Nothing Special   »   [go: up one dir, main page]

JPS644964B2 - - Google Patents

Info

Publication number
JPS644964B2
JPS644964B2 JP58080162A JP8016283A JPS644964B2 JP S644964 B2 JPS644964 B2 JP S644964B2 JP 58080162 A JP58080162 A JP 58080162A JP 8016283 A JP8016283 A JP 8016283A JP S644964 B2 JPS644964 B2 JP S644964B2
Authority
JP
Japan
Prior art keywords
membrane
gas
separation
present
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58080162A
Other languages
Japanese (ja)
Other versions
JPS59207827A (en
Inventor
Tetsuo Yoshimura
Etsuo Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP58080162A priority Critical patent/JPS59207827A/en
Publication of JPS59207827A publication Critical patent/JPS59207827A/en
Publication of JPS644964B2 publication Critical patent/JPS644964B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、重質油、石炭等を分解して得られる
H2、CO主体の混合ガスより、気体分離膜を用い
て極めて高純度のCOを分離する方法に関するも
のである。特に、これらH2、CO主体の混合ガス
の1部より高純度COを取り出し、このCOをメタ
ノール法酢酸、或は蓚酸の製造等に利用する場
合、特に有利な方法を提供せんとするものであ
る。 すでに、混合気体より気体を気体分離膜を用い
て分離することは公知であり、又工業的にも利用
されている。(文献CEP、Oct1982、page27〜32)
然しながら、これらは何れも透過しやすい成分
(本発明の場合はH2)の分離を主体とする技術
で、本発明方法の如き透過し難い成分(本発明の
場合はCO)の分離に関してはすぐれた提案はな
かつた。 一般に、気体分離膜を用いた場合の膜中のガス
透過速度は、各成分ガス毎に次式(1)に従う。 Q=(p1−P2)K・S …(1) Q:ガスの透過速度(cm3(STP)/sec) p1:原ガス側の透過成分分圧(cmHg) p2:透過側の 〃 〃 ( 〃 ) K:透過成分の膜に対する透過度(cm3
(STP)/cm2、sec、cmHg) S:膜面積(cm2) (1)式より明らかなる如く、膜での分離の過程
で、透過の早い成分ガス(本発明の場合はH2
が原ガス側から失われてゆきp1は低下する。一
方、透過側では、逆に、透過の早い方の成分ガス
(本発明の場合はH2)が増大してゆくのでp2は透
過側の全圧に近い値となる。 このため、原ガス側で透過の遅い成分ガス(本
発明の場合はCO)の濃度が上つてくるとp1−p2
の値は低くなり、原ガスより透過の早い成分ガス
(本発明の場合はH2)の除去は進みにくくなる。
これを解決する方法としては、p1を上げる即ち昇
圧するほかに、透過側を減圧するか或は透過側を
透過させたい成分ガス以外のガスでパージする
(本発明の場合はCO等でパージする)等の手段が
とられる。然し、これらは、前者は余分の動力を
必要とし、又プロセスの高圧化等、費用がかさ
む。後者は透過側の透過成分ガス(本発明の場合
はH2)の濃度が下がり、又余分のガスを加える
ため等により、これ又費用がかさむ。 本発明は、これらの問題を解決するために案出
した方法で、それは、原ガス側で、透過させたい
成分ガス(本発明の場合はH2)が下つた段階で、
分離度の低い膜(本発明の場合はH2/CO分離
度)を使用することである。即ち、膜モジユール
を2個以上使用し、原ガス中(H2、CO主体の混
合ガス)のH2濃度の高い段階ではH2/CO分離度
の高い膜を用い、H2濃度の下つた段階ではH2
CO分離度の低い膜を用いることである。 本発明の詳細を実施例及び比較例を用いて更に
説明する。 実施例1は、重質油等の分解ガスの中、CO濃
度の比較的高いH2、CO混合ガスを用いた本発明
法実施の場合で、比較例1、2は公知法で、比較
例1の場合はH2/CO分離度の高い膜(実施例1
で1段目モジユールに用いた膜と同一分離度の
膜)を用いた例で、比較例2の場合はH2/CO分
離度の低い膜(実施例1で2、3段目モジユール
に用いた膜と同一分離度の膜)を用いた例を示
す。 これらの結果より、98%CO純度のガスを得よ
うとした場合、本発明法による実施例1が最大の
ガス量を得ていることがわかる。即ち、換言すれ
ば、同一ガス量の98%CO濃度のガスを得んとし
た場合、本発明法が最小の膜面積となる。尚、比
較例2の場合は、かなり本発明法実施例1に近い
値が得られているが、透過側のH2濃度が低く、
又透過量も多く、本発明法に比べ不利である。実
施例2は、重質油等の分解ガスの中、CO濃度の
比較的低いH2、CO混合ガスを用いた本発明法実
施の場合で、比較例3、4は従来法で、比較例3
の場合はH2/CO分離度の高い膜(実施例2で1
段目モジユールに用いた膜と同一分離度の膜)を
用いた例で、比較例4の場合はH2/CO分離度の
低い膜(実施例2で2段目モジユールに用いた膜
と同一分離度の膜)を用いた例を示す。これらの
場合においても前述の実施例1の場合と同様本発
明法実施例2が最もすぐれていることがわかる。 実施例 1 本例は、重質油等の分解ガスの中、CO濃度の
比較的高いH2、CO混合ガスを用いた本発明法実
施の場合を示す。 第1図は、本発明法を実施したフローシートの
略図を示す。 A,B,Cは膜モジユールを示し、それぞれ特
開昭57−157435号公報又は特開昭57−15819号公
報に記述された方法により調製された中空繊維状
ポリイミド膜3000本が充填されている。モジユー
ルのサイズは2cmφ×20cmlである。 AモジユールにはH2/CO分離度120の分離膜、
即ちH2透過度(KH2)9.0×10-6、CO透過度
(KCO)7.5×10-8のポリイミド分離膜を用いた。
B、CモジユールにはH2/CO分離度15の分離
膜、即ちH2透過度(KH2)9.0×10-6CO透過度
