JPS5996111A - Production of cyclized isoprene polymer - Google Patents
Production of cyclized isoprene polymerInfo
- Publication number
- JPS5996111A JPS5996111A JP20604882A JP20604882A JPS5996111A JP S5996111 A JPS5996111 A JP S5996111A JP 20604882 A JP20604882 A JP 20604882A JP 20604882 A JP20604882 A JP 20604882A JP S5996111 A JPS5996111 A JP S5996111A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- molecular weight
- monomer
- reaction
- complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polymerization Catalysts (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は重量平均分子tMwと数平均分子量MNの比M
wAANで定義される分散度が2以下のインプレン重合
体環化物の製造方法に関する。更に詳しくは、イソプレ
ンモノマーを一般式RM (Rはアルキル、アリールあ
るいはアラルキル基を示し、Mはリチウム、ナトリウム
あるいはカリウムを示す。ンで表わされる有機金属化合
物存在下に重合して倚られる分散度の小さな重合体を、
三フッ化ホウ素エーテル錯体あるいは該錯体と一般弐R
’X(R’はベンジル、t−ブチル−あるいはアリル基
を示し、Xはハロゲンを示す。ンで表わされる有機ハロ
ゲン化物よりなる触媒と接触させ、分散#2以下のイン
プレン重合体環化物を製造する方法である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the ratio M of the weight average molecular weight tMw to the number average molecular weight MN.
The present invention relates to a method for producing a cyclized imprene polymer having a degree of dispersion defined by wAAN of 2 or less. More specifically, the isoprene monomer is polymerized in the presence of an organometallic compound represented by the general formula RM (R represents an alkyl, aryl, or aralkyl group, and M represents lithium, sodium, or potassium. small polymer,
Boron trifluoride ether complex or this complex and general 2R
'X'(R' represents benzyl, t-butyl or allyl group, X represents halogen. This is the way to do it.
天然ゴムあるいは合成ゴムの環化物は、光照射により高
分子鎖間に架橋が生じ、溶剤に不溶化するいわゆるネガ
型レジスト材料の原料として最も広く利用されている。Cyclized products of natural rubber or synthetic rubber are most widely used as raw materials for so-called negative resist materials, which are insolubilized in solvents by crosslinking between polymer chains upon irradiation with light.
レジスト材の性質のうち、特に重要なものは、感度と解
像世であるが、集積回路の集積度の向上に伴ない解像度
に対する要求が厳しくなり1μmあるいはそれ以下の微
細加工1ftlJjlに対応しうる材料が要求されてい
る。Among the properties of resist materials, particularly important ones are sensitivity and resolution, but as the degree of integration of integrated circuits increases, the requirements for resolution have become stricter, and it is now possible to handle microfabrication of 1 μm or less (1 ftlJjl). materials are required.
しかし、上述の従来用いられているゴム系レジスト材料
は、解像性の面で問題かあり、実丹3上6μm程度のづ
・青電が限界とされており、これ以下の寸法祠度の要求
される集積度の高い集積回路製造プロセスに対応するこ
とが困難である。However, the conventionally used rubber-based resist materials mentioned above have problems in terms of resolution, and are said to have a limit of about 3 to 6 μm, and the dimensional precision below this is considered to be the limit. It is difficult to support the required integrated circuit manufacturing process with a high degree of integration.
本発明者らは、これら従来のゴム系レジスト材料、特に
イソプレン系重合体環化物にみられる問題点を解決すべ
く鋭意研究の結果、本発明に到達したものである。The present inventors have arrived at the present invention as a result of intensive research aimed at solving the problems seen in these conventional rubber-based resist materials, especially cyclized isoprene-based polymers.
従来のゴム系レジスト材料は、天然ゴム、合成ゴムであ
るにかかわらず、いずれもその分子量分布が非常に広く
、重量平均分子量Mwと数平均分子’fi’j: M
Nの比Mw/Mxで定義される分散度は2あるいは3以
上の値をとるのが普通である。Conventional rubber-based resist materials, regardless of whether they are natural rubber or synthetic rubber, have a very wide molecular weight distribution, with a weight average molecular weight Mw and a number average molecular 'fi'j: M
The degree of dispersion defined by the ratio Mw/Mx of N usually takes a value of 2 or 3 or more.
