JPS60110785A - Production of raw material for coke and production of coke - Google Patents
Production of raw material for coke and production of cokeInfo
- Publication number
- JPS60110785A JPS60110785A JP21894283A JP21894283A JPS60110785A JP S60110785 A JPS60110785 A JP S60110785A JP 21894283 A JP21894283 A JP 21894283A JP 21894283 A JP21894283 A JP 21894283A JP S60110785 A JPS60110785 A JP S60110785A
- Authority
- JP
- Japan
- Prior art keywords
- coke
- coal
- raw material
- softening point
- bituminous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coke Industry (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、冶金用コークスの製造法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing metallurgical coke.
高炉製銑技術の発達は目覚ましいものがあるが、炉頂よ
り鉱石類とコークスを交互に装入して炉内に鉱石層とコ
ークス層を作り、炉下部の羽目から熱風を吹き込んで題
元溶解し、溶銑な取り出す基本原理に変化はない。生産
性が高いため高炉製銑法は今後も継続していくと思われ
るが、この高炉製銑法の欠点の1つは、高炉装入前にエ
ネルギー消費量の高い原料処理工程を有することである
。すなわち、石炭から堅牢なコークスを111るための
コークス製造工程と、粉鉱石類を焼き固める焼結工程で
ある。今後、高炉製銑法の特徴を生かし、銑鉄コストの
低減を図るには、これらの原料処理工程のコストをいか
に低減するかにかかっているといっても過言ではない。The development of blast furnace pig iron making technology is remarkable, but ore and coke are alternately charged from the top of the furnace to create an ore layer and a coke layer inside the furnace, and hot air is blown through the slats at the bottom of the furnace to melt the metal. However, there is no change in the basic principle of extracting hot metal. Blast furnace pig iron making is expected to continue in the future due to its high productivity, but one of the drawbacks of this method is that it requires a raw material processing process that consumes a lot of energy before charging into the blast furnace. be. That is, there is a coke manufacturing process for producing solid coke from coal, and a sintering process for burning and solidifying fine ore. It is no exaggeration to say that in order to take advantage of the characteristics of the blast furnace pig iron making process and reduce pig iron costs in the future, it will depend on how the costs of these raw material processing steps can be reduced.
その1つの方法としては、焼結工程の生産性を阻害する
微粉鉱石や製鉄所内で発生する高炉ダスト、転炉ダスト
、圧延スラッジなど、副生微粉の鉄源をコークス製造工
程で利用できれば、焼結コストを低減し、かつ石炭乾留
中に鉱石類は予備還元され、このように製造したコーク
スを高炉に装入すれば、還元速度を速め、炉内における
還元作用を良好に保持しうるという一石二鳥の効果があ
る。One method is to use by-product fine iron sources in the coke manufacturing process, such as fine ore that inhibits the productivity of the sintering process, blast furnace dust, converter dust, and rolling sludge generated in steel plants. It is possible to kill two birds with one stone by reducing the coke cost, and by pre-reducing ores during coal carbonization, and by charging the coke produced in this way into a blast furnace, the reduction rate can be increased and the reducing action in the furnace can be maintained well. There is an effect.
