【発明の詳細な説明】[Detailed description of the invention]
本発明は特定のガラス繊維不飽和有機酸または
その誘導体で変性した結晶性プロピレン重合体
(以下、変性プロピレン重合体と称す)、および場
合により非晶性エチレン−αオレフイン系共重合
体(以下、エチレン系ゴムと称す)および特定フ
イラーとともに特定の結晶性プロピレン重合体に
特定量配合して得られる耐熱剛性と衝撃強度のバ
ランス及び外観に優れ、成形反り変形、再加熱反
り変形も良好な樹脂組成物に関するものである。
結晶性プロピレン重合体にガラス繊維を配合し
て、耐熱剛性、機械的強度、耐クリーブ性等を向
上させる手法は広く試みられている。
然し乍ら、ガラス繊維強化プロピレン重合体
(以下FRPPと称す)は、前記の特長を有する反
面、その射出成型品等に於けるFRPP特有の外観
不良(独特のシルバーストリーク状流れ模様の発
生)、成形品の反り変形(ガラス繊維の配向性や
ガラス繊維と樹脂の収縮差等に起因して発生)等
の問題があり、FRPPの幅広い用途、例えば自動
車内装大型部品等への進出が阻まれていた。
この内、後者の問題に関しては、板状フイラ
ー、ゴム状成分の活用等の手法が試みられてい
る。(特開昭51−136736、同52−8054号公報)
然し乍ら、それらは肝腎の耐熱剛性が低下した
り、密度が上昇する欠点を有している。又、前者
の問題に関しては、流動性の向上等の手法が試み
られているが、いまだ十分でない。
本発明は、これら従来技術の不満足な点を改善
することを目的とし、特定のガラス繊維および変
性プロピレン重合体の特定量、および場合により
エチレン系ゴムおよび特定のフイラーを併用して
プロピレン重合体に配合した場合に、樹脂の耐熱
剛性および外観が極めて改良され、成形反り変
形、再加熱反り変形および衝撃強度も良好なレベ
ルに保持されることを見い出して為されたもので
ある。すなわち本発明は、下記(a)〜(e)の成分から
なることを特徴とするフイラー含有プロピレン重
合体組成物である。
(a) エチレン含有3〜25重量%の結晶性プロピレ
ン−エチレンブロツク共重合体30〜98重量部
(b) 平均直径が7μ以下でかつフイルム形成剤を
含有する集束剤の付着量が0.01〜0.3重量%で
あるガラス繊維2〜30重量部、および
(c) 不飽和有機酸またはその誘導体で変性した結
晶性プロピレン重合体0.1〜10未満重量部
(d) 非晶性エチレン−αオレフイン系共重合体0
〜35重量部、および
(e) タルク、マイカ、けい酸カルシウムおよびガ
ラス粉から選ばれた少なくとも1種の無機充填
剤0〜30重量部
本発明の組成物は、耐熱剛性・外観が極めて改
良されるばかりでなく、成形反り変形、再加熱反
り変形も小さく、かつ衝撃強度が実用十分で、ウ
エルド強度・耐傷性等も良好ある為、高レベルの
品質が要求される分野への適用が可能である。
本発明で用いる上記(a)成分である結晶性プロピ
レン−エチレンブロツク共重合体は、立体規則性
を有するエチレン含量が3〜25重量%のプロピレ
ン−エチレンブロツク共重合体である。
また、成形時の流動性を良くするにはこの共重
合体はメルトフローレート(MFR)が一般に
0.01〜200g/10分程度、好ましくは0.3〜120
g/10分のものである。
MFRが0.01g/10分未満のものは成形不良を
起こし易く、成形外観が不良となり、一方、200
g/10分を超えるものは衝撃強度が不足する。こ
こでMFRは、JIS−K7210(230℃、2.16Kg荷重)
に準拠して測定しものである。なおこの共重合体
はどの様な割合で併用しても差し支えない。この
共重合体はチーグラー・ナツタ触媒で重合される
ものであるが、通常市販のものから適宜選択して
用いる事ができる。
次に、本発明で用いる(b)成分であるガラス繊維
は、平均直径が7μ以下、好ましくは2〜7μで、
かつその表面への集束剤(これにはいわゆるサイ
ジングを目的とした集束成分と樹脂との接着性・
相溶性を目的とした表面処理成分を含む)の乾燥
仕上げ後の最終付着量が0.01〜0.3重量%のもの
である。このガラス繊維の製造法は、例えば次の
様な方法に依る。先ず、溶解したガラスをマーブ
ルと称する所定の大きさのガラス玉に成形し、そ
れをプツシングと称する採糸炉にて加熱軟化せし
め、該炉テーブルの多数のノズルから流下させ、
この素地を高速度で延伸しながら、その途中に設
けた集束剤塗布装置にて浸漬で集束剤を付着させ
て集束し、乾燥して回転ドラムで巻き取る。この
時のノズル径寸法と引取り速度および引取り雰囲
気温度等を調節してガラス繊維の平均直径を所定
の寸法にする。同時に、集束剤濃度・種類・塗布
時間等を調節して乾燥後の最終集束剤付着量を
0.01〜0.3重量%とする。
また、該ガラス繊維の長さは特定されるもので
なく、従つて形態はロービング、チヨツプドスト
ランド、ストランド等何れでも良いが、プロピレ
ン重合体との混合作業性上1〜8mm程度のチヨプ
ドストランドが好ましい。この場合の集束本数は
通常100〜5000本が好ましく、特に500〜2000本が
好ましい。また、プロピレン重合体への混練後の
最終長さが平均0.1mm以上に得られるならば、い
わゆるミルドフアイバー、ガラスパウダーと称せ
られるストランドの粉砕品でも良く、また、連続
単繊維系のスライドバー状のものでも良い。原料
ガラスの組成は、無アルカリのものが好ましく、
例の一つにEガラスがある。
該ガラス繊維は従来のプラスチツク補強用に用
いられたものに較べ、平均直径が小さく同一充填
量に対する補強効果が増大する外、成形反り量及
び再加熱反り変形量を低減化せしめ、また、集束
剤付着量の極低減化をはかつたことに依り、集束
性と開繊性の適度なバランスを保持しながら、繊
維強化品成形品の外観を大幅に向上せしめた。
ここで、平均直径は電子顕微鏡等により観察し
たもので、また、集束剤付着量は灼熱減量として
計測される値であり、具体的な灼熱条件は600℃、
60minである。
平均直径が7μが超えると、耐熱剛性の向上度
合が小さくなり、成形反り量及び再加熱反り変形
量の低減化効果も少なく、また、集束剤の付着量
が0.3重量%を超えると成形品外観が悪化し、そ
れぞれ不適である。
なお、該ガラス繊維の集束剤中の表面処理成分
は無くても良いが、通常はシラン系、アクリル酸
系、チタン系等のカツプリング剤を含む。内でも
