JP2007169603A - Method for producing ferrocoke and sintered ore - Google Patents
Method for producing ferrocoke and sintered ore Download PDFInfo
- Publication number
- JP2007169603A JP2007169603A JP2006294142A JP2006294142A JP2007169603A JP 2007169603 A JP2007169603 A JP 2007169603A JP 2006294142 A JP2006294142 A JP 2006294142A JP 2006294142 A JP2006294142 A JP 2006294142A JP 2007169603 A JP2007169603 A JP 2007169603A
- Authority
- JP
- Japan
- Prior art keywords
- iron ore
- raw material
- coke
- ore
- ferrocoke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 130
- 229910052742 iron Inorganic materials 0.000 claims abstract description 65
- 239000002994 raw material Substances 0.000 claims abstract description 53
- 239000002245 particle Substances 0.000 claims abstract description 32
- 238000007873 sieving Methods 0.000 claims abstract description 14
- 239000000571 coke Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 abstract description 19
- 238000007796 conventional method Methods 0.000 abstract 1
- 238000005245 sintering Methods 0.000 description 19
- 239000003245 coal Substances 0.000 description 16
- 230000035699 permeability Effects 0.000 description 14
- 238000000465 moulding Methods 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 9
- 238000004513 sizing Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 6
- 239000011449 brick Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000013441 quality evaluation Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- -1 condition Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Images
Landscapes
- Coke Industry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、高炉原料として用いるのに好適な、石炭および鉄鉱石を原料として乾留して製造するフェロコークスの製造方法と、焼結鉱の製造方法に関する。 The present invention relates to a method for producing ferro-coke, which is suitable for use as a blast furnace raw material and produced by dry distillation using coal and iron ore as raw materials, and a method for producing sintered ore.
原料石炭に粉鉄鉱石を配合し、この混合物を通常の室炉式コークス炉で乾留してフェロコークスを製造する技術としては、(a)石炭と粉鉄鉱石との粉混合物を室炉式コークス炉に装入する方法、(b)石炭と鉄鉱石を冷間、すなわち室温で成型し、その成型物を室炉式コークス炉に装入する方法などが検討されてきた(例えば、非特許文献1参照。)。しかし通常の室炉式コークス炉は珪石煉瓦で構成されているので、鉄鉱石を装入した場合に鉄鉱石が珪石煉瓦の主成分であるシリカと反応し、低融点のファイヤライトが生成して珪石煉瓦の損傷を招く。このため室炉式コークス炉でフェロコークスを製造する技術は、工業的には実施されていない。 The technology for producing ferro-coke by blending powdered iron ore with raw coal and producing this ferro-coke by dry distillation of this mixture in an ordinary chamber-type coke oven is as follows. A method of charging into a furnace, (b) a method of forming coal and iron ore cold, that is, at room temperature, and charging the molded product into a chamber-type coke oven have been studied (for example, non-patent literature). 1). However, ordinary furnace-type coke ovens are composed of silica brick, so when iron ore is charged, iron ore reacts with silica, which is the main component of silica brick, and low-melting firelite is produced. This causes damage to the quartz brick. For this reason, the technique which manufactures ferro-coke with a chamber-type coke oven is not implemented industrially.
近年室炉式コークス炉製造方法に替わるコークス製造方法として連続式成型コークス製造法が開発されている。連続式成型コークス製造法では、乾留炉として、珪石煉瓦ではなくシャモット煉瓦にて構成される竪型シャフト炉を用い、石炭を冷間で所定の大きさに成型後、シャフト炉に装入し、循環熱媒ガスを用いて加熱することにより成型炭を乾留し、成型コークスを製造する。資源埋蔵量が豊富で安価な非粘結炭を多量に使用しても、通常の室炉式コークス炉と同等の強度を有するコークスが製造可能なことが確認されているが、使用する石炭の粘結性が高い場合にはシャフト炉内で成型炭が軟化融着し、シャフト炉操業が困難になると共に変形や割れ等のコークス品質低下を招く。 In recent years, a continuous molding coke manufacturing method has been developed as a coke manufacturing method replacing the chamber furnace coke oven manufacturing method. In the continuous molding coke manufacturing method, a vertical shaft furnace composed of chamotte bricks instead of silica bricks is used as a carbonization furnace, coal is molded into a predetermined size in the cold, and then charged into the shaft furnace. The coal is carbonized by heating using a circulating heat medium gas to produce a molded coke. It has been confirmed that even if a large amount of cheap non-caking coal with abundant resource reserves is used, it is possible to produce coke having the same strength as a normal chamber furnace coke oven. When the caking property is high, the coal is softened and fused in the shaft furnace, which makes it difficult to operate the shaft furnace and causes deterioration of coke quality such as deformation and cracking.
