Nothing Special   »   [go: up one dir, main page]

JPS59207827A - Method for separating gas from gas mixture - Google Patents

Method for separating gas from gas mixture

Info

Publication number
JPS59207827A
JPS59207827A JP58080162A JP8016283A JPS59207827A JP S59207827 A JPS59207827 A JP S59207827A JP 58080162 A JP58080162 A JP 58080162A JP 8016283 A JP8016283 A JP 8016283A JP S59207827 A JPS59207827 A JP S59207827A
Authority
JP
Japan
Prior art keywords
gas
membrane
separation
concentration
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58080162A
Other languages
Japanese (ja)
Other versions
JPS644964B2 (en
Inventor
Tetsuo Yoshimura
哲郎 吉村
Etsuo Matsunaga
松永 悦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP58080162A priority Critical patent/JPS59207827A/en
Publication of JPS59207827A publication Critical patent/JPS59207827A/en
Publication of JPS644964B2 publication Critical patent/JPS644964B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To separate CO of high purity from a mixed gas consisting essentially of H2 and CO at a low cost, by using membrane modules having different separation degrees of H2/CO in combination. CONSTITUTION:CO of high purity is separated from a mixed gas, consisting essentially of H2, and obtained by decomposing heavy oil or coal, etc. using gas separation membranes. In the method, membrane modules having different separation degrees of H2/CO are used in combination. In the stage of a raw gas, i.e. a mixed gas consisting essentially of H2 and CO in a high H2 concentration, a membrane having a high separation degree of a rapidly permeating component gas (H2) from a slowly permeating component gas (CO) is used. After using the membrane, a membrane having a low separation degree of H2/CO is used in the stage of reduced H2 concentration. Thus, the aimed CO of high purity can be separated without requiring means of boosting the pressure of the raw gas side, reducing the pressure on the permeation side nor purging with the gas (CO) other than the component gas for permeation, etc.

Description

【発明の詳細な説明】 本発明は7重質油1石炭等を分解して得られる82 、
 Go主体の混合ガスより、気体分離膜を用いてイ、1
1めて高純度のCOを分餌(する方法に関するものであ
る。特に、これらH2,Go主体の混合ガスのコ部より
高純度COを取り出し、このCOをメタノール法酢酸、
或は蓚酸の製造等に利用する場合+ ’Blに有)11
」な方法を提供せんとするものである。
[Detailed description of the invention] The present invention provides 7 heavy oils, 1 coal, etc., obtained by cracking 82,
From a Go-based mixed gas, using a gas separation membrane,
First, it relates to a method for separating high-purity CO. In particular, high-purity CO is extracted from the mixed gas mainly composed of H2 and Go, and this CO is mixed with methanol, acetic acid,
Or when used in the production of oxalic acid, etc. + 'Bl) 11
The aim is to provide a method for

すでに、混合気体より気体を気体分離膜を用いて分離す
ることは公知1あり、又工業的にも利用されている。(
文南+: CEP 、  oat 1982 、  p
age 27〜32)然しなから、これらは何れも透過
しやすい成分(本発明の場合はH2)  の分離を主体
とする技術で1本発明方法の如き透過し難い成分(本発
明の場合ばCO)  の分離に関してはすぐれた提案は
なかった。
Separation of gas from a mixed gas using a gas separation membrane is already known and is also used industrially. (
Bunnan+: CEP, oat 1982, p.
(age 27-32) However, all of these techniques are mainly based on the separation of easily permeable components (in the case of the present invention, H2), and the separation of components that are difficult to permeate (in the case of the present invention, such as CO), as in the method of the present invention. ) There were no good proposals for separation.

一般に、気体分離膜を用いた場合の膜中のガス迭過速度
は、各成分ガス毎に次式(1)に従う。
Generally, when a gas separation membrane is used, the overspeed of gas in the membrane follows the following equation (1) for each component gas.