γ−グリシドキシプロピルトリメトキシシランな
どのエポキシシラン、ビニルトリクロロシランな
どのビニルシラン、γ−アミノプロピルトリエト
キシシランなどのアミノシラン等のシラン系カツ
プリング剤を含むのが好ましい。また、集束成分
と表面処理成分の最終含有比率は特に限定しない
が、30:70〜70:30が比較的良好な耐熱剛性・外
観のバランス性能が得られる。ここで集束成分は
通常、フイルム形成剤、界面活性剤、柔軟剤、帯
電防止剤、潤滑剤等より構成されるが、変性又は
未変性ポリオレフイン類のみのものでも良い。
次に、本発明で使用する(c)成分である変性プロ
ピレン重合体は、不飽和有機酸またはその誘導体
例えばアクリル酸、メタアクリル酸、マレイン
酸、イタコン酸などの不飽和有機酸;無水マレイ
ン酸、無水イタコン酸、無水シトラコン酸などの
不飽和有機酸の無水物;アクリル酸メチル、マレ
イン酸モノメチルなどの不飽和有機酸のエステ
ル;アクリル酸アミド、フマル酸モノアミドなど
の不飽和有機酸のアミド;イタコン酸イミドなど
の不飽和有機酸のイミド等を結晶性プロピレン重
合体100重量部に対し0.05〜20重量部添加してグ
ラフト法により変性したものである。中でもアク
リル酸、無水マレイン酸を用いて変性したものが
好ましい。この変性に際しては、変性度合を促進
させるためベンゾイルパーオキサイド、ラウロイ
ルパーオキサイド、ジクミルパーオキサイド、t
−ブチルヒドロパーオキサイド等の有機過酸化物
を用いる。通常、その配合量はプロピレン重合体
100重量部に対して0.01〜3.0重量部である。変性
プロピレン重合体の製造法は、特に限定されるも
のでないが、例えばプロピレン重合体、不飽和有
機酸またはその誘導体および有機過酸化物を配合
してヘンシエルミキサー等で充分混合し、プロピ
レン重合体の融点以上、一般には170〜260℃で
0.2〜15分間加熱溶融混練して行なう。この際、
同時に、後述(d)成分の一部又は全量を混練しても
良い。この場合は、(d)成分も変性せしめて、本発
明組成物の衝撃強度の向上、成形反り量、再加熱
反り変形量の低減を図り得る。
また、本発明で場合により用いる(d)成分の非晶
性エチレン−αオレフイン系共重合体は、例えば
エチレン−プロピレン共重合体ゴム、エチレン−
プロピレン−ジエン共重合体ゴム、エチレン−ブ
テン−1共重合体ゴム等であり、好ましくはエチ
レン含量が80〜40重量%で、且つムーニー粘度
ML1+4(100℃)が10〜120程度のものである。ま
た、この成分は、不飽和有機酸またはその誘導体
で予め変性したものでも良く、衝撃強度の向上、
成形反り量の減少、再加熱成形反り量の減少、寸
法精度の向上等に有効である。
更に、本発明で場合により用いる(e)成分の無機
充填剤はタルク、マイカ、けい酸カルシウム、ガ
ラス粉(ミルドフアイバーを含む)から選ばれた
少なくとも1種のものである。該フイラーは予め
表面処理を施しても良く無処理でも差し支えな
い。表面処理としては、例えば、シランカツプリ
ング剤系、高級脂肪酸系、脂肪酸金属塩系、不飽
和有機酸系、有機チタネート系、樹脂酸系、ポリ
エチレングリコール系等の各種処理剤での化学的
又は物理的表面処理を挙げることができる。表面
処理は本発明効果の外、ウエルド強度、塗装性、
成形加工性等の改良に有効である。
ここでタルクは平均粒径が0.2〜10μ、好ましく
は0.2〜5μ、マイカは同1〜150μ、好ましくは2
〜50μのものが適する。更にマイカに関しては白
マイカ(マスコバイト)がとりわけ好ましい。又
けい酸カルシウム(ウオラストナイト)は同1〜
15μ、好ましくは2〜10μのものが好ましく、ガ
ラス粉は直径が13μ以下で長さが5〜300μの粒・
鱗片・繊維状のものが好ましい。
これらフイラーの存在するものは、耐熱剛性が
向上する外、成形反り量が一層低減化するのに有
効である。
ここで粒径、長さは、電子顕微鏡による観察に
て実測したものである。
これら成分の配合割合は、(a)結晶性プロピレン
重合体30〜98重量部、(b)特定ガラス繊維2〜30重
量部、好ましくは3〜25重量部、(c)変性プロピレ
ン重合体0.1〜10未満重量部、(d)エチレン系ゴム
0〜35重量部および(e)無機充填剤0〜30重量部で
ある。(a)成分が5重量部未満のものでは成形性が
不良であり、一方98重量部を超すと本発明の効果
を期待しえない。(b)成分が2重量部未満では耐熱
剛性が不足し、一方30重量部を超すと外観が悪化
する。(c)成分が10重量部を超えると耐熱剛性の更
なる向上が殆んどみられない。(d)成分も35重量部
を超えると耐熱剛性が著しく低下する。(e)成分が
30重量部を超えると成形品外観が悪化し、衝撃強
度も低下し不適である。中でも20〜3重量部配合
したものは、とりわけ耐熱剛性、成形反り量のバ
ランスが良好である。
本発明組成物は、その効果の発現を著しく損な
わない範囲内(通常組成物全量の30重量%以下)
で、これら(a)〜(e)成分の外に種々の付加的成分を
添加する事ができる。
それらの付加的成分としては、表面処理を施し
たかまたは無処理の上記(b),(e)成分以外の無機ま
たは有機フイラー(たとえば炭酸カルシウム(重
質、軽者質、膠質)、硫酸バリウム、クレー、炭
酸マグネシウム、アルミナ、シリカ、酸化鉄、硫
酸カルシウム、ガラスビーズ、ホワイトカーボ
ン、中空ガラス球、けい砂、けい石、カーボンブ
ラツク、水酸化アルミニウム、水酸化マグネシウ
ム、酸化亜鉛、塩基性炭酸マグネシウム、アスベ
スト、ゼオライト、白艷華、モリブテン、酸化チ
タン、けいそう土、セリサイト、シラス、黒鉛、
水酸化カルシウム、亜硫酸カルシウム、石膏繊
維、炭素繊維、合成ケイ酸系フアイバー
(PMF:プロセスドミネラルフアイバー)石英
粉、ベントナイト、金属ホイスカー、木粉、硫酸
ソーダ)、(d)成分以組外の変性又は未変性のゴム
またはラテツクス成分(たとえばスチレン−ブタ
ジエンゴム、1,2−ポリブタジエン、ブチルゴ
ム、スチレン−ブタジエン−スチレンブロツク共
重合体、ニトリル−ブタジエンゴム、ポリイソブ
チレン、ポリブタジエン、ポリイソプレン、等)、
本発明で用いる(a)成分のプロピレン重合体樹脂及
び(b)成分以外の熱可塑性樹脂(たとえば、高、中
あるいは低密度ポリエチレン、ポリブテン、ポリ
プロピレン等のαオレフインの単独重合体、αオ
レフイン同志の共重合体、エチレン−酢酸ビニル
共重合体、無水マレイン酸グラフトポリエチレン