(KCO)6.0×10-7のポリイミド分離膜を用いた。 H2、CO混合ガスは酸性ガス除去装置を経て、
導管1よりAモジユールに送入される。このとき
の圧力は31Kg/cm2(ゲージ)で温度は常温であつ
た。Aモジユールでは中空繊維膜の外側より内側
にむかつて透過ガスは流れ導管3より流出され
る。このときの圧力は1Kg/cm2(ゲージ)であつ
た。非透過ガスは中空繊維膜の外側に沿つて流
れ、導管2より流出し、Bモジユールに送入され
る。BモジユールでもAモジユールと同様、透過
ガスは中空繊維膜の外側より内側にむかつて流れ
導管5より流出する。非透過ガスは中空繊維膜の
外側に沿つて流れ、導管4より流出し、Cモジユ
ールに送入される。Cモジユールでも、A、Bモ
ジユール同様透過ガスは中空繊維膜の外側より内
側にむかつて流れ導管8より流出する。 非透過ガスは中空繊維膜の外側に沿つて流れ、
導管7より流出する。 入口、出口及びその他の箇所での流量、H2
CO組成は第1表に示す。 比較例 1 本例は、A、B、Cモジユール何れにもH2
CO分離度120即ちH2透過度(KH2)9.0×10-6
CO透過度(KCO)7.5×10-8のポリイミド分離膜
を用いたほかは実施例1と同様実施した。結果は
第1表に示す。 比較例 2 本は、A、B、(モジユール何れにもH2/CO
分離度15即ちH2透過度(KH2)9.0×10-6、CO透
過度(KCO)6.0×10-7のポリイミド分離膜を用い
たほかは実施例1と同様実施した。結果は第1表
に示す。
The present invention is obtained by decomposing heavy oil, coal, etc.
This paper relates to a method for separating extremely high-purity CO from a mixed gas consisting mainly of H 2 and CO using a gas separation membrane. In particular, we aim to provide a particularly advantageous method when extracting high-purity CO from a portion of a mixed gas consisting mainly of H 2 and CO and using this CO for the production of acetic acid or oxalic acid using the methanol method. be. It is already known that a gas is separated from a mixed gas using a gas separation membrane, and it is also used industrially. (Reference CEP, Oct1982, pages 27-32)
However, all of these techniques mainly focus on separating components that easily permeate (H 2 in the case of the present invention), and are superior in terms of separating components that are difficult to permeate (CO in the case of the present invention) as in the method of the present invention. There were no other suggestions. Generally, when a gas separation membrane is used, the gas permeation rate in the membrane follows the following equation (1) for each component gas. Q = (p 1 - P 2 )K・S...(1) Q: Gas permeation rate (cm 3 (STP)/sec) p 1 : Partial pressure of permeate component on raw gas side (cmHg) p 2 : Permeate side 〃 〃 ( 〃 ) K: Permeability of the permeable component through the membrane (cm 3
(STP)/cm 2 , sec, cmHg) S: Membrane area (cm 2 ) As is clear from equation (1), in the process of separation in the membrane, a component gas that permeates quickly (H 2 in the case of the present invention)
is lost from the raw gas side, and p 1 decreases. On the other hand, on the permeate side, conversely, the component gas that permeates faster (H 2 in the case of the present invention) increases, so p 2 becomes a value close to the total pressure on the permeate side. Therefore, as the concentration of the component gas that permeates slowly (in the case of the present invention, CO) increases on the raw gas side, p 1p 2
The value of becomes low, and removal of the component gas (H 2 in the case of the present invention), which permeates faster than the original gas, becomes difficult to proceed.
