guiding the microwave, and a waveguide 38 for introducing the microwave into the plasma generation chamber 37. The generation chamber 37 and the waveguide 3B are attached so that the plasma generation chamber 37 is maintained in a vacuum state through the entire microwave introduction member 39. Further, the plasma generation chamber 37 is provided with an atmospheric gas inlet 4O, and the outer periphery is provided with an electron cyclotron resonance condition (microwave frequency 2
.. A magnet 41 with a magnetic field strength of 875 G) is installed on the side of the microwave oscillation source 35 of the microwave introduction member 39, which is used to transmit microwaves to the microwave generation chamber filter 7. Among them, a magnet 42 is installed which has a magnetic field strength that introduces only the polarized wave effective for electron zychrotron resonance.
以上の構成において、プラズマ発生部Aのマイクロ波発
生源35よりマイクロ波を発振するとプラズマ発生室6
7は、雰囲気ガスの高密度プラズマ (プラズマ密度1
011〜1012/7)状態となる。In the above configuration, when microwaves are oscillated from the microwave generation source 35 of the plasma generation section A, the plasma generation chamber 6
7 is high-density plasma of atmospheric gas (plasma density 1
011 to 1012/7).
ここで陽陰電極間に電源30により電圧を印加すること
により、ターゲット21表面上にプラズマが発生し、こ
のプラズマにはプラズマ発生室37で発生した高密度の
プラズマが移送され、ターゲット21表面上のプラズマ
も高密度と々る。By applying a voltage between the positive and negative electrodes by the power supply 30, plasma is generated on the surface of the target 21, and the high-density plasma generated in the plasma generation chamber 37 is transferred to this plasma, and the high-density plasma generated in the plasma generation chamber 37 is transferred to the surface of the target 21. The plasma is also very dense.
このプラズマ中のイオンは、ターゲット21の表面に電
源30によって印加されたほぼ垂直な電界によって加速
され、ターゲット21表面に衝突しその結果ターゲット
21表面から順次その原子又は粒子がはじき出され、こ
のはじき出された上記原子又は粒子は基板31の表面に
付着し薄膜を形成する。The ions in this plasma are accelerated by a nearly perpendicular electric field applied to the surface of the target 21 by the power source 30, and collide with the surface of the target 21. As a result, the atoms or particles are sequentially ejected from the surface of the target 21, and the ejected ions are The above atoms or particles adhere to the surface of the substrate 31 and form a thin film.
ターゲット21表面上のプラズマは第4図、43に示す
ようにターゲット21表面の全面lこわたり高密度プラ
ズマとなるため、スパッタリング工程の時間経過に伴う
ターゲット21の侵食領域け44となり、ターゲット2
1のほぼ全面にわたる。As shown in FIG. 4, the plasma on the surface of the target 21 becomes a high-density plasma as shown in FIG.
Covers almost the entire surface of 1.
以上のように、本発明の第一の実施例によればターゲッ
ト全面に高密度のプラズマが発生しスパッタリング工程
はターゲットのほぼ全域で起こるため、単位時間あたり
にターゲット表面よりはじき出される原子又は粒子の量
が増大し該原子又は粒子の基板への付着速度も増大する
。As described above, according to the first embodiment of the present invention, high-density plasma is generated over the entire target surface and the sputtering process occurs over almost the entire target area, so that the number of atoms or particles ejected from the target surface per unit time is As the amount increases, so does the rate of attachment of the atoms or particles to the substrate.
捷た、ターゲットの侵食領域がほぼターゲット全面とな
りターゲット使用率も大幅に増大し、ターゲット1枚あ
たりの処理ウェハ枚数が増す。The eroded area of the splintered target covers almost the entire surface of the target, resulting in a significant increase in target utilization and an increase in the number of wafers processed per target.
また、本実施例によれば、高密度のプラズマはマイクロ
波発生源で制御でき、陽陰電極間に印加する電圧は、イ
オンの加速エネルギとなるため、プラズマ密度とイオン
加速が別々に制御でき、ターゲットの材質にあわせて最
適なスパッタリング条件設定することができる。Furthermore, according to this example, high-density plasma can be controlled by a microwave source, and the voltage applied between the positive and negative electrodes becomes ion acceleration energy, so plasma density and ion acceleration can be controlled separately. , optimal sputtering conditions can be set according to the target material.