従来から、鉄鉱石を石炭に混合してコークスな製造する
、いわゆるフェロコークス法が知られているが、この技
術の欠点は、鉄鉱石を混合すると石炭のコークス化性が
゛著しく損なわれて、゛本来の目的である強度の高いコ
ークスが得られず、また鉄鉱石の種類によって石炭への
影響が異なり、コークス品質保持のための配合設計がた
てられなかった。さらに、フェロコークスを製造する時
に常に聞届になるのは、コークス炉のれんがが著しく損
傷される点にある。このような欠点から、鉄鉱石等をコ
ークス製造原料として装入炭に配合することはできなか
った。しかし、本発明者等は鉱石類が石炭のコークス化
性を阻害する原因を検討した結果1右炭乾留時において
石炭と接触している酪化性の強い鉄鉱石が石炭の粘結性
を阻害し、これが、コークス形成時において重要な40
0〜500°C範囲での軟化溶融性の低下をもたらして
いることを知見し、また、粘結性阻害作用は鉄鉱石と接
触する石炭のごく表面層に限られ、配合する鉱石類の粒
子表面に薄い炭化水素質の保護膜を形成させれば、粘結
性の低下を防げることが判明した。一方、コークス炉れ
んがが損傷するのは、鉄とコークス炉壁のシリカとの反
応によるFe09 i02が形成されるためで、鉄分原
料に炭素質の保護膜を形成すれば、鉄とれんがとの直接
接触を防ぐことができる。The so-called ferro-coke process, which produces coke by mixing iron ore with coal, has been known for some time, but the disadvantage of this technology is that when iron ore is mixed, the coking properties of the coal are significantly impaired. ``It was not possible to obtain high-strength coke, which was the original goal, and the effect on coal differed depending on the type of iron ore, so it was not possible to create a blending design to maintain coke quality. Furthermore, when producing ferrocoke, it is always common to see that the bricks of the coke oven are severely damaged. Due to these drawbacks, it has not been possible to incorporate iron ore or the like into charging coal as a raw material for coke production. However, the present inventors investigated the cause of ores inhibiting the coking property of coal and found that iron ore, which has a strong butyric property and is in contact with coal during coal carbonization, inhibits the caking property of coal. However, this is an important factor in coke formation.
It was found that the softening and melting properties decreased in the range of 0 to 500°C, and that the caking inhibiting effect was limited to the very surface layer of the coal that came into contact with the iron ore, and that It has been found that the reduction in caking properties can be prevented by forming a thin hydrocarbon protective film on the surface. On the other hand, coke oven bricks are damaged due to the formation of Fe09 i02 due to the reaction between iron and silica on the coke oven wall. contact can be prevented.
本発明は従来技術の欠点を解消し、焼結工程で生産性を
阻害する微粉鉄鉱石や製鉄所内で発生する各種鉄源副生
原料を、その性状に左右されることなく、かつ石炭のコ
ークス化性を阻害することなくコークス製造用原料とし
て配合し、通常の室炉式乾留法においても壁れんがを損
傷することなく利用できる方法を確立したものである。The present invention eliminates the drawbacks of the prior art, and eliminates the use of fine iron ore, which hinders productivity in the sintering process, and various iron source by-product materials generated in steel plants, without being affected by their properties, and by coke from coal. The company has established a method in which it can be blended as a raw material for coke production without impeding its coke-making properties, and can be used in the ordinary room furnace carbonization method without damaging wall bricks.
すなわち、本発明は、微粉鉄鉱石または高炉ダスト、転
炉ダスト、圧延スラッジなどの製鉄所内に副生ずる粒径
1mm以下の鉄源原料100部に対し、石炭ピッチ、石
油ピッチ、アスファルトかどの軟化点200 ’C以下
の瀝青物質を5〜30部添加し、前記瀝青物質の軟化点
よりも50℃以上高い温度で混練することを特徴とする
コークス製造用原料の製造方法を提供するものである。That is, the present invention provides a method for reducing the softening point of coal pitch, petroleum pitch, and asphalt corner for 100 parts of iron source raw material with a grain size of 1 mm or less, which is produced as a by-product in a steel mill, such as fine iron ore, blast furnace dust, converter dust, and rolling sludge. The present invention provides a method for producing a raw material for coke production, which comprises adding 5 to 30 parts of a bituminous material having a temperature of 200'C or less and kneading at a temperature 50C or more higher than the softening point of the bituminous material.