連続式成型コークス製造法でシャフト炉内での融着抑制のために、石炭に鉄鉱石を全体量の15〜40%となるように添加し、冷間で成型物を製造し、シャフト炉に装入する方法が提案されている(例えば、特許文献1参照)。この方法では、鉄鉱石に粘結性がないため、冷間の状態で成型物を製造するために高価なバインダーを添加する必要があるので、石炭と鉄鉱石を加熱した熱間の状態で塊成型物に成型する方法も提案されている(例えば、特許文献2参照)。 In order to suppress fusion in the shaft furnace in the continuous molding coke manufacturing method, iron ore is added to the coal so as to be 15 to 40% of the total amount, and the molded product is manufactured coldly. A method of charging has been proposed (see, for example, Patent Document 1). In this method, since iron ore is not caustic, it is necessary to add an expensive binder to produce a molded product in a cold state. A method of molding into a molded product has also been proposed (see, for example, Patent Document 2).
上記のように石炭と鉄鉱石とを混合した成型物を熱処理して、強度に優れた成型コークス(フェロコークス)を製造するためには、鉄鉱石に最適な粒度があり、2mm以上、10mm以下の粗粒割合を最適化した成型コークスの製造方法が知られている(例えば、特許文献3参照。)。また、石炭と鉄鉱石とを混合したペレットについても、還元後の強度に優れた炭材内装ペレットとして、鉄鉱石中の10μm以下の微粉割合を最適化したものが知られている(例えば、特許文献4参照。)。
上記のように、原料鉄鉱石の品質のうち、粒度がフェロコークスに及ぼす影響の検討は多くなされている。しかしながら、その多くは鉄鉱石の事前処理工程での最適粉砕粒度を如何に設定するかであり、粉砕工程におけるコストが高く、フェロコークスの製造方法としては簡便な手法ではない点が問題である。 As described above, of the quality of raw iron ore, many studies have been made on the influence of particle size on ferrocoke. However, most of them are how to set the optimum pulverization particle size in the pretreatment process of iron ore, and the cost is high in the pulverization process, and there is a problem that it is not a simple method for producing ferrocoke.
したがって本発明の目的は、このような従来技術の課題を解決し、フェロコークスの原料の一つである鉄鉱石を所定粒度とする際の事前処理方法を簡便なものとし、強度などの品質を低下させることなく、通常よりも安価にフェロコークスを製造する方法を提供することにある。 Therefore, the object of the present invention is to solve such problems of the prior art, simplify the pretreatment method when iron ore, which is one of the raw materials of ferro-coke, has a predetermined particle size, and improve quality such as strength. An object of the present invention is to provide a method for producing ferrocoke at a lower cost than usual without lowering.
このような課題を解決するための本発明の特徴は以下の通りである。
(1)フェロコークスおよび焼結鉱の原料である鉄鉱石を篩い分けして、篩下である小粒径の鉄鉱石をフェロコークス原料とし、篩上である大粒径の鉄鉱石を焼結鉱原料として用いることを特徴とするフェロコークスおよび焼結鉱の製造方法。
(2)篩い分けに用いる篩目が3mm以下であること特徴とする(1)に記載のフェロコークスおよび焼結鉱の製造方法。
The features of the present invention for solving such problems are as follows.
(1) Screening iron ore, which is a raw material for ferrocoke and sintered ore, and sinter the iron ore having a large particle size on the sieve, using the iron ore with a small particle size under the sieve as the raw material for ferrocoke. A method for producing ferrocoke and sintered ore, characterized by being used as a mineral raw material.
(2) The method for producing ferrocoke and sintered ore according to (1), wherein the sieve mesh used for sieving is 3 mm or less.