次に、本発明の第2の一実施例を第5図により説明する
。本実施例の高密度プラズマ発生部は第3図のAと同様
で、また基板の支枝関係も同様である。第1の一実施例
の異なるのは、陽陰電極部で、第2の一実施例の陽陰電
極部は第5図に示すように、ターゲット45の裏面にバ
ッキングプレート46を配置し、これに密接して陰極4
7が設置され、該陰極・17全コの字形にはさん・11
・
だ絶縁物48ヲ介して下面に陽極ベース49と左右にそ
れぞれ磁極50.51i内包した陽極52が陽極ベース
49に設置され、陽極ベース49と絶縁物48の間にヨ
ーク53が配置され、ヨーク56と磁極50゜51は磁
気結合されており磁気回路を構成している。この磁力線
のターゲット表面上での分布は第5図、54に示す分布
となる。Next, a second embodiment of the present invention will be described with reference to FIG. The high-density plasma generating section of this embodiment is the same as that shown in A of FIG. 3, and the branch relationships of the substrates are also the same. The difference from the first embodiment is the positive and negative electrode parts, and the positive and negative electrode parts of the second embodiment have a backing plate 46 arranged on the back surface of the target 45, as shown in FIG. Closely connected to the cathode 4
7 is installed, and the cathode 17 is sandwiched between all U-shaped parts 11
- An anode base 49 is placed on the bottom surface through an insulator 48, and an anode 52 containing magnetic poles 50 and 51i on the left and right sides is installed on the anode base 49, a yoke 53 is arranged between the anode base 49 and the insulator 48, and the yoke 56 and the magnetic pole 50.degree. 51 are magnetically coupled to form a magnetic circuit. The distribution of these lines of magnetic force on the target surface is as shown in FIG. 5, 54.
以上の構成において、プラズマ発生部Aのマイクロ波発
生源35よりマイクロ波を発振するとプラズマ発生宇6
7は雰囲気ガスの高密度プラズマ状態とカリ、ここで陽
陰電極間に電圧全印加することにより、ターゲット45
表面上に高密度のプラズマが発生する。ここで、このプ
ラズマは磁界分布54により、その内部に更に高密度の
プラズマとして閉じ込められ、第5図、55の様になる
。このプラズマ中のイオンは前述のように、ターゲラ)
45e面に印加されたほぼ垂直な電界によって加速され
ターゲット45表面に衝突し、ターゲット45表面から
原子又は粒子がはじき出され、これが基板に付着し薄膜
を形成する。In the above configuration, when microwaves are oscillated from the microwave generation source 35 of the plasma generation part A, the plasma generation unit 6
7 is a high-density plasma state of the atmospheric gas, and by applying the full voltage between the positive and negative electrodes, the target 45
A dense plasma is generated on the surface. Here, this plasma is confined inside as a higher density plasma by the magnetic field distribution 54, and becomes as shown in 55 in FIG. As mentioned above, the ions in this plasma are
Atoms or particles are accelerated by a substantially perpendicular electric field applied to the plane 45e and collide with the surface of the target 45, and are ejected from the surface of the target 45, which adhere to the substrate and form a thin film.
、12゜
本実施例によるターゲット45の侵食領域は56となり
、ターゲット全面となる。以上のように、本実施例によ
れば、ターゲット上のプラズマは第1の実施例より密度
を高くでき、したがってより高速なスパッタリング成膜
rar[とし、かつプラズマが閉じ込められているだめ
1.基板への荷電粒子の衝突を低減でき、基板に与える
ダメージが小さい。, 12° The erosion area of the target 45 according to this embodiment is 56, which is the entire surface of the target. As described above, according to this embodiment, the density of the plasma on the target can be higher than that of the first embodiment, and therefore faster sputtering film formation can be achieved, and since the plasma is confined, 1. Collision of charged particles with the substrate can be reduced, causing less damage to the substrate.
また本発明の他の一実施例全第6図から第8図により説
明すも。第6図は一実施例のスパッタリング装置の成膜
部の構造金示す断面図、第7図はその陽陰電極近傍の平
面図で、第8図はその陽陰電極近傍のスパッタリング状
態を示す断面図である。Another embodiment of the present invention will be explained with reference to FIGS. 6 to 8. FIG. 6 is a cross-sectional view showing the structure of the film forming part of the sputtering apparatus of one embodiment, FIG. 7 is a plan view of the vicinity of the positive and negative electrodes, and FIG. 8 is a cross-sectional view showing the sputtering state of the vicinity of the positive and negative electrodes. It is a diagram.
ターゲット21の裏面にバツギングプl/−)22を配
置【1、これに密接して陰極2!1が設置され、該陰極
26の外φりに、円板状絶縁物25と円筒状絶縁物26
を介して陽極27が設置されている。A bagging plate (l/-) 22 is placed on the back surface of the target 21 [1, a cathode 2!1 is installed in close proximity to this, and a disk-shaped insulator 25 and a cylindrical insulator 26 are placed on the outside of the cathode 26.
An anode 27 is installed via the anode 27.
上記陽陰電極は、陰極23の軸28により真空壁29に
電気的に絶縁されかつ真空を保持しつる状態で設置され
、この陽陰電極間に電源30が設置される。The anode and cathode electrodes are electrically insulated from the vacuum wall 29 by the shaft 28 of the cathode 23 and installed in a suspended state while maintaining a vacuum, and a power source 30 is installed between the anode and cathode electrodes.