本発明はまた、高炉用コークスを製造するに際し、微粉
鉄鉱石または高炉ダスト、転炉ダスト、圧延スラッジな
どの製鉄所内に副生ずる粒径1m+m以下の鉄源原料J
、 O0部に対し、石炭ピッチ、石油ピッチ、アスファ
ルトなどの軟化点200℃以下の瀝青物質を5〜30部
添加し、前記瀝青物質の軟化点よりも50℃以上高い温
度で混練することにより得られたコークス製造用原料を
配合炭に対して外枠で15%以下配合し、通常の乾留条
件で乾留することを特徴とするコークスの製造方法を提
供するものである。The present invention also provides iron source raw materials J with particle diameters of 1 m+m or less that are by-produced in steel plants such as fine iron ore, blast furnace dust, converter dust, and rolling sludge when producing coke for blast furnaces.
, by adding 5 to 30 parts of a bituminous substance such as coal pitch, petroleum pitch, or asphalt with a softening point of 200°C or less to 0 parts, and kneading at a temperature 50°C or more higher than the softening point of the bituminous substance. The present invention provides a method for producing coke, characterized in that the raw material for producing coke is blended with the blended coal in an amount of 15% or less in an outer frame, and carbonized under normal carbonization conditions.
本光り1はさらに、成型コークスを製造するに際し、微
粉鉄鉱石または高炉ダスト、転炉ダスト、圧延スラッジ
などの製鉄所内に副生ずる粒径[■以下の鉄源原料10
0部に対し、石炭ピッチ、石油ピッチ、アスファルトな
どの軟化点200 ’c以下の瀝青物質を5〜30部添
加し、前記瀝青物質の軟化点よりも50’C以上高い温
度で混練することにより得られたコークス製造用原料を
バインダーとともに配合炭に対して外枠で20%以下配
合して成型炭を製造し、この成型炭を乾留することを特
徴とするコークスの製造方法を提供するものである。Furthermore, when manufacturing molded coke, this Hikari 1 has a grain size [■ below iron source raw material 10
By adding 5 to 30 parts of a bituminous substance with a softening point of 200'C or less, such as coal pitch, petroleum pitch, or asphalt, to 0 parts, and kneading at a temperature 50'C or more higher than the softening point of the bituminous substance. To provide a method for producing coke, which comprises blending the obtained raw material for coke production with a binder in an amount of 20% or less in an outer frame to a coal blend to produce briquette coal, and carbonizing the briquette coal. be.
本発明によれば、鉱石類は勿論、製鉄所内で随所に発生
する種々性状の異な−る高炉ダスト、転炉ダスト、圧延
スラッジなどの副生鉄源を利用することができるように
なった。According to the present invention, it has become possible to utilize not only ores but also by-product iron sources such as blast furnace dust, converter dust, rolling sludge, etc., which have various properties that are generated throughout the steelworks.
以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.
鉄源原料を全量粒径1mm以下、好ましくは0.3mm
以下に調整する。通常、本発明の対象となる原料は粒径
0.15 +am以下の微粉が多いため、改めて粉砕す
る必要はないが、鉱石類を原お(とする11+fは粒径
1mm以上の粒子が混入することがあるためである。こ
のように粒度を調整する理由は、これらの原料がコーク
ス塊形成時において不活性物質として働く関係上、石炭
と鉄源原料との両者間で収縮率が異なるため、粒径が大
きいとコークスの亀裂形成を促進して強度を低下させ、
粘結性とは別の要因でコークス品質を劣化させるからで
ある。The total particle size of the iron source material is 1 mm or less, preferably 0.3 mm.
Adjust as below. Normally, the raw materials targeted by the present invention are often fine powders with a particle size of 0.15 + am or less, so there is no need to re-pulverize them. The reason why the particle size is adjusted in this way is that the shrinkage rate is different between coal and iron source raw materials because these raw materials act as inert substances during coke lump formation. If the particle size is large, it will promote crack formation in coke and reduce its strength.
This is because coke quality deteriorates due to factors other than caking.