本発明によれば、鉄鉱石の事前処理を低コストで行なうことが可能となり、フェロコークスを安価に製造することができる。また、同時に焼結鉱を製造する際の通気性の問題を改善でき、焼結鉱の生産性も向上する。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to perform pre-processing of an iron ore at low cost, and can manufacture a ferro-coke cheaply. At the same time, the problem of air permeability when producing the sintered ore can be improved, and the productivity of the sintered ore is also improved.
石炭および鉄鉱石を混合して成型し、乾留して得られるフェロコークスを製造する際に、原料である鉄鉱石の最適な粒度は、成型工程で成型する成型物の大きさによって異なるが、石炭粒子よりも大きな鉄鉱石粒子を用いると、成型により石炭と鉄鉱石粒子との界面に空隙を形成しやすいため、成型後の強度が低下する。そこで成型後の強度を低下させないために、鉄鉱石を事前に粉砕して、成型時に石炭との界面に生じる空隙を減らす試みがなされている。しかしながら、鉄鉱石のように高硬度の原料の粉砕は、製造コストに大きく影響するため、粉砕コストの低減化が望まれる。そこで本発明では、成型後の強度を低下させることなく、また、安価にフェロコークスを製造するために、鉄鉱石の粉砕工程を簡便化する方法について検討した。そして、原料鉄鉱石を粉砕することなく、篩を用いて篩い分けし、篩上は焼結鉱用原料の鉄源として使用し、篩下をフェロコークス用原料の鉄源として使用することで、鉄鉱石を所定粒径以下となるまで粉砕することに比べて低コストで、フェロコークス製造に好適な所定粒径以下の鉄鉱石を得ることができることを見出した。また、篩上を焼結鉱原料として有効に利用することで、以下で説明するように焼結鉱を製造する際の通気性の問題を改善できるという優れた効果を有するものである。また、鉄鉱石が塊鉱石の場合等、粉砕工程を有する場合には、フェロコークス用原料の粉砕工程と兼ねて粉砕を実施することができるので、この点でも製造コストが低下する効果がある。 When producing ferro-coke obtained by mixing and molding coal and iron ore and dry distillation, the optimal particle size of the iron ore that is the raw material varies depending on the size of the molded product to be molded in the molding process. When iron ore particles larger than the particles are used, voids are likely to be formed at the interface between coal and iron ore particles by molding, resulting in a decrease in strength after molding. Therefore, in order not to reduce the strength after molding, attempts have been made to reduce voids generated at the interface with coal during the molding by previously pulverizing iron ore. However, the pulverization of raw materials with high hardness such as iron ore greatly affects the production cost, and therefore it is desired to reduce the pulverization cost. Therefore, in the present invention, a method for simplifying the iron ore crushing step was studied in order to produce ferrocoke at low cost without reducing the strength after molding. And without pulverizing the raw iron ore, sieving using a sieve, using the top of the sieve as the iron source of the raw material for sintered ore, and using the lower sieve as the iron source of the raw material for ferro-coke, It has been found that an iron ore having a predetermined particle size or less suitable for ferrocoke production can be obtained at a lower cost than pulverizing the iron ore to a predetermined particle size or less. Moreover, it has the outstanding effect that the problem of air permeability at the time of manufacturing a sintered ore can be improved by using the sieve top effectively as a raw material for sintered ore as explained below. In addition, when the iron ore has a crushing process such as a lump ore, the crushing can be performed in combination with the crushing process of the raw material for ferro-coke, so that the manufacturing cost is also reduced in this respect.