%式%(1 Q 、ガスの透過速度(crrl (STP) /se
c )pl:原ガス側の透過成分分圧(c1nH?)p
2 : 透過イ則の   〃(Il)K、透過成分の膜
に対する透過度 (7(STP )/LJA 、 ”CC+ On Hj
? )S゛膜面積  (c17ブ) (1)式よシ明らかなる如く、膜での分離の過程で。
% formula % (1 Q, gas permeation rate (crrl (STP) /se
c) pl: Partial pressure of permeated component on raw gas side (c1nH?) p
2: Permeation law 〃(Il)K, permeability of permeable component to membrane (7(STP)/LJA, ``CC+ On Hj
? )S゛Membrane area (c17b) As is clear from equation (1), in the process of separation on the membrane.

透過の早い成分ガス(本発明の場合はH2)が原ガス側
から失われてゆきp、は低下する。一方、透過側では、
逆に、透過の早い方の成分ガス(本発明の場合は■(2
)が増大してゆくのでp2は透過側の全圧に近いイfi
’4となる。
As the component gas that permeates quickly (H2 in the case of the present invention) is lost from the raw gas side, p decreases. On the other hand, on the transparent side,
Conversely, the component gas that permeates faster (in the case of the present invention, ■(2
) increases, so p2 is close to the total pressure on the permeate side.
'4.

このため、原ガス側で透過の遅い成分ガス(本発明の場
合はCO)  の濃度が上ってくるとpl−J)2の値
は低くなり、原ガスより透過の早い成分ガス(本発明の
場合は■(2)の除去は進みにくくなる。これを解決す
る方法としては+p+f:上げる即ち昇圧するほかに、
透過側を減圧にするが或は透過側を透過させたい成分ガ
ス以外のガスでパージする(本発明の場合はCo等でパ
ージする)等の手段がとられる。然し、これらは、前者
は余分の動力を必要とし、又プロセスの高圧化等、費用
がかさむ。
Therefore, as the concentration of the component gas that permeates slowly (in the case of the present invention, CO) increases on the raw gas side, the value of pl-J)2 decreases, and the value of pl-J)2 decreases, and the component gas that permeates faster than the raw gas (in the present invention, In the case of (2), the removal of ■(2) will be difficult to proceed.To solve this problem, in addition to raising +p+f, that is, boosting the pressure.
Measures such as reducing the pressure on the permeation side or purging the permeation side with a gas other than the component gas to be permeated (in the case of the present invention, purging with Co or the like) are taken. However, the former requires extra power and increases the cost due to the high pressure of the process.

後者は透過側の透過成分ガス(本発明の場合はH2)の
濃度が下がり、又余分のガス會加えるため等により、こ
れ又費用がかさむ。
In the latter case, the concentration of the permeate component gas (H2 in the case of the present invention) on the permeate side decreases, and additional gas is added, which increases costs.

本発明は、これらの問題を解決する/ζめに案出した方
法で、それは、原ガス側で、透過させたい成分ガス(本
発明の場合はH2)が下った段階で。
The present invention is a method devised to solve these problems, and is performed at the stage where the component gas (H2 in the present invention) to be permeated is released on the raw gas side.

分離度の低い膜(本発明の場合はH2/Co分離度)を
使用することである。即ち、膜モジュールを2個以上使
用し、原ガス中(H2,co主体の混合ガス)のH2濃
度の高い段階ではH2/ Co分離度の高い膜を用い、
H2濃度の下った段階ではH2/Go分離度の低い膜を
用いることである。
The solution is to use a membrane with a low separation (in the case of the present invention, H2/Co separation). That is, two or more membrane modules are used, and a membrane with a high degree of H2/Co separation is used at a stage when the H2 concentration in the raw gas (mixed gas mainly consisting of H2 and co) is high.
When the H2 concentration is low, a membrane with low H2/Go separation is used.

本発明の詳細を実施例及び比較例を用いて更に説明する
The details of the present invention will be further explained using Examples and Comparative Examples.