また基板31は基板ボルダ62上にターゲット21と相
対向する位置に配置され、基板ホルダ32の軸62によ
り真空壁29に電気的に絶縁されかつ真空を保持しうる
状態で取付られている。また、陽陰電極部を取り囲む真
空壁57に窓64を設け、ここにマイクロ波の導波管6
0が設置され、さらにマイクロ波を導入しかつ真空壁内
が真空を保持されるように導入部材69を介し別の導波
管36が設置され、該導波管36の他端にはマイクロ波
発生源35が設置されている。また、陽陰電極部に取り
vljむ真空壁の外側には、前記導波管60をはさんで
円板状の磁石58.59が設置される。該磁石58.5
9は、陽陰電極近傍に発生したプラズマ中の荷電粒子(
特に高エネルギヲ有する電子)が基板31に突入17な
いようにミラー磁場の働全させる3、
以上の構成において、陽陰電極「i1]に電源3Oによ
り電圧全印加することによりターゲット21表面上にプ
ラズマを発生させる。ここで、マイクロ波発生源35よ
りマイクロ波を発振し導波管60全通して、窓64から
真空壁36内にマイクロ波を導入し、上記プラズマ中の
電子の磁石58.59によるサイクロトロン運動全、該
マイクロ波により加速し、電子と中性粒子との衝突を活
発にしプラズマ密度を高める。Further, the substrate 31 is placed on a substrate boulder 62 at a position facing the target 21, and is attached to the vacuum wall 29 by a shaft 62 of the substrate holder 32 in a state where it is electrically insulated and capable of maintaining a vacuum. In addition, a window 64 is provided in the vacuum wall 57 surrounding the positive and negative electrode parts, and a microwave waveguide 6 is installed in the window 64.
0 is installed, and another waveguide 36 is installed via an introducing member 69 so as to introduce microwaves and maintain a vacuum inside the vacuum wall, and the other end of the waveguide 36 is equipped with a microwave. A generation source 35 is installed. Furthermore, disk-shaped magnets 58 and 59 are installed on the outside of the vacuum walls surrounding the positive and negative electrode sections, sandwiching the waveguide 60 therebetween. The magnet 58.5
9 is a charged particle (
In the above configuration, plasma is generated on the surface of the target 21 by applying full voltage to the positive and negative electrodes "i1" from the power source 3O. Here, microwaves are oscillated from the microwave generation source 35, passed through the entire waveguide 60, and introduced into the vacuum wall 36 from the window 64, causing the electrons in the plasma to become magnets 58, 59. The entire cyclotron movement is accelerated by the microwaves, which activates collisions between electrons and neutral particles and increases plasma density.
以上により、陽陰電極近傍のプラズマは、第8図に示す
ようにターゲット21表面上に高密度のプラズマが、タ
ーゲット21表面の全面をおおうように発生する。この
プラズマ中のイオンはターゲット21の表面に電源60
によって印加されたほぼ垂直な電界によって加速され、
ターゲット21表面に衝突し、その結果ターゲット21
表面から順次その原子又は粒子がはじき出され、このは
じき出された上記原子又は粒子が基板31の表面に付着
堆積し薄膜を形成する。As a result, plasma near the positive and negative electrodes is generated on the surface of the target 21 so that high-density plasma covers the entire surface of the target 21, as shown in FIG. The ions in this plasma are connected to the surface of the target 21 by a power source 60.
accelerated by a nearly perpendicular electric field applied by
collides with the surface of target 21, resulting in target 21
The atoms or particles are sequentially ejected from the surface, and the ejected atoms or particles adhere and deposit on the surface of the substrate 31 to form a thin film.
ターゲット21表面上のプラズマは、第8図。FIG. 8 shows the plasma on the surface of the target 21.
61に示すようにターゲット21表面の全面にわたり、
高密度プラズマとなるため、スパッタリン°159
グ工程の時間経過に伴うターゲット21の侵食領域は6
2となり、ターゲット21のほぼ全面にわたる。As shown in 61, over the entire surface of the target 21,
Due to the high-density plasma, the erosion area of the target 21 over time during the sputtering process is 6°.
2, covering almost the entire surface of the target 21.