高炉において製鉄用原料として用いる焼結鉱を製造するにあたっては、鉄鉱石、粉コークス、石灰石ならびに焼結機の破砕篩分装置で発生する返鉱とを主原料とし、これらの原料を一次破砕および二次ミキサーにて、混合、調湿、粒状化し、焼結配合原料とし、サージホッパーより焼結機のパレットに装入する。一方、焼結パレットのグレート上には通気性の確保ならびにグレートへの融着防止を目的として、整粒された焼結鉱を床敷として用い、床敷層を形成せしめ、その上に通常の焼結配合原料を装入する。次いで焼結パレット上に配合原料により形成された焼結原料層は、点火炉のバーナーによって点火され、焼結原料層上部より下向に順次焼結される。焼結用空気は焼結排風機により焼結原料層表面より下向きに吸引され焼結燃焼ガスとなり、除塵後大気中に排煙される。焼結を完了した焼結原料層は、クラッシャーで破砕後クーラー冷却し、多段のスクリーンで篩い分けし、各スクリーンの篩上を高炉用焼結鉱とし、最終スクリーンの篩下である小粒径のものは返鉱とし、返鉱原料ホッパーに送鉱し、再度焼結原料に用いている。以上のようにして焼結鉱を製造する際に、微粉原料が増加すると、焼結原料層の通気性が悪化し焼結鉱の生産性が低下する。したがって、比較的粗粒の鉄鉱石を焼結鉱原料として用いることで、焼結機の焼結パレット上の焼結原料層の通気性を改善可能であり、鉄鉱石を篩い分けして篩下をフェロコークス原料とする際に、篩上を焼結鉱原料に用いることで、これを実現することができる。 When producing sintered ore used as a raw material for iron making in a blast furnace, iron ore, fine coke, limestone and return ore generated by the crushing and sieving device of the sintering machine are used as the main raw materials. Using a secondary mixer, mix, condition, granulate, use as a raw material for sintering, and charge from a surge hopper to the pallet of the sintering machine. On the other hand, for the purpose of ensuring air permeability and preventing fusion to the grate on the sintered pallet grate, a sized sintered ore is used as a bedding, and a bedding layer is formed on the sinter. The raw material for sintering is charged. Next, the sintered raw material layer formed of the blended raw material on the sintering pallet is ignited by a burner of an ignition furnace and sequentially sintered downward from the upper part of the sintered raw material layer. Sintering air is sucked downward from the surface of the sintering raw material layer by a sintering exhaust fan to become a combustion combustion gas, and is exhausted into the atmosphere after dust removal. The sintered raw material layer that has been sintered is crushed with a crusher, cooled with a cooler, sieved with a multi-stage screen, and the sinter for each blast furnace is made into sintered blast furnace ore. This is returned to ore, sent to a return material hopper, and used again as a sintered material. When producing a sintered ore as described above, if the fine powder material is increased, the air permeability of the sintered material layer is deteriorated and the productivity of the sintered ore is lowered. Therefore, by using relatively coarse iron ore as a raw material for sintered ore, the air permeability of the sintered raw material layer on the sintering pallet of the sintering machine can be improved. This can be realized by using the sieve top as the sintered ore raw material when using the ferro-coke raw material.
篩い分けに用いる篩目は3mm以下とすることが好ましい。特に好ましくは、1mm〜3mmである。一般に冶金用原料として用いるフェロコークスであれば、成型物のサイズは3〜95cm3程度、特に好ましくは6〜60cm3程度であり、原料である鉄鉱石は粒径が3mm以下であれば、十分な強度を有するフェロコークスが製造できる。また、焼結鉱原料として用いる鉄鉱石としては、粒径3mm未満の細粒のものを除去することで、焼結原料層の通気性を改善することができる。篩い分けの篩目をあまり大きく設定すると、製造されるフェロコークスの強度が低下し、また、篩目を小さく設定しすぎると、フェロコークス原料とする鉄鉱石の量が不足したり、焼結鉱製造の際の通気性の改善効果が低下するので、操業条件に合わせて、篩目は適宜調整することが望ましい。篩い効率を向上させるために、予め乾燥させた鉄鉱石を篩い分けすることが好ましい。 The sieve mesh used for sieving is preferably 3 mm or less. Particularly preferably, it is 1 mm to 3 mm. In general, if ferro-coke is used as a raw material for metallurgy, the size of the molded product is about 3 to 95 cm 3 , particularly preferably about 6 to 60 cm 3 , and the iron ore as the raw material is sufficient if the particle size is 3 mm or less. Ferro-coke having a high strength can be produced. Moreover, as the iron ore used as a sintered ore raw material, the air permeability of the sintered raw material layer can be improved by removing fine particles having a particle diameter of less than 3 mm. If the sieve size is set too large, the strength of the produced ferrocoke will decrease, and if the sieve size is set too small, the amount of iron ore used as the ferrocoke raw material will be insufficient, Since the effect of improving the air permeability during the production is reduced, it is desirable to adjust the sieve mesh appropriately according to the operating conditions. In order to improve the sieving efficiency, it is preferable to screen the iron ore that has been dried in advance.