本発明の目的は、これら従来のゴム系レジスト材料の中
で特に分子量分布に注目し、分散度が1に近い値をもつ
インプレン重合体を、その分子量・分布が乱れない条件
下で環化な行ない、解像性の優れたイソグレン重合体環
化物を製造することである。The purpose of the present invention is to focus on the molecular weight distribution of these conventional rubber resist materials, and to cyclize an in-prene polymer with a dispersity close to 1 under conditions that do not disrupt its molecular weight and distribution. The objective is to produce a cyclized isogrene polymer with excellent resolution.
本発明の9徴は、イソプレン系重合体の環化工程におい
て、A”<−uE重合体分子量分布をほとんど乱さずに
環化が達成できることにある。The ninth feature of the present invention is that in the cyclization step of an isoprene-based polymer, cyclization can be achieved without substantially disturbing the A''<-uE polymer molecular weight distribution.
匪来より、ジエン系重合体の環化方法としては、(1)
硫酸、スルポン酸を用いる方法、(2)フリーデルeク
ラフト触媒例えば8nCl、 、 TiC!14. F
eel、等を用いる方法、(3)ハロゲン化水素例えば
塩化水系等を用いる方法、(4)燐化合物例えば五塩化
燐、オキシ塩化燐等を用いる方法、(5)カチオン重合
開始剤例えば塩化ジエチルアルミニウムあるいは二塩化
エチルアルミニウムとトリクロロ酢酸からなる触媒を用
いる方法等が知られている。From Morai, as a method for cyclizing diene polymers, (1)
Method using sulfuric acid, sulfonic acid, (2) Friedel e-Craft catalyst such as 8nCl, TiC! 14. F
(3) A method using a hydrogen halide, such as an aqueous chloride system, (4) A method using a phosphorus compound, such as phosphorus pentachloride, phosphorus oxychloride, etc., (5) A method using a cationic polymerization initiator, such as diethyl aluminum chloride. Alternatively, a method using a catalyst consisting of ethylaluminum dichloride and trichloroacetic acid is known.
しかし、従来の方法では、ゲル化のような高分子間での
反応が進行し、分子内での反応を選択的に達成すること
は困難である。However, in conventional methods, reactions between polymers such as gelation proceed, and it is difficult to selectively achieve intramolecular reactions.
本発明^らは、イソプレンモノマーを−ff式RM(R
はアルキル、アリールあるいはアラルキル基を示し、M
はリチウム、ナトリウムあるいはカリウムを示す。ンで
表わされる有機金属化合物を開始剤としてリビング重合
することにより、分散度が1.1以下であるような単分
散に近いイソプレン重合体を侍、該重合体に温和な条件
下、三フフ化ホウ素エーテル錯体あるいは該錯体と一般
弐R’X(R/はベンジル、t−ブチルあるいはアリル
基を示し、又はハロゲンを示す。)で表わされる有機ハ
ロゲン化物よりなる触媒に接触させることにより分散度
が2.0以下であるようなイソプレン電合体環化物を製
造する方法を見い出した。In the present invention, the isoprene monomer is converted to -ff formula RM (R
represents an alkyl, aryl or aralkyl group, M
indicates lithium, sodium or potassium. By living polymerization using an organometallic compound represented by the following as an initiator, a nearly monodisperse isoprene polymer with a degree of dispersion of 1.1 or less is produced, and the polymer is trifluorinated under mild conditions. The degree of dispersion can be increased by bringing the boron ether complex or the complex into contact with a catalyst consisting of an organic halide represented by 2R'X (R/ represents a benzyl, t-butyl, or allyl group, or a halogen). We have found a method for producing an isoprene electroconjugate cyclized product having a molecular weight of 2.0 or less.
以下各工程について説明する。Each step will be explained below.
インプレンモノマーをM会する工程において、リビング
重合開始剤である一般式RM (Rはアルキル、アリー
ルあるいはアラルキル基〜を示し、Mはリチウム、ナト
リウムあるいはカリウムを示す。)で表わされる有機金
属化合物としては、例えばブチルリチウム、ナトリウム
ナフタレン、ナトリウムアントラセン、ナトリウムビフ
ェニル、フェニルイソプロピルカリウム、α−メチルス
チレン4量体カリウム等を用いることができるが、好ま
しくはブチルリチウムである。また、重合溶媒の選択は
生成するジエン重合体のミクロ構造との関連で極めて重
要である。例えば、n−ブチルリチウムを開始剤とする
場合、ヘキサン、シクロヘキサン、ベンゼン、トルエン
、キシノンナトの炭化水素溶媒では、はぼ選択的に1.