以上のように、本発明の一実施例によれば、ターゲット
全面に高密度のプラズマが発生し、スパッタリング工程
はターゲットのほぼ全域で起こるため、単位時間あたり
にターゲット表面よりはじき出される原子又は粒子の量
が増大し該原子又は粒子の基板への付着堆積速度も増大
する。また、ターゲットの侵食領域がほぼターゲット全
面となり、ターゲット使用率も大幅に向上し、ターゲッ
トあたりの処理ウェハ枚数が増す。As described above, according to one embodiment of the present invention, high-density plasma is generated over the entire surface of the target, and the sputtering process occurs over almost the entire area of the target, so that the number of atoms or particles ejected from the target surface per unit time is As the amount increases, so does the rate at which the atoms or particles adhere to the substrate. In addition, the erosion area of the target covers almost the entire surface of the target, greatly improving the target usage rate and increasing the number of wafers processed per target.
また、本実施例ζこよれば、高密度プラズマはマイクロ
波発生源で制御でき、陽陰電極間に印加する電圧はイオ
ンの加速電界となるため、プラズマ密度とイオン加速が
個別に制御でき、り”−ゲット材質にあわせて最適なス
パッタリング条件が採用できる。Furthermore, according to this embodiment, high-density plasma can be controlled by a microwave generation source, and the voltage applied between the positive and negative electrodes becomes an ion accelerating electric field, so plasma density and ion acceleration can be controlled individually. Optimal sputtering conditions can be adopted according to the target material.
・ 16 ・
以上説明したように本発明によれば、ターゲット表面上
に、ターゲット全面にわたり高密度のプラズマを発生で
き、かつプラズマ発生とイオンのターゲットへの衝突エ
ネルギを個別制御できターゲツト材質にあったスパッタ
リング条件の設定が可能となり、スパッタリング成膜の
速度を大幅に増大し、かつターゲット使用率を大幅に増
大し、まだターゲツト材質にあったスパッタリング条件
の設定により、生産効率及び材料使用効率の向上と半導
体装置等の性能の向上の効果がある。・16・ As explained above, according to the present invention, high-density plasma can be generated on the target surface over the entire surface of the target, and plasma generation and ion collision energy with the target can be individually controlled. It is now possible to set sputtering conditions, greatly increasing the speed of sputtering film formation, and greatly increasing the target usage rate. By setting sputtering conditions that still match the target material, it is possible to improve production efficiency and material usage efficiency. This has the effect of improving the performance of semiconductor devices, etc.
第1図は従来のブレーナマグネトロン方式スパッタリン
グ装置の成膜部の構造を示す断面図第2図はその装置の
陽陰電極近傍のスパッタリング状態を示す断面図、第6
図は本発明の第1の一実施例のスパッタリング装置の成
膜部の構造金示す断面図、第4図はその陽陰電極近傍の
スパッタリング状態を示す断面図、第5図は本発明の第
2の一実施例のスパッタリング装置の陽陰電極近傍のス
パッタリング状態を示す断面図、第6図は本発明の他の
一実施例であるスパッタリング装置の成膜部の構造を示
す断面図、第7図はその陽極電極近傍を示す平面図、第
8図はその陽陰電極近傍のスパッタリング状態を示す断
面図である。
21・・・ターゲット 25・・・陰極27・・・陽極
29・・・真空壁
30・・・電源 ろ1・・・基板
35・・・マイクロ波発生源
37・・・プラズマ発生室
39・・・マイクロ波導入部材
41・・・磁石 44・・・侵食領域
50.51・・・磁極 45・・・ターゲット55・・
・磁界分布 56・・・侵食領域・ 19・
第1図
第2区
晰4図
43
喘5図
(0−)
第7図
57
晰8図
乙lFig. 1 is a cross-sectional view showing the structure of the film forming part of a conventional Brehner magnetron sputtering device. Fig. 2 is a cross-sectional view showing the sputtering state near the positive and negative electrodes of the device.
The figure is a cross-sectional view showing the structure of the film forming part of the sputtering apparatus according to the first embodiment of the present invention, FIG. 4 is a cross-sectional view showing the sputtering state near the positive and negative electrodes, and FIG. FIG. 6 is a sectional view showing the sputtering state near the positive and negative electrodes of a sputtering apparatus according to an embodiment of the present invention; FIG. The figure is a plan view showing the vicinity of the anode electrode, and FIG. 8 is a sectional view showing the state of sputtering in the vicinity of the anode and cathode electrodes. 21... Target 25... Cathode 27... Anode 29... Vacuum wall 30... Power supply Filter 1... Substrate 35... Microwave generation source 37... Plasma generation chamber 39...・Microwave introduction member 41...Magnet 44...Erosion area 50.51...Magnetic pole 45...Target 55...
・Magnetic field distribution 56... Erosion area・ 19・ Figure 1, Figure 2, Figure 4, Figure 43, Figure 5 (0-), Figure 7, 57, Figure 8, Figure 8.