実施例1ば1重質油等の分解ガスの中、C011に度の
比較的高いH2,Co混合ガスを用いた本発明法実施の
場合て、比軟・例1,2は公知法で、比較例1の場合(
はH2/Co分離度の高い膜(実施例1でユ段目モジュ
ールに用いた力菓と同一分離度の膜)を用いた例で、比
較例2の場合はH2/CO分離度の低い!ie5. (
実施例1で2,3段目モジュールに用いた膜と同一分離
度の膜)r用いた例を示す。
Example 1 Case 1 In the case of carrying out the method of the present invention using a mixed gas of H2 and Co with a relatively high concentration of C011 among cracked gases such as heavy oil, the comparatively soft Example 1 and 2 are known methods, In the case of comparative example 1 (
is an example in which a membrane with a high degree of H2/Co separation (a membrane with the same degree of separation as the one used in the third module in Example 1) is used, whereas in the case of Comparative Example 2, the degree of H2/CO separation is low! ie5. (
An example in which a membrane with the same resolution as the membrane used in the second and third stage modules in Example 1 was used is shown.

これらの結果より、98%CO純度のガスを得ようとし
た場合1本発明法による実施例1が最大のガス量を得て
いることがわかる。即ち、換言すれば、同一ガス量の9
s%co濃度のガスを得んとした場合1本発明法が最小
の嘆面積となる。尚。
From these results, it can be seen that when trying to obtain gas with a purity of 98% CO, Example 1 using the method of the present invention obtained the maximum amount of gas. In other words, 9 of the same amount of gas
When trying to obtain a gas having a concentration of s% co, the method of the present invention has the minimum area. still.

虻較例2の場合は、かなり本発明法実施例1に近い(i
?4が得られているが、透過側のH2濃度が低く。
In the case of Comparative Example 2, it is quite close to Example 1 of the method of the present invention (i
? 4 was obtained, but the H2 concentration on the permeation side was low.

又透過量も多く1本発明法に比べ不利である。Furthermore, the amount of permeation is large, which is disadvantageous compared to the method of the present invention.

実施例2は1重質油等の分角イガスの中、  CO濃度
の比較的低いH2,Co混合ガスを用いた本発明法実施
の場合で、比較例3,4は従来法で、比較例3の場合は
H2/ Co  分離度の高い膜(実施例2で1段目モ
ジ−−ルに用いた膜と同一分離度のM)を用いた例で、
比較例4の場合はH2/CO分離度の低い膜(実施例2
で2段目モジュールに用いた膜と同一分離度の膜)を用
いた例を示す。これらの場合においても前述の実施例1
の場合と同様本発明法実施例2が最もすぐれていること
がわかる・実施例]。
Example 2 is a case in which the method of the present invention is implemented using a mixed gas of H2 and Co with a relatively low CO concentration in a minute gas such as heavy oil, and Comparative Examples 3 and 4 are conventional methods. In case 3, a membrane with high H2/Co separation (M with the same separation as the membrane used for the first stage module in Example 2) was used.
In the case of Comparative Example 4, a membrane with low H2/CO separation (Example 2
An example using a membrane with the same resolution as the membrane used in the second stage module is shown below. In these cases as well, the above-mentioned Example 1
It can be seen that Example 2 of the present invention method is the most excellent as in the case of [Example].

本例は1重質油等の分解ガスの中、OO濃度の比較的高
いH2,Co混合ガスを用いた本発明法実施の場合忙示
す。
This example shows the case where the method of the present invention is carried out using a mixed gas of H2 and Co having a relatively high OO concentration among cracked gases such as heavy oil.

第]−図は1本発明法を実施したフローシートの114
図を示す。
] - Figure 114 is a flow sheet in which the method of the present invention was implemented.
Show the diagram.