4−付加重合体を生成するが、テトラヒドロフラン、テ
トラヒドロビラン、ジオキサンなどのエーテル系溶媒で
は、1,2−あるいはへ4−付加重合体が侍られること
か知られている。In the process of combining imprene monomer with M, an organometallic compound represented by the general formula RM (R represents an alkyl, aryl, or aralkyl group, and M represents lithium, sodium, or potassium), which is a living polymerization initiator, is used as a living polymerization initiator. For example, butyllithium, sodium naphthalene, sodium anthracene, sodium biphenyl, phenylisopropyl potassium, α-methylstyrene tetramer potassium, etc. can be used, but butyllithium is preferable. Further, the selection of the polymerization solvent is extremely important in relation to the microstructure of the diene polymer to be produced. For example, when n-butyllithium is used as an initiator, hydrocarbon solvents such as hexane, cyclohexane, benzene, toluene, and xynonato are selective to 1.
Although 4-addition polymers are produced, it is known that 1,2- or 4-addition polymers can be produced in ether solvents such as tetrahydrofuran, tetrahydrobilane, and dioxane.
本発明に用いる溶媒としては、−イノプレンの1゜4−
付加重合体が選択的に得られる炭化水素溶媒、例エバ、
ヘキサン、シクロヘキサン、ベンゼン、トルエン。The solvent used in the present invention is -inoprene 1°4-
Hydrocarbon solvents from which addition polymers are selectively obtained, e.g.
Hexane, cyclohexane, benzene, toluene.
キシレン等を用いることができるが、好ましくはベンゼ
ン、トルエン、キシレンでJる。Although xylene and the like can be used, benzene, toluene, and xylene are preferably used.
本発明のイノプレン重合体の分子量に特に制限を加える
必要はないが、該重合体を素材とするレジスト材料の感
度が分子量に依存することを考膚すると、その分子量は
j 3000以上、好ましくは20000以上になるよ
うに重合条件を設定することが望ましい。Although there is no need to particularly limit the molecular weight of the inoprene polymer of the present invention, considering that the sensitivity of resist materials made from this polymer depends on the molecular weight, the molecular weight should be j 3000 or more, preferably 20000 or more. It is desirable to set the polymerization conditions so as to satisfy the above conditions.
次に環化工程に用いる触媒として、三フッ化ホウ素エー
テル錯体のみでも該重合体の環化反応は進行するが、反
応系へ一般弐R’X(R’はベンジル、t−ブチルある
いはアリル基を示し、又はハロゲンを示す。ンで表わさ
れる有機ハロゲン化物を共存させることにより、本城化
反応は著しく改良される。すなわち、該錯体を単独で用
いる場合に比較して該錯体と有機ハロゲン化物よりなる
触媒を用いた場合には、反応時間が時間が短縮され、か
つ、得られる重合体環化物の分子量分布の乱れが抑制さ
れる。ここで用いる有機ハロゲン化物として塩化ベンジ
ル、塩化t−ブチル、塩化アリル。Next, as a catalyst used in the cyclization step, the cyclization reaction of the polymer will proceed even if only a boron trifluoride ether complex is used, but the reaction system is generally 2R'X (R' is a benzyl, t-butyl or allyl group). or halogen.By coexisting with an organic halide represented by , the reaction is significantly improved. That is, compared to the case where the complex is used alone, the complex and the organic halide are When a catalyst consisting of these is used, the reaction time is shortened and the disturbance in the molecular weight distribution of the resulting polymer cyclized product is suppressed.The organic halides used here include benzyl chloride and t-butyl chloride. , allyl chloride.
臭化ベンジル、臭化t−ブチル、臭化アリル、ヨウ化ベ
ンジル、ヨウ化t−ブチル、ヨウ化アリルを挙げること
ができる。Mention may be made of benzyl bromide, t-butyl bromide, allyl bromide, benzyl iodide, t-butyl iodide, and allyl iodide.