次に、該原料ioo部に対して軟化点200℃以下の瀝
青物を5〜30部配合し、軟化点より50’C以上高い
温度で混練讐る。瀝青物の軟化点を限定した理由は、2
00℃より高い軟化点を有する物質では、混練時におい
て疑似粒子化した物質に対して浸潤性が悪くなり”、粒
子表面への被覆が十分行き渡らないためである。また、
軟化点よりも50°C以上高い温度で混練するのも前記
と同じ理由による。このような処理を行うための瀝青物
は、コールタール、アスファルトコールタールピッチ、
石油ピッチ、石炭液化物、天然に存在するサンドオイル
など、いずれでもよく、」二記軟化点200’Oよりも
高い石炭系または石油系高軟化点ピッチを利用する場合
は、より軟質のタールあるいは重質油と混合して軟化点
を下げることで利用if)能であり、本発明ではこれら
の物質を総称して瀝青物と称する。瀝青物の配合割合を
5〜308Ilとしたのは、5部未満では、対象原料粒
度では瀝青物が各粒子に十分行き渡らないためであり、
30部を越えると高価な瀝青物を不必要に加える無駄を
防ぐため、および過剰配合すると強い粘着性を帯び1次
の配合段階のノ\ンドリング操作で困難をもたらすから
である。Next, 5 to 30 parts of bituminous material having a softening point of 200° C. or less is added to 100 parts of the raw material, and kneaded at a temperature 50° C. or more higher than the softening point. The reason for limiting the softening point of bituminous materials is 2.
This is because a substance with a softening point higher than 00°C has poor infiltration properties with respect to the substance that has turned into pseudo-particles during kneading, and the particle surfaces are not sufficiently coated.
The reason for kneading at a temperature 50°C or more higher than the softening point is the same as above. The bituminous materials used for such treatment include coal tar, asphalt coal tar pitch,
Petroleum pitch, coal liquefied product, naturally occurring sand oil, etc. may be used. When using a coal-based or petroleum-based pitch with a softening point higher than 200'O, softer tar or It can be used by mixing with heavy oil to lower the softening point, and in the present invention, these substances are collectively referred to as bituminous substances. The reason why the blending ratio of bituminous material is set to 5 to 308 Il is because if it is less than 5 parts, bituminous material will not be sufficiently distributed to each particle at the target raw material particle size.
If the amount exceeds 30 parts, this is to prevent unnecessary addition of expensive bituminous materials, and if the amount is added in excess, it will become highly adhesive, making it difficult to carry out the nodding operation in the first mixing step.
以上のような処理で得られた産物はコークス製造用の原
料に供せられる。通常のコークス炉で使用する場合は、
装入用石炭と同じ配合操作で取り扱うことができる。該
産物の配合を配合炭100部に対して15部以内とした
のは、15部を過ぎると、コークス化過程において、固
化温度以降の収縮過程で配合炭と該原料との収縮率の差
異によってもたらされる亀裂生成に起因する潰裂強度の
低下が、大きく影響をもつようになるからである。The products obtained through the above treatments are used as raw materials for coke production. When used in a regular coke oven,
It can be handled using the same blending procedure as charging coal. The reason why the product is blended within 15 parts per 100 parts of coal blend is that if it exceeds 15 parts, it will shrink due to the difference in shrinkage rate between the coal blend and the raw material during the shrinkage process after the solidification temperature during the coking process. This is because the reduction in crushing strength due to the resulting crack formation has a large effect.
成型コークス製造用原料として使用する場合は、成型操
作による石炭の圧密化により配合炭と該原料の収縮率の
差が小さくなり、20部以下であれば、コークス強度を
低下させることなく使用が可能である。要するに、該産
物のコークス原ネ゛1としての使用にあたっては、コー
クス塊形成時における配合炭と該産物との収縮率の差を
考慮すると、混合率に限界はあるものの、それ以内の範
囲であれば、通常の原料炭と同様の取り扱いで使用でき
る。When used as a raw material for molded coke production, the difference in shrinkage rate between the blended coal and the raw material becomes smaller due to the compaction of the coal through the molding operation, and as long as it is 20 parts or less, it can be used without reducing coke strength. It is. In short, when using this product as coke raw material 1, there is a limit to the mixing ratio, considering the difference in shrinkage rate between the blended coal and the product during coke lump formation, but it may be within the range. For example, it can be used in the same way as ordinary coking coal.