等のαオレフインとビニル単量体との共重合体等
のオレフイン重合体樹脂、並びにナイロン、ポリ
カーボネート、アクリロニトリル−ブタジエン−
スチレン樹脂(ABS)、ポリスチレン、ポリ塩化
ビニル、ポリフエニレンオキサイド等のオレフイ
ン重合体樹脂以外の樹脂)、酸化防止剤(フエノ
ール系、イオウ系等)、滑剤、有機・無機系の各
種顔料、紫外線吸収剤、帯電防止剤、分散剤、銅
害防止剤、中和剤、発泡剤、可塑剤、気泡防止
剤、難燃剤、架橋剤、流れ性改良剤、ウエルド強
度改良剤を挙げることができる。
これらの各種樹脂、フイラー、助剤の添加は、
物性バランスや成形品表面特性(耐表面受傷性、
光択、ウエルド外観、シルバーストリーク、フロ
ーマーク等)、印刷性、塗装性、接着性、メツキ
性、タツピング性、成形加工性、混練性、ウエル
ド強度、耐久性等の向上に有効である。
これらの付加的成分は、併用して添加すること
もできる。
本発明組成物は、一軸押出機、二軸押出機、バ
ンバリーミキサー、ロール、ブラベンダープラス
トグラフ、ニーダー等の通常の混練機を用いて製
造することが出来る。この際、(b)成分、(c)成分等
一部を除いて、予め二軸押出機を用いて造粒し、
その後(b),(c)成分を加えて一軸押出機にて造粒し
てもよい。
通常は押出機等で混練してペレツト状のコンパ
ウンドにした後、加工に供するが、特殊な場合
は、(a)〜(e)成分を直接各種成形機に供給し、成形
機で混練しながら成形することもできる。又、予
め(a)成分に(b),(e)成分等を高濃度に混練してマス
ターバツチとし、それを別途(a)成分又は(c)成分で
希釈しながらブレンドコンパウデイングしたり、
成形したりすることもできる。
本発明組成物の成形加工法は例えば、比較的
MFRの低いものは押出成形して各種熱成形する
方法が、また比較的MFRが高いものは射出成形
が適する。すなわち、押出成形、中空成形、射出
成形、シート成形、熱成形、回転成形、積層成形
等の成形法の違いを問わず、成形品において本発
明効果は発揮される。
斯様にして得られた本発明組成物は、従来のフ
イラー含有プロピレン重合体組成物には無い、高
度な耐熱剛性と衝撃強度および成形品外観のバラ
ンスと良好な成形反り抑制効果、再加熱反り変形
抑制効果が認められ、同時に、耐傷性、印刷性、
塗装性、タツピング性、成形性、混練性等も良好
であつた。
以下に実施例を示して本発明をより具体的に説
明するが、ここで各種試験法は次の通りである。
耐熱剛性(100℃三点曲げ弾性率)
JIS−K7203に準拠。
外観(シルバストリーク状況)
200mm径×2mm厚の円板状試平(ゲート:1mm
径のピンポイント)のシルバーストリークの有無
を目視観察。
成形反り
上記の円板試片を23℃、50%RHの雰囲気で
72時陥放置後それを定盤上に静置し、その最大変
性量を反り量としてノギスで測定する。この場
合、反り量が10mm以下のものは実用上特に良好で
ある。
再加熱反り
上記の試片を100℃の熱風炉に5時間処理し、
更に23℃、50%RHの室内に24時間放置後、上記
の方法で反り量を測定して下記式にて算出す
る。この場合5mm以下のものは実用上特に良好で
ある。
(再加熱反り変形量)=|(成形反り量)
−(加熱処理後の反り量)|
衝撃強度(ノツチ付アイゾツト)
JIS−K7110に準拠。
実施例
(a)成分として、プロピレン−エチレンブロツク
共重合体(II98)、エチレン含量6重量%、
MFR7g/10分)、(b)成分として、第1表に示す
平均直径および集束剤付着量を有する各ガラス繊
維(何れも繊維長3mm、集束本数1000本、表面処
理成分はγ−アミノプロピル系シラン、集束成分
は界面活性剤・潤滑剤・柔軟剤・帯電防止剤・フ
イルム成形剤等より構成、表面処理成分/集束成
分の比は50:50)、(c)成分として、アクリル酸変
性ポリプロピレンまたは無水マレイン酸変性ポリ
プロピレン、(d)成分として、エチレン−プロピレ
ン共合ゴム(エチレン含量49重量%、ムーニー粘
度ML1+4〔100℃〕40)、(e)成分として、平均粒径
1.5μのタルク、同8μのマイカ(マスコバイト)、
平均直径が10μ・長さ150μのミルドフアイバー、
および他の成分としてフエノール系酸化防止剤、
イオウ系酸化防止剤各0.1重量部を用い、第1表
に示す割合で粉体混合器にて2分間混合し、温度
230℃でベント付スクリユー押出機(単軸65mm径)
にて混練造粒した。この後、スクリユーインライ
ン射出成形機にて、先述の円板状試片及び物性測
定用試片を成形し、その耐熱剛性、成形外観、成
形反り量、再加熱反り変形量および衝撃強度を評
価した。結果を第1表に示す。実施例は何れも耐
熱剛性・衝撃強度・成形外観に優れたバランスを
示し、成形反り量・再加熱反り変形量が少なく良
好であつた。次に第1表No.10の組成物を三菱ナト
コ800EXL型スクリユーインライン射出成形機を
用い、幅300mm×長さ600mm×厚さ3mmのインスト
ルメントパネル、コンソール、トリム等の大型自
動車部品やクーラー、テレビ等の家庭部品等を想
定したモデル平板を成形した。この際の成形性流
動性は良好で、その外観は独得のシルバーストリ
ーク状流れ模様も殆んど認められず美麗であつ
た。得られた成形品は自動車部品、家電部品等に
対して十分な耐熱剛性、寸法精度、衝撃強度(ア
イゾツト、落球衝撃)を有する外、耐傷性、ウエ
ルド強度、耐クリープ性、耐熱変形性、塗装性等
も良好でヒケや反りも目立たなかつた。
比較例
実施例で用いたプロピレン−エチレンブロツク
共重合体、ポリプロピレン(II99、MFR4g/10
分)、アクリル酸変性プロピレン重合体、エチレ
ン−プロピレン共重合ゴム、タルク及び酸化防止
剤の外に、(e)成分としての第1表に示す平均直径
および集束剤付着量を有する各ガラス繊維(何れ
も繊維長、集束本数、表面処理成分と集束成分の
種類およびそれらの併用割合は実施例と同一)を
用い、第1表に示す割合で実施例と同じ手法で試
片を調製した。何れも耐熱剛性と衝撃強度および
成形品外観のバランスが不良であつた。
すなわち、平均直径が7μを超えるガラス繊維
を用いたものは耐熱剛性のレベルが低く、集束剤
付着量が0.3重量%を超えるガラス繊維を用いた
ものは成形品外観が不良。
また、平均直径が7μを超え、集束剤付着量が
0.3重量%を超えたガラス繊維を用いたものは両
性能とも不良であつた。