本工程に用いる溶媒としては、芳香族炭化水素例エバ、
ヘンゼン、トルエン、キシレン等ヲ741 % ”るこ
とかできる。Examples of the solvent used in this step include aromatic hydrocarbons such as Eva,
It can reduce 741% of Hensen, toluene, xylene, etc.
環化工程におけるイソプレン重合体の濃度は、該重合体
の分子量にも依存するが、0.5重量%以上、15重量
%以下、好ましくは10重量%以下で行うのが望ましい
。15重量%以上では反応中に該重合体のゲル化等が進
行し好ましくない。The concentration of the isoprene polymer in the cyclization step depends on the molecular weight of the polymer, but it is preferably 0.5% by weight or more and 15% by weight or less, preferably 10% by weight or less. If it exceeds 15% by weight, gelation of the polymer will proceed during the reaction, which is not preferable.
三フッ比ホウ素エーテル錯体の濃度は、該重合体の七ツ
マ−Jl”−(Lモル数の1モル%以上あれば本反応は
連打するが、実用的な意義から、該重合体のモノマ一単
位モル数の6%以上が好ましい。If the concentration of the trifluoroboron ether complex is 1 mol % or more of the number of moles of the monomer of the polymer, this reaction will be carried out repeatedly, but from a practical point of view, It is preferably 6% or more of the unit mole number.
また、共触媒として用いる有機〕・ロゲン化物は、該錯
体の10から500モル%、好ましくは20から600
モル%である。また、共触媒存在下に本反応を行い、あ
る環化率をもつ該重合体環化物を製造する際、三フフ化
ホウ素エーテル一体のみで行う場合と比較して、触媒量
の低減2よび反応時間の短縮が可能である。In addition, the organic].logenide used as a cocatalyst is 10 to 500 mol%, preferably 20 to 600 mol% of the complex.
It is mole%. In addition, when carrying out this reaction in the presence of a cocatalyst to produce the polymer cyclized product with a certain cyclization rate, it is possible to reduce the amount of catalyst 2 and to It is possible to save time.
環化反応を行う際の温度は、得られる重合体環化物の分
子量分布との関連で特に軍費である。The temperature at which the cyclization reaction is carried out is particularly important in relation to the molecular weight distribution of the resulting polymer cyclization product.
すなわち、10℃以下では、分子+n1反応反応及ゲル
化が進行し、また、80°C以上では分子量分布の広い
環化物が生じ好ましくない。従りて、環化反応は1uか
ら80℃、好ましくは20から60℃で行うことが望ま
しい。なお、環化反応工程では、該反応溶液中に0.2
重量%以下であればアルコール、例えばメタノール、エ
タノール等およびB HT等のフェノール化合物が含ま
れていても、本反応は支障なく進行する。That is, at temperatures below 10°C, the molecule+n1 reaction and gelation proceed, and at temperatures above 80°C, a cyclized product with a wide molecular weight distribution is produced, which is undesirable. Therefore, it is desirable to carry out the cyclization reaction at a temperature of 1 u to 80°C, preferably 20 to 60°C. In addition, in the cyclization reaction step, 0.2
This reaction proceeds without any problem even if alcohols such as methanol, ethanol, etc. and phenol compounds such as BHT are contained as long as the amount is less than % by weight.
ずなわち、重合工程で例えばベンゼンを溶媒としてイソ
プレンモノマーをリビング重合して得られる重合体を単
[イ1製することなく、該重合反応系へ、メタノール、
エタノール等の停止剤を添加した溶液に所定量のベンゼ
ンを加え、濃度調整を行った溶液を用いても、上記環化
反応は支障なく達成できる。That is, in the polymerization process, for example, the polymer obtained by living polymerization of isoprene monomer using benzene as a solvent is added to the polymerization reaction system without forming a monomer.
The above-mentioned cyclization reaction can be achieved without any problem even if a solution containing a terminator such as ethanol and the like is added with a predetermined amount of benzene to adjust the concentration.
該重合体環化物の環化率に特に制限を加える必要はない
が、本レジスト材料の感度力を該重合体環化物の環化率
に依存することを考慮すれば、環化率は40から90%
、好ましくは50カバら80%である。There is no need to particularly limit the cyclization rate of the polymer cyclide, but considering that the sensitivity of this resist material depends on the cyclization rate of the polymer cyclide, the cyclization rate should be from 40 to 40. 90%
, preferably 50% to 80%.