Claims (1)
り、このプラズマ中のイオンをターゲット表面に衝突さ
せ、ターゲットからはじき出された原子又は粒子を基板
に付着させて成膜することを特徴とするスパッタリング
方法。 2、マイクロ波の発番によって発生した高密度プラズマ
をターゲット表面に移送してターゲット表面を高密度プ
ラズマで覆い、電界によりこのプラズマ中のイオンをタ
ーゲット表面に衝突させ、ターゲットからはじき出され
た原子又は粒子を基板に付着させて成膜することを特徴
とするスパッタリング方法。 3、試料基板の堆積面と所定の間隔を隔てて対面する被
スパツタ物質からなる成膜源としてのターゲットと、該
ターゲットを載置する陰極と、上記陰極に電圧を印加す
る電源と、上記陰極部にプラズマを供給する手段を有す
ること全特徴とするスパッタリング装置。 4、上記プラズマ供給手段は、マイクロ波発生源と、導
波管と、プラズマ発生室とより構成することを特徴とす
る特許請求の範囲第3項記載のスパッタリング装置。 5、上記プラズマ発生室に、マイクロ波の進行方向と垂
直な磁界分布を得るような磁極を設けたことを特徴とす
る特許請求の範囲第4項記載のスパッタリング装置。 6、上記磁極は、磁界強度が、マイクロ波周波数と電子
サイクロトロン共鳴条件を満足する構成であることを特
徴とする特許請求の範囲第5項記載のスパッタリング装
置。 7、試料基板の堆積面と所定の間隔を隔てて対面する被
スパツタ物質からなる成膜源としてのターゲットと、該
ターゲットを載置する陰極と、上記陰極に電圧を印加す
る電源と、上記陰極部にプラズマを供給する手段と、上
記ターゲットの面にターゲット表面と平行な磁界分布を
得るだめの磁極とを設けたことを特徴とするスパッタリ
ング装置。 8、上記プラズマ供給手段は、マイクロ波発生源と、導
波管と、プラズマ発生室とより構成すること全特徴とす
る特許請求の範叶第7項記載のスパッタリング装置。 9、試料基板の堆積面と所定の間隔を隔てて対面する被
スパツタ物質からなる成膜源としてのターゲットと、該
ターゲラトラ載置する陰極と、該陰極に電圧を印加する
電源と、上記陰電極部へマイクロ波を導入するだめの手
段を有したことを特徴とするスパッタリング装置0 10、上記マイクロ波導入手段は、マイクロ波発生源と
、導波管と、マイクロ波導入部材より成り、基板とター
ゲット間にマイクロ波を導入すること全装置とする特許
請求の範囲第9項記載のスパッタリング装置。 11、ターゲツト面に垂直または平行な磁力線を設けた
ことを特徴とする特許請求の範囲第9項せたけ第10項
記載のスパッタリング装置。[Claims] 1. A method of forming a film by covering the target surface with high-density plasma, causing ions in the plasma to collide with the target surface using an electric field, and causing atoms or particles ejected from the target to adhere to the substrate. Characteristic sputtering method. 2. Transfer the high-density plasma generated by microwave emission to the target surface, cover the target surface with high-density plasma, and use an electric field to cause the ions in this plasma to collide with the target surface, causing the atoms or atoms ejected from the target to collide with the target surface. A sputtering method characterized by depositing particles on a substrate to form a film. 3. A target as a film formation source made of a material to be sputtered and facing the deposition surface of the sample substrate at a predetermined distance, a cathode on which the target is placed, a power source for applying voltage to the cathode, and the cathode. What is claimed is: 1. A sputtering apparatus, comprising means for supplying plasma to a part of the sputtering apparatus. 4. The sputtering apparatus according to claim 3, wherein the plasma supply means comprises a microwave generation source, a waveguide, and a plasma generation chamber. 5. The sputtering apparatus according to claim 4, wherein the plasma generation chamber is provided with magnetic poles for obtaining a magnetic field distribution perpendicular to the direction of propagation of the microwaves. 6. The sputtering apparatus according to claim 5, wherein the magnetic pole has a magnetic field strength that satisfies microwave frequency and electron cyclotron resonance conditions. 7. A target as a film formation source made of a material to be sputtered and facing the deposition surface of the sample substrate at a predetermined distance, a cathode on which the target is placed, a power source for applying voltage to the cathode, and the cathode. A sputtering apparatus comprising means for supplying plasma to the surface of the target, and magnetic poles for obtaining a magnetic field distribution parallel to the surface of the target. 8. The sputtering apparatus according to claim 7, wherein the plasma supply means comprises a microwave generation source, a waveguide, and a plasma generation chamber. 9. A target as a film forming source made of a material to be sputtered and facing the deposition surface of the sample substrate at a predetermined distance, a cathode placed on the target rattler, a power source for applying a voltage to the cathode, and the cathode. A sputtering apparatus characterized in that it has a means for introducing microwaves into the substrate. 10. The sputtering apparatus according to claim 9, wherein the entire apparatus is configured to introduce microwaves between targets. 11. The sputtering apparatus as set forth in claim 9 and 10, characterized in that lines of magnetic force are provided perpendicular or parallel to the target surface.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58243870A JPH0627323B2 (en) | 1983-12-26 | 1983-12-26 | Sputtering method and apparatus |