A、B、Cは嘆モジーールを示し、それぞれ特開昭57
−157435号公報又は特開昭57−15819号公
報に記述された方法により調製された中空嘩維状ポリイ
ミド膜3,000本が充填されている。モジュールのサ
イズは2釧φ×20αLである。
A, B, and C indicate lamentations, and are published in Japanese Unexamined Patent Application Publication No. 1989-57, respectively.
It is filled with 3,000 hollow fibrous polyimide membranes prepared by the method described in Japanese Patent Application Laid-open No. 157435 or Japanese Patent Application Laid-open No. 57-15819. The size of the module is 2φ×20αL.

AモジュールにはH2/ co分離度120の分離膜。The A module has a separation membrane with a H2/co separation degree of 120.

即ちH2透過度(KH2) 9.0X10−6. Co
透過度(KCO)’i’、5 X 10−8 のポリイ
ミド分離膜を用いた。B。
That is, H2 permeability (KH2) 9.0X10-6. Co
A polyimide separation membrane with a permeability (KCO) 'i' of 5 x 10-8 was used. B.

Cモジ−−ルにはH2/Co  分離度15の分離膜。The C module has a H2/Co separation membrane with a separation degree of 15.

νIJちH2透1lAi度(KH2) 9.OX 1O
−6Co透過度(KCO)6.0 X 10−7 のポ
リイミド分離膜を用いた。
νIJchi H2 transparency 1lAi degree (KH2) 9. OX 1O
A polyimide separation membrane with -6Co permeability (KCO) of 6.0 x 10-7 was used.

H2,Co  混合ガスは叡注ガス除去装置を経て、導
管lよりAモジュールに送入される。このときの圧力は
3”9/cni (ゲージ)で温度は常温であった。
The H2, Co mixed gas is sent to the A module from the conduit l after passing through the injection gas removal device. At this time, the pressure was 3''9/cni (gauge) and the temperature was room temperature.

Aモジュールでは中空繊維膜の外側より内側にむかって
透過ガスは流れ導管3より流出される。このときの圧力
は11”−910i (ゲージ)であった。非透過ガス
は中空繊維膜の外側に沿って流れ、導管2より流出し、
Bモジュールに送入される。BモジュールでもAモジュ
ールと同様、透過ガスは中空(、我維膜の外側より内側
にむかって流れ導管5より流出する。非透過ガスは中空
繊維膜の外側に沿ってθ1しれ、導管4より流出し、C
モジ−−ルに送入される。Cモジュ一ルでも、A、Bモ
ジュール同様透過ガスは中空繊維膜の外側より内側にむ
かって流れ導管8より流出する。
In the A module, the permeate gas exits through the flow conduit 3 from the outside to the inside of the hollow fiber membrane. The pressure at this time was 11"-910i (gauge). The non-permeable gas flows along the outside of the hollow fiber membrane and exits through conduit 2.
It is sent to the B module. In the B module, as in the A module, the permeated gas flows from the outside of the hollow fiber membrane toward the inside and flows out from the conduit 5. C
It is sent to the module. In the C module, as in the A and B modules, the permeate gas flows out from the flow conduit 8 from the outside to the inside of the hollow fiber membrane.

非珍過ガスは中空鷹維膜の外側に沿って流れ、導管7よ
り流出する。
The rare gas flows along the outside of the hollow fiber membrane and exits through the conduit 7.

入]コ、出口及びその他の箇所での流t 、 H2、C
!0組成は第1表に示す。
Flow at the entrance] C, exit and other places, H2, C
! 0 composition is shown in Table 1.

比較例1 本例は、A、B、 Cモジュール何れにもH2/CO分
′pilfj度120即ちH2うを過度(Kn2) 9
.OX 10  。
Comparative Example 1 In this example, the H2/CO content in all modules A, B, and C was 120 degrees, that is, the H2 concentration was excessive (Kn2) 9
.. OX10.