本発明に従えば、高(雪回路製造プロセスのネガ型フォ
トレジストの原料として好適な分子量分布の狭いイソプ
レン東合体環化物が温和な粂件下簡便な方法で製造でき
る。According to the present invention, isoprene monomer cyclized products with a narrow molecular weight distribution suitable as raw materials for negative-tone photoresists in the high-snow circuit manufacturing process can be produced in a simple manner under mild conditions.
次に実Mli例イ!・挙げて本発明を更に具体的に説明
する。Next is a real Mli example! - The present invention will be explained in more detail below.
実施例1
10−’ m+llHgの真空下で厳密に脱水したイソ
プレンモノマー529およびベンゼン515−を混合し
、攪拌しなからn−ブチルリチウムのヘキサン浴液(a
i O,165mol// ) 4.45 mlを室温
下で滴下した。Example 1 Rigorously dehydrated isoprene monomer 529 and benzene 515 are mixed under a vacuum of 10 m + 11 Hg and, without stirring, added to a hexane bath solution of n-butyllithium (a
4.45 ml of iO, 165 mol//) was added dropwise at room temperature.
その後さらに6時間攪拌を行ない、反応液をエタノール
中に沈殿させ重合体を回収した。重合率は100%であ
った。侍られたイソプレン重合体のミクロ構造なNMR
測定により評価した結果、1.4−.44−および1,
2−付加体は、それぞれ94%、6%および0%であっ
た。Thereafter, stirring was continued for an additional 6 hours, and the reaction solution was precipitated in ethanol to recover the polymer. The polymerization rate was 100%. Microstructural NMR of treated isoprene polymer
As a result of evaluation by measurement, it was 1.4-. 44- and 1,
The 2-adducts were 94%, 6% and 0%, respectively.
該重合体の分子量は光散乱測定法により7.6x10’
とmれた。また超遠心速度法で分子量分布を評価した結
果、分散度(還w/Ml)は1o02であり、単分散に
近い重合体であることを確認した。The molecular weight of the polymer was determined to be 7.6x10' by light scattering measurement.
I was confused. Furthermore, as a result of evaluating the molecular weight distribution using an ultracentrifugal velocity method, the degree of dispersion (reduced w/Ml) was 1002, confirming that the polymer was close to monodisperse.
該重合体2vをベンゼン100−に溶解させ、窒素気流
下、25℃で三フッ化ホウ素エーテル錯体のベンゼン溶
液(濃度0.44 mo′v/l) 4 mllを加え
、2時間攪拌を行った。反応液をメタノール中で沈殿さ
せ、粉末状のイソグレン重合体環化物を得た。該環化物
の環化率をNMR測定から評価した結果52%であった
。まだ、超遠心速度法で分子量分布を評価した結果、分
散W<=φN)は1.66であった。さらに、ゲル・パ
ーミェーションクロマトグラフィー(以下GPCと略す
。)による測定においてもイソプレン重合体の分子間反
応生成物およびゲル等の生成は認められなかった。2v of the polymer was dissolved in 100% of benzene, and 4ml of a benzene solution of boron trifluoride ether complex (concentration 0.44 mo'v/l) was added at 25°C under a nitrogen stream, followed by stirring for 2 hours. . The reaction solution was precipitated in methanol to obtain a powdered isogrene polymer cyclized product. The cyclization rate of the cyclized product was evaluated by NMR measurement and was found to be 52%. However, as a result of evaluating the molecular weight distribution using the ultracentrifugal velocity method, the dispersion W<=φN) was 1.66. Furthermore, no formation of intermolecular reaction products or gels of the isoprene polymer was observed in measurements by gel permeation chromatography (hereinafter abbreviated as GPC).
実施例2〜7
実施例1と同様な方法により重合した重合反応溶液に、
開始剤の5倍モル量のメタノールを加え停止した後、該
重合体溶液に該重合100重針部に対し、5重賞部のB
HTを加えた。該重合体浴液20ゴにベンゼン80 m
lを加えた溶液を用いて環化反応を行った。その結果を
表−1に示す。Examples 2 to 7 A polymerization reaction solution polymerized by the same method as Example 1,
After adding methanol in an amount 5 times the molar amount of the initiator to stop the polymer solution, B of the 5-fold award part was added to the polymer solution for the 100-fold needle part of the polymerization.