KR1019840008169A KR890004880B1 (en) | 1983-12-26 | 1984-12-20 | Method and device for sputtering |
US06/686,005 US4610770A (en) | 1983-12-26 | 1984-12-24 | Method and apparatus for sputtering |
DE8484116391T DE3483647D1 (en) | 1983-12-26 | 1984-12-27 | SPRAYING METHOD AND DEVICE. |
EP84116391A EP0148504B2 (en) | 1983-12-26 | 1984-12-27 | Method and apparatus for sputtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58243870A JPH0627323B2 (en) | 1983-12-26 | 1983-12-26 | Sputtering method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60135573A true JPS60135573A (en) | 1985-07-18 |
JPH0627323B2 JPH0627323B2 (en) | 1994-04-13 |
Family
ID=17110200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58243870A Expired - Lifetime JPH0627323B2 (en) | 1983-12-26 | 1983-12-26 | Sputtering method and apparatus |
Country Status (5)
Country | Link |
---|---|
US (1) | US4610770A (en) |
EP (1) | EP0148504B2 (en) |
JP (1) | JPH0627323B2 (en) |
KR (1) | KR890004880B1 (en) |
DE (1) | DE3483647D1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6376867A (en) * | 1986-09-19 | 1988-04-07 | Mitsubishi Kasei Corp | Reactive sputtering device |
JPS63227777A (en) * | 1987-03-17 | 1988-09-22 | Nippon Telegr & Teleph Corp <Ntt> | Device for forming thin film |
JPH11288799A (en) * | 1998-01-26 | 1999-10-19 | Commiss Energ Atom | Linear microwave plasma generating device using permanent magnet |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0627323B2 (en) | 1983-12-26 | 1994-04-13 | 株式会社日立製作所 | Sputtering method and apparatus |
JPS6113626A (en) * | 1984-06-29 | 1986-01-21 | Hitachi Ltd | Plasma processor |
DE3566194D1 (en) * | 1984-08-31 | 1988-12-15 | Hitachi Ltd | Microwave assisting sputtering |
US4842707A (en) * | 1986-06-23 | 1989-06-27 | Oki Electric Industry Co., Ltd. | Dry process apparatus |
JPS6324030A (en) * | 1986-06-26 | 1988-02-01 | Res Dev Corp Of Japan | Anisotropic rare earth magnet material and its production |
JP2587924B2 (en) * | 1986-10-11 | 1997-03-05 | 日本電信電話株式会社 | Thin film forming equipment |
JP2631650B2 (en) * | 1986-12-05 | 1997-07-16 | アネルバ株式会社 | Vacuum equipment |
US4834860A (en) * | 1987-07-01 | 1989-05-30 | The Boc Group, Inc. | Magnetron sputtering targets |
DE3803355A1 (en) * | 1988-02-05 | 1989-08-17 | Leybold Ag | PARTICLE SOURCE FOR A REACTIVE ION BEAM OR PLASMA POSITIONING PLANT |
US5125358A (en) * | 1988-07-26 | 1992-06-30 | Matsushita Electric Industrial Co., Ltd. | Microwave plasma film deposition system |
US5180436A (en) * | 1988-07-26 | 1993-01-19 | Matsushita Electric Industrial Co., Ltd. | Microwave plasma film deposition system |
US4952273A (en) * | 1988-09-21 | 1990-08-28 | Microscience, Inc. | Plasma generation in electron cyclotron resonance |
JPH0689446B2 (en) * | 1988-12-19 | 1994-11-09 | 株式会社日立製作所 | Thin film forming equipment |
JP2934711B2 (en) * | 1989-12-07 | 1999-08-16 | カシオ計算機株式会社 | Sputtering equipment |
US5045166A (en) * | 1990-05-21 | 1991-09-03 | Mcnc | Magnetron method and apparatus for producing high density ionic gas discharge |
US5707692A (en) * | 1990-10-23 | 1998-01-13 | Canon Kabushiki Kaisha | Apparatus and method for processing a base substance using plasma and a magnetic field |
DE69216685T2 (en) * | 1991-05-31 | 1997-05-28 | Deposition Sciences Inc | Sputtering system |
DE4119362A1 (en) * | 1991-06-12 | 1992-12-17 | Leybold Ag | PARTICLE SOURCE, ESPECIALLY FOR REACTIVE ION NETWORK AND PLASMA SUPPORTED CVD PROCESSES |
US5490910A (en) * | 1992-03-09 | 1996-02-13 | Tulip Memory Systems, Inc. | Circularly symmetric sputtering apparatus with hollow-cathode plasma devices |
JPH06192830A (en) * | 1992-07-31 | 1994-07-12 | Texas Instr Inc <Ti> | Method and device for physical vapor deposition of material layer |