The present invention relates to a crystalline propylene polymer modified with a specific glass fiber unsaturated organic acid or its derivative (hereinafter referred to as a modified propylene polymer), and optionally an amorphous ethylene-α olefin copolymer (hereinafter referred to as a modified propylene polymer). A resin composition that is obtained by blending a specific amount of a specific crystalline propylene polymer with a specific filler and a specific amount of a specific crystalline propylene polymer (referred to as ethylene rubber) and a specific filler.It has an excellent balance of heat-resistant rigidity and impact strength, has an excellent appearance, and has good resistance to molding warping and reheating warping. It is about things. Various attempts have been made to improve heat-resistant rigidity, mechanical strength, cleaving resistance, etc. by blending glass fibers into crystalline propylene polymers. However, although glass fiber-reinforced propylene polymer (hereinafter referred to as FRPP) has the above-mentioned features, its injection molded products, etc., have appearance defects peculiar to FRPP (occurrence of a unique silver streak-like flow pattern), and molded products. Problems such as warpage and deformation (occurred due to the orientation of glass fibers and shrinkage differences between glass fibers and resin) have prevented FRPP from being used in a wide range of applications, such as large automotive interior parts. Regarding the latter problem, attempts have been made to utilize plate-like fillers and rubber-like components. (JP-A-51-136736, JP-A No. 52-8054) However, they have the disadvantage that the heat resistance rigidity of the liver and kidneys decreases and the density increases. Regarding the former problem, attempts have been made to improve liquidity, but these are still insufficient. The present invention aims to improve these unsatisfactory points of the prior art, and uses a specific amount of a specific glass fiber and a modified propylene polymer, and optionally an ethylene rubber and a specific filler to produce a propylene polymer. This was done based on the discovery that when blended, the heat resistance rigidity and appearance of the resin are significantly improved, and molding warpage, reheating warpage and impact strength are also maintained at good levels. That is, the present invention is a filler-containing propylene polymer composition characterized by comprising the following components (a) to (e). (a) 30 to 98 parts by weight of a crystalline propylene-ethylene block copolymer containing 3 to 25% by weight of ethylene; (b) an average diameter of 7 μm or less and a deposited amount of a sizing agent containing a film forming agent of 0.01 to 0.3; 2 to 30 parts by weight of glass fiber, and (c) 0.1 to less than 10 parts by weight of a crystalline propylene polymer modified with an unsaturated organic acid or its derivative (d) Amorphous ethylene-α-olefin copolymer Combine 0