CO透過度(Kco) 7.5 X 10−8  のポ
リイミド分離膜を用いたほかは実施例1と同様実施した
。結果は第1表に示す。
The same procedure as in Example 1 was carried out except that a polyimide separation membrane having a CO permeability (Kco) of 7.5 x 10-8 was used. The results are shown in Table 1.

比較例2゜ 本例は、A、B、(モジュール何れにもH2/C0分離
度15即ちH2透過度(KH2) 9.0XIC1’ 
、  c。
Comparative Example 2゜In this example, A, B, (both modules have a H2/C0 separation degree of 15, that is, a H2 permeability (KH2) of 9.0XIC1'
, c.

透過度(Kco) 6.OX 10〜7 のポリイミド
分離膜を用いたほかは実施例1と同様実施した。結果は
第1表に示す。
Transparency (Kco) 6. The same procedure as in Example 1 was carried out except that a polyimide separation membrane of OX 10-7 was used. The results are shown in Table 1.

第1嵌 実施例2 本例は1重質油等の分解ガスの中、  CO濃度の比較
的低い+(2,Co  混合ガスを用いた本発明性実施
の場合を示す。
First Fitting Example 2 This example shows the case of implementing the present invention using a +(2,Co) mixed gas with a relatively low CO concentration among cracked gases such as 1 heavy oil.

第2図は本発明法を実施したフローシートの略図を示す
。A、Bは膜モジュールを示し、それぞれ特開昭57−
1.57435号公報又は特開昭57−15819号公
報に記述された方法により調製された中空繊維状ポリイ
ミド膜3,000本が充填されている。
FIG. 2 shows a schematic diagram of a flow sheet implementing the method of the invention. A and B indicate membrane modules, respectively, published in Japanese Patent Application Laid-Open No. 1983-
It is filled with 3,000 hollow fiber polyimide membranes prepared by the method described in Japanese Patent Application Laid-open No. 1.57435 or Japanese Patent Application Laid-open No. 15819/1983.

モジュールのサイズは2 onφX 20 on、iで
ある。
The size of the module is 2 onφX 20 on,i.

Aモジュールには実施例1と同様H2/Co分離度12
0の分離膜、即ちH2透過度(KH2) 9. Ox 
10−6゜co 7過度(Kco) 7.5 X 10
−8のポリイミド分離膜を用いた。BモジュールにはH
2/CO分離度20の分離膜、即ちH2i1j過度(K
H2) 9.OX 10−6. Go透過度(Kco)
 4.5 X 10−’  のポリイばド分離膜を用い
た。
The A module has H2/Co separation degree of 12 as in Example 1.
0 separation membrane, i.e. H2 permeability (KH2) 9. Ox
10-6゜co 7 excess (Kco) 7.5 X 10
-8 polyimide separation membrane was used. B module has H
2/CO separation degree 20, that is, H2i1j excess (K
H2) 9. OX 10-6. Go transparency (Kco)
A 4.5 x 10-' polyamide separation membrane was used.

ガスの導入方法及び圧力、温度等もすべて実施例1と同
様実施した。
The gas introduction method, pressure, temperature, etc. were all the same as in Example 1.

結果は第2表に示す。The results are shown in Table 2.

比較例3 本例は、A、、Bモジー−ル何れにもH2/CO分離度
120即ちH2透過度(Kl(、、) 9.0X10−
6. CO透過度(KCO) 7.5 X 10−” 
 のポリイミド分離膜を用いたほかは実施例2と同様実
施しだ。結果は第2表に示す。
Comparative Example 3 In this example, the H2/CO separation degree was 120, that is, the H2 permeability (Kl(,,) 9.0X10-
6. CO permeability (KCO) 7.5 x 10-”
Example 2 was carried out in the same manner as in Example 2, except that a polyimide separation membrane was used. The results are shown in Table 2.