DE4230290A1 (en) * | 1992-09-10 | 1994-03-17 | Leybold Ag | Appts. for producing plasma using cathode sputtering - comprises plasma chamber, target connected to electrode, magnetron, and microwave emitter |
DE4230291C2 (en) * | 1992-09-10 | 1999-11-04 | Leybold Ag | Microwave assisted atomization arrangement |
DE4336830A1 (en) * | 1993-10-28 | 1995-05-04 | Leybold Ag | Plasma sputtering installation with microwave assistance |
KR100226366B1 (en) * | 1995-08-23 | 1999-10-15 | 아끼구사 나오유끼 | Plasma equipment and plasma processing method |
US5855745A (en) * | 1997-04-23 | 1999-01-05 | Sierra Applied Sciences, Inc. | Plasma processing system utilizing combined anode/ ion source |
JP3944946B2 (en) * | 1997-04-25 | 2007-07-18 | 株式会社島津製作所 | Thin film forming equipment |
KR100422184B1 (en) * | 2001-11-10 | 2004-03-11 | 아이티엠 주식회사 | Method for forming high quality thin film using a vacuum arc |
US7879209B2 (en) * | 2004-08-20 | 2011-02-01 | Jds Uniphase Corporation | Cathode for sputter coating |
US8500973B2 (en) * | 2004-08-20 | 2013-08-06 | Jds Uniphase Corporation | Anode for sputter coating |
US7658802B2 (en) * | 2005-11-22 | 2010-02-09 | Applied Materials, Inc. | Apparatus and a method for cleaning a dielectric film |
US8268116B2 (en) * | 2007-06-14 | 2012-09-18 | Lam Research Corporation | Methods of and apparatus for protecting a region of process exclusion adjacent to a region of process performance in a process chamber |
EP2251454B1 (en) | 2009-05-13 | 2014-07-23 | SiO2 Medical Products, Inc. | Vessel coating and inspection |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
WO2012147771A1 (en) | 2011-04-28 | 2012-11-01 | 東海ゴム工業株式会社 | Microwave plasma generation device, and magnetron sputtering film deposition device using same |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
AU2012318242A1 (en) | 2011-11-11 | 2013-05-30 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
JP5907701B2 (en) * | 2011-11-18 | 2016-04-26 | 住友理工株式会社 | Film member manufacturing method |
EP2846755A1 (en) | 2012-05-09 | 2015-03-18 | SiO2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US9184030B2 (en) | 2012-07-19 | 2015-11-10 | Lam Research Corporation | Edge exclusion control with adjustable plasma exclusion zone ring |
FR2995493B1 (en) * | 2012-09-11 | 2014-08-22 | Hydromecanique & Frottement | DEVICE FOR GENERATING A PLASMA HAVING A SIGNIFICANT EXTEND ALONG AN AXIS BY ELECTRONIC CYCLOTRONIC RESONANCE RCE FROM A GASEOUS MEDIUM |
JP6509734B2 (en) | 2012-11-01 | 2019-05-08 | エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド | Film inspection method |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
JP6382830B2 (en) | 2012-11-30 | 2018-08-29 | エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド | Uniformity control of PECVD deposition on medical syringes, cartridges, etc. |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US20160015898A1 (en) | 2013-03-01 | 2016-01-21 | Sio2 Medical Products, Inc. | Plasma or cvd pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
CN105392916B (en) | 2013-03-11 | 2019-03-08 | Sio2医药产品公司 | Coat packaging materials |
US20160017490A1 (en) | 2013-03-15 | 2016-01-21 | Sio2 Medical Products, Inc. | Coating method |
EP3693493A1 (en) | 2014-03-28 | 2020-08-12 | SiO2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
CN103966567B (en) * | 2014-05-05 | 2016-03-16 | 京东方科技集团股份有限公司 | A kind of magnetic field structure of planar targets and using method thereof |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
FR3042797B1 (en) * | 2015-10-27 | 2021-01-22 | Commissariat Energie Atomique | DEVICE FOR THE MANUFACTURING OF A PLASMA AMORPHIC CARBON LAYER WITH THE ELECTRONIC CYCLOTRON RESONANCE |
JP7138504B2 (en) * | 2018-07-31 | 2022-09-16 | キヤノントッキ株式会社 | Film forming apparatus and electronic device manufacturing method |
CN113774342A (en) * | 2020-06-09 | 2021-12-10 | 江苏菲沃泰纳米科技股份有限公司 | Sputtering coating equipment, electrode device thereof and coating method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5875839A (en) * | 1981-10-30 | 1983-05-07 | Fujitsu Ltd | Sputtering device |