~35 parts by weight, and (e) 0 to 30 parts by weight of at least one inorganic filler selected from talc, mica, calcium silicate, and glass powder The composition of the present invention has extremely improved heat resistance and appearance. In addition, molding warpage and reheating warpage are small, impact strength is sufficient for practical use, weld strength and scratch resistance are good, so it can be applied to fields that require a high level of quality. be. The crystalline propylene-ethylene block copolymer which is the component (a) used in the present invention is a stereoregular propylene-ethylene block copolymer having an ethylene content of 3 to 25% by weight. In addition, in order to improve fluidity during molding, this copolymer generally has a melt flow rate (MFR) of
0.01~200g/10 minutes, preferably 0.3~120
g/10 minutes. If the MFR is less than 0.01 g/10 min, molding defects are likely to occur, resulting in poor molded appearance;
If it exceeds g/10 minutes, the impact strength is insufficient. Here, MFR is JIS-K7210 (230℃, 2.16Kg load)
Measured according to the following. Note that this copolymer may be used in any proportion. This copolymer is polymerized using a Ziegler-Natsuta catalyst, and can be appropriately selected from commercially available products. Next, the glass fiber which is the component (b) used in the present invention has an average diameter of 7μ or less, preferably 2 to 7μ,
and a sizing agent on its surface (this includes the adhesion between the sizing component and resin for the purpose of so-called sizing).
The final adhesion amount after dry finishing (including surface treatment components for the purpose of compatibility) is 0.01 to 0.3% by weight. The method for manufacturing this glass fiber is, for example, as follows. First, molten glass is formed into glass beads of a predetermined size called marbles, which are heated and softened in a spinning furnace called a pushing furnace, and then flowed down from numerous nozzles on the furnace table.
While stretching this base material at a high speed, a sizing agent is applied by dipping in a sizing agent application device installed in the middle of the stretching process, and the material is bundled, dried, and wound up on a rotating drum. At this time, the nozzle diameter, take-up speed, take-up atmosphere temperature, etc. are adjusted to make the average diameter of the glass fibers a predetermined size. At the same time, adjust the concentration, type, application time, etc. of the sizing agent to determine the final amount of sizing agent deposited after drying.