Added HT. Add 80 m of benzene to 20 m of the polymer bath solution.
A cyclization reaction was carried out using a solution to which 1 was added. The results are shown in Table-1.
表−1
実施例8〜10
設定量のブチルチリウムを用いて実施例2と同様な方法
により調整した重合体溶液を用い、1−ブチルクロライ
ド1.76 mmolを共存させた以外は実施例1の環
化反応と同様な方法により行った。Table 1 Examples 8 to 10 Using a polymer solution prepared in the same manner as in Example 2 using a predetermined amount of butyl thirium, the ring of Example 1 was prepared except that 1.76 mmol of 1-butyl chloride was coexisting. The reaction was carried out in the same manner as the chemical reaction.
その結果を表−2に示す。The results are shown in Table-2.
表−2
実施例11〜18
実施例9で重合したイソプレン重合体溶液を用いて種々
の粂件下で環化反応を行った。その結果を表−3に示す
。Table 2 Examples 11 to 18 Using the isoprene polymer solution polymerized in Example 9, cyclization reactions were carried out under various conditions. The results are shown in Table-3.
表−3×
※ BF、 0Et2 は該重合体のモノマ一単位モ
ル当り6モル%簡下した。Table-3× * BF, 0Et2 was reduced by 6 mol % per 1 unit mol of monomer of the polymer.
実施例19〜2p
実施例9で塩素化t−ブチルの代わりに他の有機ハロゲ
ン化物を用いた以外は全く同様の方法により環化反応を
行った。結果を表−4に示す。Examples 19 to 2p A cyclization reaction was carried out in exactly the same manner as in Example 9 except that another organic halide was used instead of chlorinated t-butyl. The results are shown in Table 4.
表−4
比較例1〜6
実施例9で重合したイソプレン重合体溶液を用い環化触
媒を代えた以外は実施例9と同一な条件下に、環化反応
を行った。Table 4 Comparative Examples 1 to 6 A cyclization reaction was carried out under the same conditions as in Example 9, except that the isoprene polymer solution polymerized in Example 9 was used and the cyclization catalyst was changed.
その結果を表−5に示す。The results are shown in Table-5.
表−5
手続補正書(方式)
%式%
1事件の表示
昭和57年特許願第206048 号2発明の名称
イソプレン重合体環化物の製造方法
ろ補正をする者
電話番号(585)3311
4補正命令の日付
昭和58年2月2日(発送日 昭和58年2月221)
6補正の対象
明 細 書
7補正の内容
明細書の浄書(内容に変更なし)Table-5 Procedural amendment (method) % formula % 1 Indication of the case 1982 Patent Application No. 206048 2 Name of the invention Process for producing isoprene polymer cyclized product Person making the amendment Telephone number (585) 3311 4 Amendment order Date: February 2, 1982 (Shipping date: February 221, 1982)
6. Specifications subject to amendment 7. Reprint of the description of contents of amendment (no change in content)
Claims (1)
ル、アリールあるいはアラルキルを示し、Mはリチウム
、ナトリウムあるいはカリウムを示す。)で表わされる
有機金属存在下に重合し該N合体に三フッ化ホウ累エー
テ/” ma %あるいは該錯体と一般弐R’X(R’
はベンジル、t−ブチルあるいはアリル基を示し、Xは
ハロゲンを示す。)で表わされる有機ハロゲン化物より
なる触媒と接触させ、N榊平均分子iMwと数平均分子
量ηNの比Mw/M Nで定義される分散度が2以下で
あるイソプレン重合体環化物を製造する方法。(1) Imprene monomer is polymerized in the presence of an organic metal represented by general 2RM (R represents alkyl, aryl, or aralkyl, M represents lithium, sodium, or potassium), and the N polymer is added with boron trifluoride. % or the complex and the general 2 R'X(R'
represents benzyl, t-butyl or allyl group, and X represents halogen. ) A method for producing an isoprene polymer cyclized product having a dispersity defined by the ratio Mw/MN of N Sakaki average molecular weight iMw and number average molecular weight ηN of 2 or less. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20604882A JPS5996111A (en) | 1982-11-26 | 1982-11-26 | Production of cyclized isoprene polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20604882A JPS5996111A (en) | 1982-11-26 | 1982-11-26 | Production of cyclized isoprene polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5996111A true JPS5996111A (en) | 1984-06-02 |
JPH022882B2 JPH022882B2 (en) | 1990-01-19 |
Family
ID=16517012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20604882A Granted JPS5996111A (en) | 1982-11-26 | 1982-11-26 | Production of cyclized isoprene polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5996111A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7370788B1 (en) | 1998-12-28 | 2008-05-13 | Kao Corporation | Formed body |