JPS58161774A (en) * | 1982-03-17 | 1983-09-26 | Fujitsu Ltd | Sputtering method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3325394A (en) * | 1963-07-01 | 1967-06-13 | Ibm | Magnetic control of film deposition |
FR2324755A1 (en) * | 1975-09-19 | 1977-04-15 | Anvar | HIGH SPEED OF DEPOSIT CATHODIC SPRAY DEVICE |
JPS55131175A (en) * | 1979-03-30 | 1980-10-11 | Toshiba Corp | Surface treatment apparatus with microwave plasma |
JPS5613480A (en) * | 1979-07-13 | 1981-02-09 | Hitachi Ltd | Dry etching apparatus |
JPS5673539A (en) * | 1979-11-22 | 1981-06-18 | Toshiba Corp | Surface treating apparatus of microwave plasma |
JPS5779621A (en) * | 1980-11-05 | 1982-05-18 | Mitsubishi Electric Corp | Plasma processing device |
EP0103461B1 (en) * | 1982-09-10 | 1988-11-17 | Nippon Telegraph And Telephone Corporation | Plasma deposition method and apparatus |
JPS6016424A (en) * | 1983-07-08 | 1985-01-28 | Fujitsu Ltd | Microwave plasma processing method and apparatus thereof |
JPH0627323B2 (en) | 1983-12-26 | 1994-04-13 | 株式会社日立製作所 | Sputtering method and apparatus |
-
1983
- 1983-12-26 JP JP58243870A patent/JPH0627323B2/en not_active Expired - Lifetime
-
1984
- 1984-12-20 KR KR1019840008169A patent/KR890004880B1/en not_active IP Right Cessation
- 1984-12-24 US US06/686,005 patent/US4610770A/en not_active Expired - Lifetime
- 1984-12-27 EP EP84116391A patent/EP0148504B2/en not_active Expired - Lifetime
- 1984-12-27 DE DE8484116391T patent/DE3483647D1/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5875839A (en) * | 1981-10-30 | 1983-05-07 | Fujitsu Ltd | Sputtering device |
JPS58161774A (en) * | 1982-03-17 | 1983-09-26 | Fujitsu Ltd | Sputtering method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6376867A (en) * | 1986-09-19 | 1988-04-07 | Mitsubishi Kasei Corp | Reactive sputtering device |
JPS63227777A (en) * | 1987-03-17 | 1988-09-22 | Nippon Telegr & Teleph Corp <Ntt> | Device for forming thin film |
JPH11288799A (en) * | 1998-01-26 | 1999-10-19 | Commiss Energ Atom | Linear microwave plasma generating device using permanent magnet |
JP4666697B2 (en) * | 1998-01-26 | 2011-04-06 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Linear microwave plasma generator using permanent magnets |
Also Published As
Publication number | Publication date |
---|---|
EP0148504B2 (en) | 1995-07-12 |
US4610770A (en) | 1986-09-09 |
EP0148504A2 (en) | 1985-07-17 |
EP0148504B1 (en) | 1990-11-22 |
JPH0627323B2 (en) | 1994-04-13 |
EP0148504A3 (en) | 1987-10-07 |
KR890004880B1 (en) | 1989-11-30 |
KR850005147A (en) | 1985-08-21 |
DE3483647D1 (en) | 1991-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60135573A (en) | Method and device for sputtering | |
EP0173164B1 (en) | Microwave assisting sputtering | |
US5006218A (en) | Sputtering apparatus | |
JP3044204B2 (en) | Plasma processing equipment | |
US6080287A (en) | Method and apparatus for ionized physical vapor deposition | |
JPS61194174A (en) | Sputtering device | |
JP3298180B2 (en) | Thin film forming equipment | |
JPH1083894A (en) | Plasma processing device and method for reforming substrate surface | |
JPS62167878A (en) | Ecr sputtering apparatus | |
JP2552697B2 (en) | Ion source | |
JPH01139762A (en) | Sputtering apparatus | |
JPH0583632B2 (en) | ||
JP2621728B2 (en) | Sputtering method and apparatus | |
JPH0647723B2 (en) | Sputtering method and apparatus | |
JP2777657B2 (en) | Plasma deposition equipment | |
JPS6389663A (en) | Sputtering device | |
JPH01183123A (en) | Plasma etching device | |
JPH02156526A (en) | Microwave plasma treating system | |
JPH02197567A (en) | Plasma sputtering device | |
JPS6187867A (en) | Sputtering device | |
JP2570594Y2 (en) | Thin film forming equipment | |
JPS627853A (en) | Sputtering device | |
JPS6160881A (en) | Spattering method and its device | |
JPH1192928A (en) | Sputtering method | |
JPH02254161A (en) | Ecr sputtering device |