The amount should be 0.01-0.3% by weight. Further, the length of the glass fiber is not specified, and therefore the shape may be roving, chopped strand, strand, etc., but from the viewpoint of ease of mixing with the propylene polymer, the length of the glass fiber is about 1 to 8 mm. Pudostrands are preferred. In this case, the number of bundles is usually preferably 100 to 5,000, particularly preferably 500 to 2,000. In addition, as long as the final length after kneading into the propylene polymer is 0.1 mm or more on average, it may be a pulverized product of strands called milled fiber or glass powder, or a continuous single fiber slide bar-like product may be used. It could be something like that. The composition of the raw material glass is preferably alkali-free;
One example is E-glass. Compared to those used for conventional plastic reinforcement, the glass fiber has a smaller average diameter and not only increases the reinforcing effect for the same amount of filling, but also reduces the amount of molding warpage and reheating warpage, and also has a sizing agent. By significantly reducing the amount of adhesion, the appearance of the fiber-reinforced molded product was significantly improved while maintaining an appropriate balance between binding and spreading properties. Here, the average diameter is the one observed using an electron microscope, etc., and the amount of sizing agent attached is the value measured as the loss on ignition, and the specific sintering conditions are 600℃,
It is 60min. If the average diameter exceeds 7μ, the degree of improvement in heat-resistant rigidity will be small, and the effect of reducing molding warpage and reheating warp deformation will be small, and if the amount of sizing agent attached exceeds 0.3% by weight, the appearance of the molded product will deteriorate. worsens, and each is unsuitable. Although the surface treatment component in the glass fiber sizing agent may be omitted, it usually contains a coupling agent such as a silane type, an acrylic acid type, or a titanium type. Among these, silane coupling agents such as epoxysilanes such as γ-glycidoxypropyltrimethoxysilane, vinylsilanes such as vinyltrichlorosilane, and aminosilanes such as γ-aminopropyltriethoxysilane are preferably included. Further, the final content ratio of the focusing component and the surface treatment component is not particularly limited, but a ratio of 30:70 to 70:30 provides a relatively good balance of heat resistance, stiffness, and appearance. Here, the focusing component is usually composed of a film forming agent, a surfactant, a softener, an antistatic agent, a lubricant, etc., but it may be composed only of modified or unmodified polyolefins. Next, the modified propylene polymer which is component (c) used in the present invention is an unsaturated organic acid or its derivative such as acrylic acid, methacrylic acid, maleic acid, itaconic acid; , anhydrides of unsaturated organic acids such as itaconic anhydride and citraconic anhydride; esters of unsaturated organic acids such as methyl acrylate and monomethyl maleate; amides of unsaturated organic acids such as acrylamide and fumaric acid monoamide; It is modified by a grafting method by adding 0.05 to 20 parts by weight of an imide of an unsaturated organic acid such as itaconic acid imide to 100 parts by weight of a crystalline propylene polymer. Among these, those modified using acrylic acid or maleic anhydride are preferred. During this modification, benzoyl peroxide, lauroyl peroxide, dicumyl peroxide, t
- Using organic peroxides such as butyl hydroperoxide. Usually, the amount of propylene polymer
The amount is 0.01 to 3.0 parts by weight per 100 parts by weight. The method for producing the modified propylene polymer is not particularly limited, but for example, a propylene polymer, an unsaturated organic acid or its derivative, and an organic peroxide are blended and thoroughly mixed in a Henschel mixer, etc. above the melting point of, generally between 170 and 260℃
This is done by heating, melting and kneading for 0.2 to 15 minutes. On this occasion,
At the same time, part or all of the component (d) described below may be kneaded. In this case, component (d) may also be modified to improve the impact strength of the composition of the present invention and to reduce the amount of molding warpage and reheating warpage. Further, the amorphous ethylene-α olefin copolymer as the component (d) optionally used in the present invention is, for example, ethylene-propylene copolymer rubber, ethylene-propylene copolymer rubber,
propylene-diene copolymer rubber, ethylene-butene-1 copolymer rubber, etc., preferably having an ethylene content of 80 to 40% by weight and a Mooney viscosity of
ML 1+4 (100℃) is about 10 to 120. In addition, this component may be modified in advance with an unsaturated organic acid or its derivative to improve impact strength,
It is effective in reducing the amount of molding warpage, reducing the amount of reheating molding warpage, and improving dimensional accuracy. Furthermore, the inorganic filler (e) component optionally used in the present invention is at least one selected from talc, mica, calcium silicate, and glass powder (including milled fiber). The filler may be surface-treated in advance or may be left untreated. Surface treatments include chemical or physical treatments using various treatment agents such as silane coupling agents, higher fatty acids, fatty acid metal salts, unsaturated organic acids, organic titanates, resin acids, and polyethylene glycols. Examples include surface treatment. In addition to the effects of the present invention, surface treatment improves weld strength, paintability,
It is effective in improving moldability, etc. Here, talc has an average particle size of 0.2 to 10μ, preferably 0.2 to 5μ, and mica has an average particle size of 1 to 150μ, preferably 2
~50μ is suitable. Furthermore, regarding mica, white mica (muscovite) is particularly preferred. Calcium silicate (wollastonite) is also 1~
15μ, preferably 2 to 10μ, glass powder has a diameter of 13μ or less and a length of 5 to 300μ.