以上説明した本発明の方法によれば、製鉄所内で発生す
る微粉鉄FA原料をコークス製造工程で他の配合炭のコ
ークス化性を阻害することなく利用できる。According to the method of the present invention described above, the pulverized iron FA raw material generated within a steelworks can be used in the coke manufacturing process without inhibiting the coking properties of other coal blends.
以下、本発明を実施例につき具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.
[実施例1〕
第1表に示す鉄源原料に、瀝青物として第2表に示す軟
化点140°Cのペンタン脱鰹アスファルトを外枠で1
3%添加し、ニーダ−で210℃の温度で加熱混練して
コークス原料産物を得た。[Example 1] Pentane debonito asphalt with a softening point of 140°C shown in Table 2 as a bituminous material was added to the iron source material shown in Table 1 in an outer frame.
3% was added and kneaded by heating at a temperature of 210° C. in a kneader to obtain a coke raw material product.
該産物を第3表に示す配合炭に外枠で3,5゜10.1
5%の割合で混合し、キーセラープラストメータで最高
流動度を測定した。一方、比較のため、第1表に示す原
料を何ら処理しないでそのまま配合)欠に鰯加して、同
様に最高流動度を測定した。第1図はオーストラリア産
鉄鉱石について、第2図は高炉ダ°ストの場合について
の結果である。いずれの場合も何ら処理しないで配合炭
に添加すると急激に粘結性を阻害するが、木発IJJの
方法で処理すれば、15%添加でベース配合炭に比較し
てやや流動度は低下するものの実用上は問題がない程度
である。The product was added to the coal blend shown in Table 3 at an angle of 3.5°10.1 in the outer frame.
They were mixed at a ratio of 5%, and the maximum flow rate was measured using a Kiessel plastometer. On the other hand, for comparison, the raw materials shown in Table 1 were blended as they were without any treatment) and sardines were added, and the maximum fluidity was measured in the same manner. Figure 1 shows the results for Australian iron ore, and Figure 2 shows the results for blast furnace dust. In either case, if added to a coal blend without any treatment, the caking property will be drastically inhibited, but if treated using the Kihatsu IJJ method, the fluidity will decrease slightly compared to the base blend coal at 15% addition. There is no problem in practical use.
第3表に示すベース配合炭95部に対して、第1表に示
す鉄源原料をそのまま、あるいは曲記と同様に処理して
得られた産物を5部の割合で配合し、JIS M 88
01の缶焼法に準拠して乾留試験を実施した。第4表に
示すようにNO9!はベース配合炭である。No、2.
No、3は第2表に示す瀝青物原料をそのまま配合し
たもので、N001に比較して潰裂強う0400
度D115、摩耗強度TI。 は大きく低下し、特にT
、 3ooで著しい。No、4. No、5は木発り1
法にしたがって処理したもので、No、2. No、3
と比較すると両者とも向上し、N001と比較してもコ
ークス化性を損なわずに鉄aX料をコークス用原料とし
て利用できることがわかる。なお、DI30は、JIS
5
K 2151で規定されたドラム試験法でのドラム回転
数30@後のフル、イ目15諺1以上の重量割合を示し
T I 800は、同様にJIS K 2151で規
定されたタンブラ−試験法での400回転後のフル41
61011以上の重量割合を示し、前者はコークス強度
における潰裂性、後者は摩耗性を意味するものである。To 95 parts of the base blended coal shown in Table 3, 5 parts of the iron source raw materials shown in Table 1, either as they are or processed in the same manner as described above, are blended at a ratio of 5 parts to JIS M 88.
A carbonization test was carried out in accordance with the canning method of No. 01. As shown in Table 4, NO9! is the base blend coal. No, 2.