To solve this problem, in addition to increasing p1 , that is, increasing the pressure, the pressure on the permeate side is reduced, or the permeate side is purged with a gas other than the component gas to be permeated (in the case of the present invention, purging with CO etc. ) and other measures will be taken. However, the former requires extra power and increases the cost due to the high pressure of the process. In the latter case, the concentration of the permeate component gas (H 2 in the case of the present invention) on the permeate side decreases, and additional gas is added, which increases costs. The present invention is a method devised to solve these problems.It is a method that has been devised in order to solve these problems.At the stage when the component gas to be permeated ( H2 in the case of the present invention) has descended on the raw gas side,
The solution is to use a membrane with low separation (in the present case H 2 /CO separation). In other words, two or more membrane modules are used, and a membrane with high H 2 /CO separation is used at a stage when the H 2 concentration in the raw gas (mixed gas consisting mainly of H 2 and CO) is high, and when the H 2 concentration is lowered. At the stage H 2 /
The solution is to use a membrane with low CO separation. The details of the present invention will be further explained using Examples and Comparative Examples. Example 1 is a case in which the method of the present invention is implemented using a mixed gas of H 2 and CO with a relatively high CO concentration among cracked gases such as heavy oil, and Comparative Examples 1 and 2 are known methods. 1 is a membrane with high H 2 /CO separation (Example 1)
In the case of Comparative Example 2, a membrane with a lower H 2 /CO separation degree was used (the membrane used for the second and third stage modules in Example 1) was used. An example using a membrane with the same resolution as the membrane used in this study is shown below. From these results, it can be seen that when trying to obtain gas with a purity of 98% CO, Example 1 using the method of the present invention obtained the maximum amount of gas. That is, in other words, when trying to obtain the same amount of gas with a 98% CO concentration, the method of the present invention provides the smallest membrane area. In the case of Comparative Example 2, a value quite close to that of Example 1 of the method of the present invention was obtained, but the H 2 concentration on the permeation side was low;
Furthermore, the amount of permeation is large, which is disadvantageous compared to the method of the present invention. Example 2 is a case in which the method of the present invention is implemented using a mixed gas of H 2 and CO with a relatively low CO concentration among cracked gases such as heavy oil, and Comparative Examples 3 and 4 are conventional methods. 3
In this case, a membrane with high H 2 /CO separation (1