比較例4 本例は、A、Bモジー−ル何れにもH2/ OO分離度
20即ちH2透過度(Kl(2) 9.0X10−6 
、 co透過度(KCO) 4.5XlO−’のポリイ
ミド分離膜を用いたほかは実施例2と同様実施した。結
果は第2表に示す。
Comparative Example 4 In this example, both the A and B modules had a H2/OO separation degree of 20, that is, a H2 permeability (Kl(2) 9.0X10-6
The same procedure as in Example 2 was conducted except that a polyimide separation membrane with a co-permeability (KCO) of 4.5XlO-' was used. The results are shown in Table 2.

第217表Table 217

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ気体分離のフローシートの
略図を表し、A、B、Oはモジュール。 1.2,3,4.5,6,7,8.9は導管をそ特許出
願人  宇部興産株式会社
Figures 1 and 2 each represent a schematic diagram of a gas separation flow sheet, where A, B, and O are modules. 1.2, 3, 4.5, 6, 7, 8.9 are conduits Patent applicant: Ube Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 屯η油1石炭等を分解して得られるH2.C:O主体の
混合ガスより、篩純吸COを、気体分離膜を用いて分離
するに際し、1摸モジー−ル2個以上を使用し、原ガス
中の82濃度の高い段階では82700分:’i11度
の高い膜を用い+ H2f!度の下った段階でば++、
 / co  公邸1度の低い膜を用いることを特徴と
する。 H,、、GO主体の混合ガスより高純度C○を
分1・浦する方法。
H2. obtained by decomposing coal, etc. When separating sieved pure adsorbed CO from a C:O-based mixed gas using a gas separation membrane, two or more 1-module modules are used, and at a stage where the 82 concentration in the raw gas is high, it takes 82,700 minutes: 'i11 using a high membrane + H2f! At a lower stage, ++,
/ co The feature is that it uses a membrane with a low temperature of 1 degree. A method of producing one portion of high-purity C○ from a mixed gas consisting mainly of H,..., GO.
JP58080162A 1983-05-10 1983-05-10 Method for separating gas from gas mixture Granted JPS59207827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58080162A JPS59207827A (en) 1983-05-10 1983-05-10 Method for separating gas from gas mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58080162A JPS59207827A (en) 1983-05-10 1983-05-10 Method for separating gas from gas mixture

Publications (2)

Publication Number Publication Date
JPS59207827A true JPS59207827A (en) 1984-11-26
JPS644964B2 JPS644964B2 (en) 1989-01-27

Family

ID=13710613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58080162A Granted JPS59207827A (en) 1983-05-10 1983-05-10 Method for separating gas from gas mixture

Country Status (1)