No. 3 is a product in which the bituminous raw materials shown in Table 2 are blended as is, and has a crushing and tearing strength of 0400 degrees D115 and abrasion strength TI compared to No. 001. decreased significantly, especially T
, significant at 3oo. No, 4. No. 5 is from wood 1
Processed according to the law, No. 2. No.3
It can be seen that the iron aX material can be used as a raw material for coke without impairing the coking property even when compared with N001. In addition, DI30 is JIS
5 Indicates the weight percentage of the full drum after 30 rotations of the drum according to the drum test method specified in K 2151. Full 41 after 400 rpm at
It shows a weight ratio of 61011 or more, the former meaning crushing property in terms of coke strength, and the latter meaning abrasion property.
〔実施例2〕
第3表に示した配合の中でカナダ炭20%を豪州微粘結
炭と振り替え、成型床製造用のベース配合炭として使用
した。鉄源原料としては第1表のオーストシリア産鉄鉱
石粉を用いた。成型床製造用のバインダーとして軟化点
60℃の石炭ピッチを使用し、ダブルロール成型機で第
5表に示した配合で成型炭を製造し、得られた成型炭を
相互に融着しないようにコークス粉層の中に入れ、JI
SM 8801の缶焼法に準拠して乾留した。 No、
7は鉄鉱石粉をそのまま配合した場合、No、8は実施
例1と同様に瀝青物で被覆処理したものを配合したもの
である。 No、8のベース配合炭に比較して、無処理
で鉱石粉を混合するとコークス化性が劣化して堅牢なコ
ークスは得られないが1本ffi IJ法によって処理
すればコークス強度の向上が図れることが明らかである
。[Example 2] In the blend shown in Table 3, 20% of Canadian coal was substituted with Australian slightly caking coal and used as a base blend coal for manufacturing a molded bed. As the iron source material, Austsyrian iron ore powder shown in Table 1 was used. Coal pitch with a softening point of 60°C was used as a binder for the production of molded beds, and molded coal was manufactured using a double roll molding machine with the composition shown in Table 5, and the resulting molded coals were made so as not to fuse together. Put it in the coke powder layer, JI
It was carbonized according to the canning method of SM 8801. No,
No. 7 is a case in which iron ore powder is blended as is, No. 8 is a case in which iron ore powder coated with bituminous material is blended in the same manner as in Example 1. Compared to No. 8 base blend coal, if ore powder is mixed without treatment, the coking property deteriorates and strong coke cannot be obtained, but if treated by the single ffi IJ method, the coke strength can be improved. That is clear.
以上の実施例から本発明法に従えば、微粉鉄鉱石や製鉄
所で副生的に発生する鉄源物質を高炉用コークス製造用
の配合原料として、配合炭のコークス化性を損なうこと
なく使用できることが明らかであり、焼結工程の負荷を
減らし、資源の再利用を図ることができる効果は極めて
大きい。According to the above examples, if the method of the present invention is followed, pulverized iron ore and iron source materials generated as by-products in steel mills can be used as blended raw materials for producing coke for blast furnaces without impairing the coking properties of blended coal. It is clear that it can be done, and the effect of reducing the load on the sintering process and reusing resources is extremely large.
第1図および第2図は、それぞれオーストラリア産鉄鉱
石および高炉ダストについて本発明法で処理して配合炭
に添加した場合の粘結性への影響を無処理との比較で、
配合炭への添加割合とギーセラープラストメータで測定
した最高流動度(DDPM)の対数値との関係で示すグ
ラフである。
特許出願人 川崎製鉄株式会社
第1図
配合炭への添加量(〆)
第2図
配合炭への港カロ量 (%)Figures 1 and 2 show the effects on caking properties when Australian iron ore and blast furnace dust are treated with the method of the present invention and added to blended coal, respectively, compared with untreated.