In the case of Comparative Example 4, a membrane with a lower H 2 /CO separation degree (the same membrane used for the second stage module in Example 2) was used. An example using a membrane with high resolution is shown below. It can be seen that in these cases, as in the case of Example 1, Example 2 of the method of the present invention is the most excellent. Example 1 This example shows a case in which the method of the present invention is implemented using a mixed gas of H 2 and CO with a relatively high CO concentration among cracked gases such as heavy oil. FIG. 1 shows a schematic diagram of a flow sheet implementing the method of the invention. A, B, and C indicate membrane modules, each filled with 3000 hollow fiber polyimide membranes prepared by the method described in JP-A-57-157435 or JP-A-57-15819. . The size of the module is 2 cmφ x 20 cml. A module has a separation membrane with H 2 /CO separation degree of 120,
That is, a polyimide separation membrane having a H 2 permeability (K H2 ) of 9.0×10 −6 and a CO permeability (K CO ) of 7.5×10 −8 was used.
For the B and C modules, a separation membrane with an H 2 /CO separation degree of 15, that is, a polyimide separation membrane with an H 2 permeability (K H2 ) of 9.0×10 −6 and a CO permeability (K CO ) of 6.0×10 −7 was used. . The H 2 and CO mixed gas passes through an acid gas removal device.
It is sent to the A module from conduit 1. At this time, the pressure was 31Kg/cm 2 (gauge) and the temperature was room temperature. In module A, the permeate gas flows from the outside to the inside of the hollow fiber membrane and exits through the flow conduit 3. The pressure at this time was 1 Kg/cm 2 (gauge). Non-permeable gas flows along the outside of the hollow fiber membrane, exits through conduit 2, and is fed into the B module. In the B module, as in the A module, the permeate gas flows from the outside to the inside of the hollow fiber membrane and exits through the flow conduit 5. The non-permeate gas flows along the outside of the hollow fiber membrane, exits through conduit 4 and enters the C module. In the C module, as in the A and B modules, the permeate gas flows from the outside to the inside of the hollow fiber membrane and then flows out through the flow conduit 8. Non-permeable gas flows along the outside of the hollow fiber membrane;
It flows out from the conduit 7. Flow rate at inlet, outlet and other points, H 2 ,
The CO composition is shown in Table 1. Comparative Example 1 In this example, H 2 /
CO separation degree 120 or H 2 permeability (K H2 ) 9.0×10 -6 ,
The same procedure as in Example 1 was conducted except that a polyimide separation membrane with a CO permeability (K CO ) of 7.5×10 −8 was used. The results are shown in Table 1. Comparative Example 2: A, B, (modules both contain H 2 /CO
The same procedure as in Example 1 was carried out except that a polyimide separation membrane having a separation degree of 15, that is, a H 2 permeability (K H2 ) of 9.0×10 −6 and a CO permeability (K CO ) of 6.0×10 −7 was used. The results are shown in Table 1.