フェロコークス原料中の鉄鉱石の粒度および鉄鉱石の割合がフェロコークス品質に及ぼす影響を調べるために、フェロコークスの製造および品質評価を行なった。 In order to investigate the influence of iron ore particle size and iron ore ratio in ferrocoke raw material on ferrocoke quality, ferrocoke production and quality evaluation were performed.
フェロコークスは以下の方法で製造した。まず、フェロコークス用原料の調整を行ない、石炭と鉄鉱石の配合割合および鉄鉱石の種類(鉄鉱石A、Bの2種類)を変更し、各種の原料を調整した。石炭はジョークラッシャーで粒径3mm以下(−3mm)に粉砕したものを使用し、この石炭に、粒径3mm以上の鉄鉱石をロールミルで粉砕して全量を粒径3mm以下(−3mm)に調整した鉄鉱石(粉砕整粒)、または、篩により粒径3mm以上を除き全量を粒径3mm以下(−3mm)に調整した鉄鉱石(篩整粒)を、配合割合を変化させて加えて混合した後、成型機により18cm3の成型物を製造した。製造した成型物を熱処理炉で乾留してフェロコークスを得た。 Ferro-coke was produced by the following method. First, the raw material for ferro-coke was adjusted, the mixing ratio of coal and iron ore and the type of iron ore (two types of iron ores A and B) were changed, and various raw materials were adjusted. Coal used was crushed with a jaw crusher to a particle size of 3 mm or less (-3 mm), and iron ore with a particle size of 3 mm or more was crushed with a roll mill to adjust the total amount to a particle size of 3 mm or less (-3 mm). Iron ore (crushed sizing) or iron ore (sieved sizing) whose particle size was adjusted to 3 mm or less (-3 mm) except for a particle size of 3 mm or more with a sieve was added at a different mixing ratio and mixed. After that, an 18 cm 3 molded product was produced by a molding machine. The manufactured molding was dry-distilled in a heat treatment furnace to obtain ferro-coke.
製造したフェロコークスの品質評価はドラム試験機を用いて行った。JISでは、150回転15mm指数を使用することになっているが、フェロコークスは通常コークスと比較して密度が高いため体積破壊よりも表面破壊により破壊が進行する。そのため、150回転6mm指数(DI150/6)を用いて強度評価を行った。尚、フェロコークスの目標強度を150回転6mm指数で82と設定した。
Quality evaluation of the manufactured ferro-coke was performed using a drum testing machine. In JIS, the 150
フェロコークス用原料として使用した鉄鉱石A、鉄鉱石Bの整粒前の粒度分布を図1、2に示す。これらの鉄鉱石を、粉砕整粒または篩整粒したものを、フェロコークス原料全体の10mass%、または30mass%の割合で石炭と配合した場合の、製造されたフェロコークスのドラム強度の測定結果を図3に示す。 The particle size distribution before sizing of iron ore A and iron ore B used as raw materials for ferro-coke is shown in FIGS. The results of measuring the drum strength of the produced ferrocoke when these iron ores were blended with coal at a ratio of 10 mass% or 30 mass% of the ferrocoke raw material after pulverized or sieve-sized. As shown in FIG.
図3によれば、鉄鉱石を機械的に粉砕し−3mmに整粒した粉砕整粒による原料を用いて製造したフェロコークスと、篩により−3mmに整粒した篩整粒による原料を用いて製造したフェロコークスの強度は同じレベルであることが分かる。したがって、粉砕処理を行なわずに、本発明方法を用いて鉄鉱石を篩い分けして、篩下である小粒径の鉄鉱石をフェロコークス原料とする場合も、従来と同等の強度を有するフェロコークスを製造可能であることが示された。 According to FIG. 3, ferro-coke manufactured using a raw material obtained by pulverizing and sizing iron ore mechanically and sized to -3 mm, and using a raw material obtained by sieving and sizing that is -3 mm by a sieve. It can be seen that the strength of the manufactured ferro coke is at the same level. Therefore, when the iron ore is sieved using the method of the present invention without pulverizing and the iron ore having a small particle size under the sieve is used as a ferro-coke raw material, the ferrocoke having the same strength as the conventional one is used. It has been shown that coke can be produced.