Country Link
JP (1) JPS59207827A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662905A (en) * 1983-12-23 1987-05-05 Itaru Todoriki, Director of Agency of Industrial Science and Technology Selective gas separator
US4806132A (en) * 1987-06-23 1989-02-21 Union Carbide Corporation Turndown control method for membrane separation systems
US4946477A (en) * 1988-04-07 1990-08-07 Air Products And Chemicals, Inc. IGCC process with combined methanol synthesis/water gas shift for methanol and electrical power production
US5064446A (en) * 1987-05-29 1991-11-12 Ube Industries, Ltd. Method of preparing high purity light gas by multiple-step gas separation
US5314528A (en) * 1991-11-18 1994-05-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Permeation process and apparatus
US5482539A (en) * 1993-09-22 1996-01-09 Enerfex, Inc. Multiple stage semi-permeable membrane process and apparatus for gas separation
US6085549A (en) * 1998-04-08 2000-07-11 Messer Griesheim Industries, Inc. Membrane process for producing carbon dioxide
JP2000262870A (en) * 1999-03-08 2000-09-26 Celgard Inc Shellless hollow fiber membrane fluid contact device
US6128919A (en) * 1998-04-08 2000-10-10 Messer Griesheim Industries, Inc. Process for separating natural gas and carbon dioxide
JP2007069209A (en) * 2005-09-07 2007-03-22 Boc Group Inc:The Gas purification method
JP2013128868A (en) * 2011-12-20 2013-07-04 Ube Industries Ltd Gas separation system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662905A (en) * 1983-12-23 1987-05-05 Itaru Todoriki, Director of Agency of Industrial Science and Technology Selective gas separator
US5064446A (en) * 1987-05-29 1991-11-12 Ube Industries, Ltd. Method of preparing high purity light gas by multiple-step gas separation
US4806132A (en) * 1987-06-23 1989-02-21 Union Carbide Corporation Turndown control method for membrane separation systems
US4946477A (en) * 1988-04-07 1990-08-07 Air Products And Chemicals, Inc. IGCC process with combined methanol synthesis/water gas shift for methanol and electrical power production
US5314528A (en) * 1991-11-18 1994-05-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Permeation process and apparatus
US5873928A (en) * 1993-09-22 1999-02-23 Enerfex, Inc. Multiple stage semi-permeable membrane process and apparatus for gas separation
US5482539A (en) * 1993-09-22 1996-01-09 Enerfex, Inc. Multiple stage semi-permeable membrane process and apparatus for gas separation
WO1996011048A1 (en) * 1994-10-11 1996-04-18 Enerfex, Inc. Multiple stage semi-permeable membrane gas separation process
US6085549A (en) * 1998-04-08 2000-07-11 Messer Griesheim Industries, Inc. Membrane process for producing carbon dioxide
US6128919A (en) * 1998-04-08 2000-10-10 Messer Griesheim Industries, Inc. Process for separating natural gas and carbon dioxide
JP2000262870A (en) * 1999-03-08 2000-09-26 Celgard Inc Shellless hollow fiber membrane fluid contact device
JP4593719B2 (en) * 1999-03-08 2010-12-08 セルガード,インコーポレイテッド Shellless hollow fiber membrane fluid contactor
JP2007069209A (en) * 2005-09-07 2007-03-22 Boc Group Inc:The Gas purification method
JP2013128868A (en) * 2011-12-20 2013-07-04 Ube Industries Ltd Gas separation system

Also Published As

Publication number Publication date
JPS644964B2 (en) 1989-01-27

Similar Documents

Publication Publication Date Title
JP3850030B2 (en) Gas separation process using semi-permeable membrane in multiple stages
KR960004605B1 (en) Three-stage membrane gas separation process and system
JP2664169B2 (en) Method for separating components of gaseous fluid
JPS6249927A (en) Hibrid membrane/extremely low temperature method to hydrogen purification
JP2646321B2 (en) Membrane oxygen method and system
US9623370B2 (en) Integrated process and apparatus for recovery of helium rich streams
JPS59207827A (en) Method for separating gas from gas mixture
US4180388A (en) Processes
US4591365A (en) Semipermeable membrane gas separation system
JPS59193835A (en) Dehydration of hydrocarbon-containing gas
US2060940A (en) Process for obtaining krypton and xenon
JP6435961B2 (en) Gas separation system and method for producing enriched gas
JP5124158B2 (en) Methane concentration apparatus and method
JP2001062240A (en) Method and device for adjusting concentration of mixed gas
JPH09235101A (en) Production of hydrogen and energy and apparatus therefor
US5693121A (en) Semi-permeable membrane separation process for the production of very high purity nitrogen
JPH06205924A (en) Method of forming highly pure film
JP6464881B2 (en) Gas separation system and method for producing enriched gas
JP7031214B2 (en) Helium-enriched gas production method and gas separation system
JPH09206541A (en) Separation of oxygen and argon in air and device therefor
KR20200076093A (en) Carbon dioxide separation method by using separation membranes in gtl synthesis process
JP6511912B2 (en) Gas separation system and method for producing enriched gas
RU2021137742A (en) METHOD AND INSTALLATION FOR OBTAINING COMPONENTS FROM NATURAL GAS
CN118831415A (en) CO enrichment and purification by adopting serial membranes2Is a method of (2)
JPH08117544A (en) Purification and separation of synthetic gas