【表】 実施例 2 本例は、重質油等の分解ガスの中、CO濃度の
比較的低いH2、CO混合ガスを用いた本発明法実
施の場合を示す。 第2図は本発明法を実施したフローシートの略
図を示す。A,Bは膜モジユールを示し、それぞ
れ特開昭57−157435号公報又は特開昭57−15819
号公報に記述された方法により調製された中空繊
維状ポリイミド膜3000本が充填されている。 モジユールのサイズは2cmφ×20cmlである。
Aモジユールには実施例1と同様H2/CO分離度
120の分離膜、即ちH2透過度(KH2)9.0×10-6
CO透過度(KCO)7.5×10-8のポリイミド分離膜
を用いた。BモジユールにはH2/CO分離度20の
分離膜、即ちH2透過度(KH2)9.0×10-6、CO透
過度(KCO)4.5×10-7のポリイミド分離膜を用い
た。 ガスの導入方法及び圧力、温度等もすべて実施
例1と同様実施した。 結果は第2表に示す。 比較例 3 本例は、A、Bモジユール何れにもH2/CO分
離度120即ちH2透過度(KH2)9.0×10-6、CO透過
度(KCO)7.5×10-8のポリイミド分離膜を用いた
ほかは実施例2と同様実施した。結果は第2表に
示す。 比較例 4 本例は、A、Bモジユール何れにもH2/CO分
離度20即ちH2透過度(KH2)9.0×10-6、CO透過
度(KCO)4.5×10-8のポリイミド分離膜を用いた
ほかは実施例2と同様実施した。結果は第2表に
示す。
[Table] Example 2 This example shows a case in which the method of the present invention is implemented using a mixed gas of H 2 and CO with a relatively low CO concentration among cracked gases such as heavy oil. FIG. 2 shows a schematic diagram of a flow sheet implementing the method of the invention. A and B indicate membrane modules, which are disclosed in JP-A-57-157435 or JP-A-57-15819, respectively.
It is filled with 3000 hollow fiber polyimide membranes prepared by the method described in the publication. The size of the module is 2 cmφ x 20 cml.
The A module has the same H 2 /CO separation as in Example 1.
120 separation membrane, i.e. H 2 permeability (K H2 ) 9.0×10 -6 ,
A polyimide separation membrane with a CO permeability (K CO ) of 7.5×10 -8 was used. For the B module, a separation membrane with an H 2 /CO separation degree of 20, that is, a polyimide separation membrane with an H 2 permeability (K H2 ) of 9.0×10 −6 and a CO permeability (K CO ) of 4.5×10 −7 was used. The gas introduction method, pressure, temperature, etc. were all the same as in Example 1. The results are shown in Table 2. Comparative Example 3 In this example, both A and B modules were made of polyimide with an H 2 /CO separation degree of 120, that is, a H 2 permeability (K H2 ) of 9.0×10 −6 and a CO permeability (K CO ) of 7.5×10 −8 . The same procedure as in Example 2 was carried out except that a separation membrane was used. The results are shown in Table 2. Comparative Example 4 In this example, both the A and B modules were made of polyimide with an H 2 /CO separation degree of 20, that is, a H 2 permeability (K H2 ) of 9.0×10 −6 and a CO permeability (K CO ) of 4.5×10 −8 . The same procedure as in Example 2 was carried out except that a separation membrane was used. The results are shown in Table 2.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ気体分離のフロー
シートの略図を表し、A,B,Cはモジユール、
1,2,3,4,5,6,7,8,9は導管をそ
れぞれ示す。
Figures 1 and 2 each represent a schematic diagram of a flow sheet for gas separation, where A, B, and C are modules;
1, 2, 3, 4, 5, 6, 7, 8, and 9 indicate conduits, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 重質油、石炭等を分解して得られるH2、CO
主体の混合ガスより、高純度COを、気体分離膜
を用いて分離するに際し、膜モジユール2個以上
を使用し、原ガス中のH2濃度の高い段階では
H2/CO分離度の高い膜を用い、H2濃度の下つた
段階ではH2/CO分離度の低い膜を用いることを
特徴とする、H2、CO主体の混合ガスより高純度
COを分離する方法。
1 H 2 and CO obtained by decomposing heavy oil, coal, etc.
When separating high-purity CO from the main mixed gas using a gas separation membrane, two or more membrane modules are used, and when the H2 concentration in the raw gas is high,
A membrane with a high H 2 /CO separation is used, and a membrane with a low H 2 /CO separation is used at the stage when the H 2 concentration has decreased.
How to separate CO.
JP58080162A 1983-05-10 1983-05-10 Method for separating gas from gas mixture Granted JPS59207827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58080162A JPS59207827A (en) 1983-05-10 1983-05-10 Method for separating gas from gas mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58080162A JPS59207827A (en) 1983-05-10 1983-05-10 Method for separating gas from gas mixture