It is a graph showing the relationship between the addition ratio to blended coal and the logarithm value of maximum fluidity (DDPM) measured with a Gieseler plastometer. Patent Applicant: Kawasaki Steel Co., Ltd. Figure 1 Amount added to blended coal (〆) Figure 2 Amount of port calories added to blended coal (%)
Claims (3)
スラッジなどの製鉄所内に副生ずる粒径1non以下の
鉄源原料100部に対し、石炭ピッチ、石油ピッチ、ア
スファルトなどの軟化点200℃以下の好青物質を5〜
30部添加し、前記瀝青物質の軟化点よりも50°C以
上高い温度で混練することを特徴とするコークス製造用
原料の製造方法。(1) For 100 parts of iron source raw materials with a grain size of 1non or less, which are by-products in steel plants such as fine iron ore, blast furnace dust, converter dust, rolling sludge, etc., softening point of coal pitch, petroleum pitch, asphalt, etc. is 200 ° C or less 5~ of blue-loving substances
30 parts of the bituminous material is added and kneaded at a temperature 50°C or more higher than the softening point of the bituminous material.
たは高炉ダスト、転炉ダスト、圧延スラッジなどの製鉄
所内に副生ずる粒径lam以下の鉄源原料100部に対
し、石炭ピッチ、石油ピッチ、アスファルトなどの軟化
点200’C以下の瀝青物質を5〜30部添加し、前記
瀝青物質の軟化点よりも50’0以上高い温度で混練す
ることにより得られたコークス製造用原料を配合炭に対
して外枠で15%以下配合し1通常の乾留条件で乾留す
ることを特徴とするコークスの製造方法。(2) When producing coke for blast furnaces, coal pitch, petroleum pitch, A raw material for coke production obtained by adding 5 to 30 parts of a bituminous substance with a softening point of 200'C or less, such as asphalt, and kneading at a temperature 50'0 or more higher than the softening point of the bituminous substance, is made into a coal blend. 1. A method for producing coke, characterized in that the outer frame contains 15% or less of the coke and is carbonized under normal carbonization conditions.
は高炉ダスト、転炉ダスト、圧延スラッジなどの製鉄所
内に副生する粒径1III11以下の鉄源源、ljl
100部に対し、石炭ピッチ、石油ピッチ、アスファル
トなどの軟化点200℃以下の瀝青物質を5〜30部添
加し、前記瀝青物質の軟化点よりも50°C以上高い温
度で混練することにより得られたコークス製造用原料を
バインダーとともに配合炭に対して外枠で20%以下配
合して成型炭を製造し、この成型炭を乾留することを特
徴とするコークスの製造方法。(3) When producing molded coke, iron sources with a particle size of 1III11 or less, ljl, which are by-produced in steel plants such as fine iron ore, blast furnace dust, converter dust, and rolling sludge, are used.
100 parts, add 5 to 30 parts of a bituminous substance with a softening point of 200°C or less, such as coal pitch, petroleum pitch, or asphalt, and knead at a temperature 50°C or more higher than the softening point of the bituminous substance. A method for producing coke, which comprises blending the raw material for coke production with a binder in an amount of 20% or less in an outer frame to a coal blend to produce briquette coal, and carbonizing the briquette coal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21894283A JPS60110785A (en) | 1983-11-21 | 1983-11-21 | Production of raw material for coke and production of coke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21894283A JPS60110785A (en) | 1983-11-21 | 1983-11-21 | Production of raw material for coke and production of coke |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60110785A true JPS60110785A (en) | 1985-06-17 |
Family
ID=16727740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21894283A Pending JPS60110785A (en) | 1983-11-21 | 1983-11-21 | Production of raw material for coke and production of coke |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60110785A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169603A (en) * | 2005-11-28 | 2007-07-05 | Jfe Steel Kk | Method for producing ferrocoke and sintered ore |
JP2007246786A (en) * | 2006-03-17 | 2007-09-27 | Jfe Steel Kk | Ferrocoke and method for producing sintered ore |