Scaly and fibrous materials are preferred. The presence of these fillers is effective in not only improving heat resistance rigidity but also further reducing the amount of molding warpage. Here, the particle size and length were actually measured by observation using an electron microscope. The blending ratio of these components is (a) 30 to 98 parts by weight of crystalline propylene polymer, (b) 2 to 30 parts by weight of specific glass fiber, preferably 3 to 25 parts by weight, and (c) 0.1 to 0.1 to 25 parts by weight of modified propylene polymer. (d) 0 to 35 parts by weight of ethylene rubber, and (e) 0 to 30 parts by weight of inorganic filler. If component (a) is less than 5 parts by weight, moldability is poor, while if it exceeds 98 parts by weight, the effects of the present invention cannot be expected. If component (b) is less than 2 parts by weight, heat-resistant rigidity will be insufficient, while if it exceeds 30 parts by weight, the appearance will deteriorate. When component (c) exceeds 10 parts by weight, hardly any further improvement in heat-resistant rigidity is observed. If the amount of component (d) exceeds 35 parts by weight, the heat-resistant rigidity will be significantly reduced. (e) component is
If it exceeds 30 parts by weight, the appearance of the molded product will deteriorate and the impact strength will also decrease, making it unsuitable. Among them, those containing 20 to 3 parts by weight have a particularly good balance of heat resistance rigidity and amount of molding warpage. The composition of the present invention can be used within a range that does not significantly impair the expression of its effects (usually 30% by weight or less of the total amount of the composition).
In addition to these components (a) to (e), various additional components can be added. These additional ingredients include surface-treated or untreated inorganic or organic fillers other than the above ingredients (b) and (e), such as calcium carbonate (heavy, light, colloid), barium sulfate, Clay, magnesium carbonate, alumina, silica, iron oxide, calcium sulfate, glass beads, white carbon, hollow glass spheres, silica sand, silica stone, carbon black, aluminum hydroxide, magnesium hydroxide, zinc oxide, basic magnesium carbonate, Asbestos, zeolite, white rhubarb, molybdenum, titanium oxide, diatomaceous earth, sericite, shirasu, graphite,
Calcium hydroxide, calcium sulfite, gypsum fiber, carbon fiber, synthetic silicic acid fiber (PMF: processed mineral fiber), quartz powder, bentonite, metal whisker, wood flour, sodium sulfate), modification other than component (d) or unmodified rubber or latex components (e.g. styrene-butadiene rubber, 1,2-polybutadiene, butyl rubber, styrene-butadiene-styrene block copolymer, nitrile-butadiene rubber, polyisobutylene, polybutadiene, polyisoprene, etc.),
The propylene polymer resin of component (a) used in the present invention and thermoplastic resins other than component (b) (for example, homopolymers of α-olefins such as high, medium or low density polyethylene, polybutene, polypropylene, etc. Olefin polymer resins such as copolymers, ethylene-vinyl acetate copolymers, copolymers of α-olefins and vinyl monomers such as maleic anhydride grafted polyethylene, as well as nylon, polycarbonate, acrylonitrile-butadiene-
Styrene resin (ABS), polystyrene, polyvinyl chloride, resins other than olefin polymer resins such as polyphenylene oxide), antioxidants (phenol-based, sulfur-based, etc.), lubricants, various organic and inorganic pigments, ultraviolet rays Examples include absorbents, antistatic agents, dispersants, copper inhibitors, neutralizing agents, blowing agents, plasticizers, antifoam agents, flame retardants, crosslinking agents, flowability improvers, and weld strength improvers. The addition of these various resins, fillers, and auxiliary agents is
Physical property balance and molded product surface characteristics (surface scratch resistance,
It is effective in improving properties such as optical selection, weld appearance, silver streaks, flow marks, etc.), printability, paintability, adhesion, plating properties, tapping properties, moldability, kneading properties, weld strength, and durability. These additional components can also be added in combination. The composition of the present invention can be produced using a conventional kneading machine such as a single-screw extruder, a twin-screw extruder, a Banbury mixer, a roll, a Brabender plastograph, or a kneader. At this time, with the exception of some of the components (b) and (c), they are granulated in advance using a twin-screw extruder,
Thereafter, components (b) and (c) may be added and granulated using a single screw extruder. Normally, it is kneaded in an extruder etc. to form a pellet-like compound and then subjected to processing. However, in special cases, components (a) to (e) are directly fed to various molding machines, and while being kneaded by the molding machine, It can also be molded. Alternatively, component (a) is mixed with components (b), (e), etc. to a high concentration in advance to form a masterbatch, which is then separately diluted with component (a) or (c) for blend compounding.