Publications (2)

Publication Number Publication Date
JPS59207827A JPS59207827A (en) 1984-11-26
JPS644964B2 true JPS644964B2 (en) 1989-01-27

Family

ID=13710613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58080162A Granted JPS59207827A (en) 1983-05-10 1983-05-10 Method for separating gas from gas mixture

Country Status (1)

Country Link
JP (1) JPS59207827A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662905A (en) * 1983-12-23 1987-05-05 Itaru Todoriki, Director of Agency of Industrial Science and Technology Selective gas separator
JPS63296820A (en) * 1987-05-29 1988-12-02 Ube Ind Ltd Production of high-purity hydrogen or helium
US4806132A (en) * 1987-06-23 1989-02-21 Union Carbide Corporation Turndown control method for membrane separation systems
US4946477A (en) * 1988-04-07 1990-08-07 Air Products And Chemicals, Inc. IGCC process with combined methanol synthesis/water gas shift for methanol and electrical power production
FR2683737B1 (en) * 1991-11-18 1994-08-05 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION BY PERMEATION OF A LIGHT IMPURE GAS FROM A GAS MIXTURE CONTAINING THIS LIGHT GAS.
US5482539A (en) * 1993-09-22 1996-01-09 Enerfex, Inc. Multiple stage semi-permeable membrane process and apparatus for gas separation
US6085549A (en) * 1998-04-08 2000-07-11 Messer Griesheim Industries, Inc. Membrane process for producing carbon dioxide
US6128919A (en) * 1998-04-08 2000-10-10 Messer Griesheim Industries, Inc. Process for separating natural gas and carbon dioxide
US6149817A (en) * 1999-03-08 2000-11-21 Celgard Inc. Shell-less hollow fiber membrane fluid contactor
US20070051238A1 (en) * 2005-09-07 2007-03-08 Ravi Jain Process for gas purification
JP5948853B2 (en) * 2011-12-20 2016-07-06 宇部興産株式会社 Gas separation system

Also Published As

Publication number Publication date
JPS59207827A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
EP0490322B1 (en) Three-stage membrane gas separation process and system
US10022677B2 (en) Gas separation membranes based on perfluorinated polymers
Antonson et al. Analysis of gas separation by permeation in hollow fibers
JPS6249927A (en) Hibrid membrane/extremely low temperature method to hydrogen purification
JP7365453B2 (en) Processes and equipment for gas separation
JP2646321B2 (en) Membrane oxygen method and system
JPS644964B2 (en)
EA017478B1 (en) Multi-stage membrane separation process
JPH0527445B2 (en)
JPH08173749A (en) Method for film separation of hydrogen through cascade of film increased in selectivity
US20110305310A1 (en) Equipment and system for processing a gaseous mixture by permeation
WO1992020431A1 (en) Treatment of acid gas using hybrid membrane separation systems
US5306427A (en) Low pressure feed membrane separation process
JPH0463110A (en) Separation purification method of alcohol-containing reaction liquid
WO2020079403A1 (en) Separation of carbon monoxide from carbon monoxide/hydrogen syngas mixtures
JPH09235101A (en) Production of hydrogen and energy and apparatus therefor
JPH06219712A (en) Membrane nitrogen gas generator with improved applicability
US5693121A (en) Semi-permeable membrane separation process for the production of very high purity nitrogen
JP2001062240A (en) Method and device for adjusting concentration of mixed gas
US5252219A (en) Compressed permeate sweep membrane separation process
JPH06205924A (en) Method of forming highly pure film
ES478702A1 (en) Process for preparing gas streams of controlled composition
JPS5358974A (en) Separating method by use of membrane
JP7031214B2 (en) Helium-enriched gas production method and gas separation system
KR102273078B1 (en) Carbon dioxide separation method by using separation membranes in gtl synthesis process