JP2008056777A (en) * | 2006-08-30 | 2008-03-13 | Jfe Steel Kk | Manufacturing method of molded product of raw material for ferrocoke and ferrocoke |
JP2008101112A (en) * | 2006-10-19 | 2008-05-01 | Jfe Steel Kk | Manufacturing methods of molded product of ferrocoke raw material and ferrocoke |
JP6016001B1 (en) * | 2015-06-24 | 2016-10-26 | Jfeスチール株式会社 | Ferro-coke manufacturing method |
WO2016208435A1 (en) * | 2015-06-24 | 2016-12-29 | Jfeスチール株式会社 | Ferro-coke production method |
KR20210077446A (en) * | 2019-12-17 | 2021-06-25 | 주식회사 포스코 | Method of manufacturing coke |
-
1983
- 1983-11-21 JP JP21894283A patent/JPS60110785A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169603A (en) * | 2005-11-28 | 2007-07-05 | Jfe Steel Kk | Method for producing ferrocoke and sintered ore |
JP2007246786A (en) * | 2006-03-17 | 2007-09-27 | Jfe Steel Kk | Ferrocoke and method for producing sintered ore |
JP2008056777A (en) * | 2006-08-30 | 2008-03-13 | Jfe Steel Kk | Manufacturing method of molded product of raw material for ferrocoke and ferrocoke |
JP2008101112A (en) * | 2006-10-19 | 2008-05-01 | Jfe Steel Kk | Manufacturing methods of molded product of ferrocoke raw material and ferrocoke |
JP6016001B1 (en) * | 2015-06-24 | 2016-10-26 | Jfeスチール株式会社 | Ferro-coke manufacturing method |
WO2016208435A1 (en) * | 2015-06-24 | 2016-12-29 | Jfeスチール株式会社 | Ferro-coke production method |
US11111441B2 (en) | 2015-06-24 | 2021-09-07 | Jfe Steel Corporation | Method for producing ferrocoke |
KR20210077446A (en) * | 2019-12-17 | 2021-06-25 | 주식회사 포스코 | Method of manufacturing coke |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011034195A1 (en) | Process for producing ferro coke | |
US2806779A (en) | Method of producing iron | |
CN101990581A (en) | Titanium oxide-containing agglomerate for producing granular metallic iron | |
JP2008127580A (en) | Hot briquette iron and producing method thereof | |
CN107614710B (en) | The manufacturing method of reduced iron | |
JPS60110785A (en) | Production of raw material for coke and production of coke | |
JP2007077484A (en) | Method for manufacturing carbonaceous material-containing agglomerate | |
JP2005213461A (en) | Method of manufacturing coal to be charged into coke oven | |
CN116377213A (en) | Method for reducing burning up of sintered solid by adding pre-granulated carbon-containing solid waste | |
JP4490735B2 (en) | Manufacturing method of carbonized material agglomerates | |
US2780536A (en) | Flue-dust sinter and method of manufacture | |
JP2005053982A (en) | Method for producing ferrocoke for blast furnace | |
JP2013221187A (en) | Method for producing agglomerate | |
KR101421208B1 (en) | Selection method of carboneous materials and manufacturing method of reduced iron using the same | |
JP2937659B2 (en) | Coke production method | |
JP7501475B2 (en) | Ferro-coke manufacturing method | |
JPH08231962A (en) | Production of metallurgical coke | |
EP4442846A1 (en) | Method and system for manufacturing a solid agglomerate | |
JP6294135B2 (en) | Method for producing reduced iron | |
JP2015105427A (en) | Method for manufacturing reduced iron | |
WO2024202185A1 (en) | Coke production method | |
Shoko et al. | Briquetted chrome ore fines utilisation in Ferrochrome production at Zimbabwe alloys | |
KR20220037427A (en) | Method for preparing mamganse briquette | |
JPS60248831A (en) | Manufacture of uncalcined lump ore | |
JP2007063605A (en) | Method for manufacturing carbonaceous-material-containing agglomerate |