次に、上記の鉄鉱石A、鉄鉱石Bについて、原料鉱石をそのまま用いた場合と、上記で−3mmに篩整粒した残部である、粒径3mm以上(+3mm)の鉄鉱石を用いた場合について、焼結機の通気性の確認を焼結鍋試験により行なった。焼結用原料を調整して、混合攪拌条件を統一して混合して焼結鍋試験装置に充填して焼結原料層を形成し、着火直後の焼結原料層の通気性指数JPUを測定した。表1に焼結鍋試験に使用した原料の配合を示す。 Next, with respect to the iron ore A and iron ore B, when the raw ore is used as it is, and when the iron ore having a particle size of 3 mm or more (+3 mm), which is the remainder obtained by sizing the particles to -3 mm as described above, is used. The air permeability of the sintering machine was confirmed by a sintering pot test. Adjust the raw materials for sintering, mix and mix under uniform mixing conditions, fill the sintering pot test equipment to form the sintered raw material layer, and measure the permeability index JPU of the sintered raw material layer immediately after ignition did. Table 1 shows the composition of the raw materials used in the sintering pot test.
尚、焼結原料層の通気性指数JPUは、ボイスの式に準拠した下記計算式(a)より求められる値であり、JPUの値が高い程、通気性が良好であることを示している。 In addition, the air permeability index JPU of the sintered material layer is a value obtained from the following calculation formula (a) based on the voice equation, and the higher the JPU value, the better the air permeability. .
P=F/A(H/S)n・・・(a)
但し、P:通気度(JPU)、A:試料筒ロストル部断面積(cm2)、F:通過風量(dl/min)、H:試料装入高さ(cm)、S:負圧(cmAq)、n:0.6である。
P = F / A (H / S) n (a)
However, P: Air permeability (JPU), A: Sample tube cross-sectional area (cm 2 ), F: Air flow rate (dl / min), H: Sample charging height (cm), S: Negative pressure (cmAq) ), N: 0.6.
焼結原料層の通気性指数JPUの測定結果を図4に示す。図4によれば、比較例である篩分処理を行なわなかった場合(篩分処理:無)に比べて、本発明例である篩い分け処理を行ない、+3mmの篩上を焼結用鉄源として配合した場合(篩分処理:有)には、焼結原料層通気性指数JPUが向上し、篩い分け処理により小粒径の鉄鉱石を含まない場合に焼結原料層の通気性が向上することが分かった。 The measurement result of the air permeability index JPU of the sintered raw material layer is shown in FIG. According to FIG. 4, compared to the case where the sieving process as a comparative example was not performed (sieving process: none), the sieving process as an example of the present invention was performed, and the +3 mm screen was subjected to the iron source for sintering. When mixed as (sieving treatment: yes), the sintering raw material layer breathability index JPU is improved, and the sieving processing improves the breathability of the sintering raw material layer when it does not contain iron ores of small particle size I found out that
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006294142A JP5011956B2 (en) | 2005-11-28 | 2006-10-30 | Ferro-coke and method for producing sintered ore |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005341325 | 2005-11-28 | ||
JP2005341325 | 2005-11-28 | ||
JP2006294142A JP5011956B2 (en) | 2005-11-28 | 2006-10-30 | Ferro-coke and method for producing sintered ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007169603A true JP2007169603A (en) | 2007-07-05 |
JP5011956B2 JP5011956B2 (en) | 2012-08-29 |
Family
ID=38296581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006294142A Active JP5011956B2 (en) | 2005-11-28 | 2006-10-30 | Ferro-coke and method for producing sintered ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5011956B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009235222A (en) * | 2008-03-27 | 2009-10-15 | Jfe Steel Corp | Method for producing ferro coke |
JP2009235221A (en) * | 2008-03-27 | 2009-10-15 | Jfe Steel Corp | Method for producing ferro coke |
JP2010181055A (en) * | 2009-02-03 | 2010-08-19 | Sumitomo Metal Ind Ltd | Equipment and method of granulating sintered ore coagulating material |
WO2011034195A1 (en) * | 2009-09-15 | 2011-03-24 | Jfeスチール株式会社 | Process for producing ferro coke |
WO2017145696A1 (en) * | 2016-02-24 | 2017-08-31 | Jfeスチール株式会社 | Method for producing ferro coke |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60110785A (en) * | 1983-11-21 | 1985-06-17 | Kawasaki Steel Corp | Production of raw material for coke and production of coke |