JP4706478B2 (en) * | 2003-01-16 | 2011-06-22 | 日本ゼオン株式会社 | Cyclized rubber and method for producing the same |
CN107629152A (en) * | 2017-08-24 | 2018-01-26 | 中国科学院长春应用化学研究所 | A kind of asymmetric star-type polymer of biphenyl center and its preparation method and application |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815504A (en) * | 1981-07-22 | 1983-01-28 | Japan Synthetic Rubber Co Ltd | Production of cyclized diene polymer |
-
1982
- 1982-11-26 JP JP20604882A patent/JPS5996111A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815504A (en) * | 1981-07-22 | 1983-01-28 | Japan Synthetic Rubber Co Ltd | Production of cyclized diene polymer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7370788B1 (en) | 1998-12-28 | 2008-05-13 | Kao Corporation | Formed body |
JP4706478B2 (en) * | 2003-01-16 | 2011-06-22 | 日本ゼオン株式会社 | Cyclized rubber and method for producing the same |
CN107629152A (en) * | 2017-08-24 | 2018-01-26 | 中国科学院长春应用化学研究所 | A kind of asymmetric star-type polymer of biphenyl center and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JPH022882B2 (en) | 1990-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3326881A (en) | Polymerization of vinylidene-containing monomers with an initiator consisting of an alkali metal derivative of a functional halogen-substituted aromatic compound | |
JPH09510236A (en) | Multi-branched cation star polymer | |
WO2005021600A1 (en) | Polyolefin functional at one end | |
US5677399A (en) | Synthesis of macrocyclic polymers with group IIA and IIB metal cyclic organometallic initiators | |
US5171800A (en) | Anionic polymerization with bifunctional initiators | |
TWI558732B (en) | Bis-imine complex of lanthanides, catalytic system comprising said bis-imine complex and process for the (co) polymerization of conjugated dienes | |
JPS5996111A (en) | Production of cyclized isoprene polymer | |
JP3388865B2 (en) | Method for producing isobutylene polymer having olefin group | |
JPS5996112A (en) | Production of high-purity cyclized isoprene polymer | |
TWI548660B (en) | Bis-imine pyridine complex of lanthanides, catalytic system comprising said bis-imine pyridine complex and process for the (co) polymerization of conjugated dienes | |
JP2004508434A (en) | Method for preparing dilithiation initiator and method for anionic polymerization | |
CA2219574C (en) | Synthesis of multiblock polymers using group iia and iib metal cyclic organometallic initiators | |
JP3092875B2 (en) | Isobutylene polymer having vinyl group at terminal and method for producing the same | |
Morton et al. | Nuclear Magnetic Resonance Studies of the Propagating Chain End in the Organolithium Polymerization of Dienes. III. 1, 3-Pentadienes and 2, 4-Hexadiene | |
JPS59117514A (en) | Modified conjugated diene rubber | |
US4262095A (en) | Three-block copolymers and method for producing them | |
JPH0446966B2 (en) | ||
JPWO2003016365A1 (en) | Cyclic conjugated diene copolymer | |
JP2008222780A (en) | Metal complex containing heterocyclic ligand and polymerization catalyst composition containing the same | |
JPS60155204A (en) | Production of monodisperse polymer by using dilithium catalyst | |
Nuyken et al. | Telechelics by Carbocationic Techniques | |
Zhan‐Ru et al. | Step‐growth cationic polymerization of α‐hydroxyisopropylferrocene | |
KR910001024B1 (en) | A process for preparation of diene styrene -alpha-methylstyrene block polymers | |
Schroers et al. | Grafting of Vinyl‐Type Polynorbornene on Polybutadiene and Polyisoprene | |
JPS58136603A (en) | High-concentration, high-purity dilithium catalyst excellent in storage stability and its production |