It can also be molded. The molding process of the composition of the present invention is, for example, relatively
For products with a low MFR, extrusion molding and various thermoforming methods are suitable, and for products with a relatively high MFR, injection molding is suitable. That is, the effects of the present invention are exhibited in molded products regardless of the different molding methods such as extrusion molding, blow molding, injection molding, sheet molding, thermoforming, rotation molding, and lamination molding. The composition of the present invention thus obtained has a high degree of heat-resistant rigidity, impact strength, balance of molded product appearance, good molding warpage suppressing effect, and reheating warpage, which are not found in conventional filler-containing propylene polymer compositions. It has been recognized that it has a deformation suppressing effect, and at the same time has good scratch resistance, printability,
The coating properties, tapping properties, moldability, kneading properties, etc. were also good. The present invention will be described in more detail with reference to Examples below, in which various test methods are as follows. Heat-resistant rigidity (100℃ three-point bending modulus) Conforms to JIS-K7203. Appearance (Silver streak situation) 200mm diameter x 2mm thick disc-shaped test flat (gate: 1mm
Visually observe the presence of silver streaks (pinpoint diameter). Molding warpage The above disk specimen was placed in an atmosphere of 23℃ and 50%RH.
After allowing it to cave in for 72 hours, it was placed on a surface plate and the maximum amount of degeneration was measured as the amount of warpage using a caliper. In this case, those with a warpage of 10 mm or less are particularly good for practical use. Reheating warping The above specimen was treated in a hot air oven at 100℃ for 5 hours,
After leaving it in a room at 23°C and 50% RH for 24 hours, the amount of warpage is measured using the method described above and calculated using the formula below. In this case, a thickness of 5 mm or less is particularly good for practical use. (Amount of warpage after reheating) = | (Amount of molding warpage) - (Amount of warpage after heat treatment) | Impact strength (notched Izot) Compliant with JIS-K7110. Example (a) Component: propylene-ethylene block copolymer (II98), ethylene content 6% by weight,
MFR 7g/10 minutes), as component (b), each glass fiber having the average diameter and sizing agent adhesion amount shown in Table 1 (fiber length 3 mm, number of bundles 1000, surface treatment component is γ-aminopropyl) Silane and the focusing component are composed of surfactants, lubricants, softeners, antistatic agents, film forming agents, etc., the ratio of surface treatment component/focusing component is 50:50), and (c) component is acrylic acid modified polypropylene. or maleic anhydride-modified polypropylene, component (d): ethylene-propylene copolymer rubber (ethylene content 49% by weight, Mooney viscosity ML 1+4 [100℃] 40), component (e): average particle size
1.5μ talc, 8μ mica (muscovite),
Milled fiber with an average diameter of 10μ and a length of 150μ,
and phenolic antioxidants as other ingredients,
Using 0.1 parts by weight of each sulfur-based antioxidant, mix for 2 minutes in a powder mixer at the ratio shown in Table 1, and
Vented screw extruder (single shaft 65mm diameter) at 230℃
The mixture was kneaded and granulated. After this, the above-mentioned disk-shaped specimen and specimen for physical property measurement were molded using a screw-in-line injection molding machine, and their heat resistance rigidity, molded appearance, molded warpage amount, reheat warp deformation amount, and impact strength were evaluated. did. The results are shown in Table 1. All of the examples showed an excellent balance in heat-resistant rigidity, impact strength, and molded appearance, and the amount of molding warpage and reheating warp deformation was small and good. Next, using a Mitsubishi Natco 800EXL screw in-line injection molding machine, the composition No. 10 in Table 1 was molded into large automobile parts such as instrument panels, consoles, trims, etc., and coolers with a width of 300 mm, a length of 600 mm, and a thickness of 3 mm. , we molded a model flat plate that was assumed to be a household component such as a television. The moldability and fluidity at this time were good, and the appearance was beautiful with almost no unique silver streak-like flow pattern observed. The obtained molded product has sufficient heat resistance, rigidity, dimensional accuracy, and impact strength (Izotsu, falling ball impact) for automobile parts, home appliance parts, etc., as well as scratch resistance, weld strength, creep resistance, heat deformation resistance, and coating. The properties were good, and there were no noticeable sink marks or warpage. Comparative example The propylene-ethylene block copolymer used in the example, polypropylene (II99, MFR4g/10
In addition to acrylic acid-modified propylene polymer, ethylene-propylene copolymer rubber, talc, and antioxidant, each glass fiber (e) having an average diameter and a sizing agent coating amount shown in Table 1 is added as component (e). Samples were prepared in the same manner as in the examples using the same fiber length, number of bundles, types of surface treatment components and bundle components, and their combined ratios as in the examples, and in the proportions shown in Table 1. In either case, the balance between heat-resistant rigidity, impact strength, and appearance of the molded product was poor. In other words, products using glass fibers with an average diameter of more than 7μ have a low level of heat resistance and rigidity, and products using glass fibers with a sizing agent deposit of more than 0.3% by weight have poor appearance. In addition, the average diameter exceeds 7μ and the amount of sizing agent attached is
Those using glass fiber exceeding 0.3% by weight were poor in both performances.
【表】
(注) *は比較例
EPPはプロピレン−エチレンブロツク共重合体
、PPはポリプロピレン、 EPRはエチレン−プロピレン
共重合体ゴムを示す。
[Table] (Note) * indicates comparative example
EPP stands for propylene-ethylene block copolymer, PP stands for polypropylene, and EPR stands for ethylene-propylene copolymer rubber.