-
2006
- 2006-10-30 JP JP2006294142A patent/JP5011956B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60110785A (en) * | 1983-11-21 | 1985-06-17 | Kawasaki Steel Corp | Production of raw material for coke and production of coke |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009235222A (en) * | 2008-03-27 | 2009-10-15 | Jfe Steel Corp | Method for producing ferro coke |
JP2009235221A (en) * | 2008-03-27 | 2009-10-15 | Jfe Steel Corp | Method for producing ferro coke |
JP2010181055A (en) * | 2009-02-03 | 2010-08-19 | Sumitomo Metal Ind Ltd | Equipment and method of granulating sintered ore coagulating material |
WO2011034195A1 (en) * | 2009-09-15 | 2011-03-24 | Jfeスチール株式会社 | Process for producing ferro coke |
CN102498190A (en) * | 2009-09-15 | 2012-06-13 | 杰富意钢铁株式会社 | Process for producing ferro coke |
US20120144734A1 (en) * | 2009-09-15 | 2012-06-14 | Jfe Steel Corporation | Method for manufacturing carbon iron composite |
WO2017145696A1 (en) * | 2016-02-24 | 2017-08-31 | Jfeスチール株式会社 | Method for producing ferro coke |
JPWO2017145696A1 (en) * | 2016-02-24 | 2018-03-08 | Jfeスチール株式会社 | Ferro-coke manufacturing method |
KR20180107171A (en) * | 2016-02-24 | 2018-10-01 | 제이에프이 스틸 가부시키가이샤 | Manufacturing method of ferro-coke |
KR102205814B1 (en) | 2016-02-24 | 2021-01-20 | 제이에프이 스틸 가부시키가이샤 | Manufacturing method of ferrocox |
Also Published As
Publication number | Publication date |
---|---|
JP5011956B2 (en) | 2012-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011084734A (en) | Method for producing ferro coke | |
JP2008111068A (en) | Manufacturing process of coke for blast furnace | |
JP4935133B2 (en) | Ferro-coke and method for producing sintered ore | |
JP5011956B2 (en) | Ferro-coke and method for producing sintered ore | |
JP5011955B2 (en) | Ferro-coke manufacturing method | |
JP6102484B2 (en) | Method for producing sintered ore | |
JP6421666B2 (en) | Method for producing sintered ore | |
JP6686974B2 (en) | Sintered ore manufacturing method | |
JP4910631B2 (en) | Blast furnace operation method | |
JP2000178660A (en) | PRODUCTION OF HIGH QUALITY LOW SiO2 SINTERED ORE | |
JP6326074B2 (en) | Carbon material interior ore and method for producing the same | |
JP2779647B2 (en) | ▲ High ▼ Pretreatment of goethite ore | |
JP6264517B1 (en) | Method for producing carbonaceous interior sinter | |
JP6521259B2 (en) | Method of producing sintering material for producing sintered ore | |
JP5011833B2 (en) | Coke manufacturing method | |
JP2013256694A (en) | Method for granulating sintering raw material | |
JP5187473B2 (en) | Method for producing sintered ore | |
JP4892928B2 (en) | Ferro-coke manufacturing method | |
JP5470855B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
JP2009242829A (en) | Method for producing sintered ore | |
JP4438477B2 (en) | Method for producing sintered ore for blast furnace | |
JP2007119601A (en) | Method for producing ferrocoke | |
JP2021025112A (en) | Method for manufacturing sintered ore | |
JP2021161529A (en) | Method for producing carbonaceous material for sintering, and method for producing sintered ore | |
JP2021147655A (en) | Binder for producing agglomerate, method for producing agglomerate using the same, and method for producing reduced iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100519 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110826 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120214 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120521 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150615 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5011956 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |