JPS5986894A - Regenerating method and regenerator - Google Patents
Regenerating method and regeneratorInfo
- Publication number
- JPS5986894A JPS5986894A JP57197356A JP19735682A JPS5986894A JP S5986894 A JPS5986894 A JP S5986894A JP 57197356 A JP57197356 A JP 57197356A JP 19735682 A JP19735682 A JP 19735682A JP S5986894 A JPS5986894 A JP S5986894A
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- heat
- fluid
- substance
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
- F28D20/025—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Air-Conditioning Systems (AREA)
- Fats And Perfumes (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、同相で相転移を行なう結晶を潜熱蓄熱材料
として用いた蓄熱方法および蓄熱器に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage method and a heat storage device using a crystal that undergoes a phase transition in the same phase as a latent heat storage material.
潜熱蓄熱は、種々の蓄熱技術の中でも、蓄熱密度が高く
、一定温度で熱の出し入れができるという特長があり、
システムも単純であるため、案用性の高い蓄熱方法であ
る。Among various heat storage technologies, latent heat storage has the advantage of high heat storage density and the ability to transfer heat in and out at a constant temperature.
Since the system is simple, it is a highly practical heat storage method.
しかし、従来の潜熱蓄熱方法は、はとんど固相一液相間
の相変化?利用したものであり、潜熱蓄熱器のように、
特に蓄熱材料と熱媒体との間の熱交換の向上が重要とな
る場合、一部の特殊な蓄熱材料を用いた蓄熱材(特開昭
57−76078号公報、特願昭57−109046号
公報)を除いて熱交換が十分性なえず、技術開発上の大
きな問題点となっているのが現状である。However, conventional latent heat storage methods mostly involve phase change between solid phase and liquid phase. Like a latent heat storage device,
In particular, when it is important to improve the heat exchange between the heat storage material and the heat medium, heat storage materials using some special heat storage materials (Japanese Unexamined Patent Publication No. 57-76078, Japanese Patent Application No. 57-109046) ), the heat exchange is not sufficient, and this is currently a major problem in technological development.
上記した公報に記載されている蓄熱器でも、ポリエチレ
ンを蓄熱物質として用いているので、この場合でも使用
温度は、約100〜150℃に、限られる。そして、そ
れより高温で使用する蓄熱材料についても、攪拌、振動
などの種々の伝熱促進方法の提案はあるが(例えば電子
技術総合研究所集軸45.11〜12・1981)、い
ずれも著しいコストの上昇な招き、かつ固相一液相に相
変化する際の入熱時には伝熱促進の効果が発揮できない
。Since the heat storage device described in the above-mentioned publication also uses polyethylene as the heat storage material, the operating temperature is also limited to about 100 to 150°C. Regarding heat storage materials used at higher temperatures, there have been proposals for various methods of promoting heat transfer, such as stirring and vibration (e.g. Electronic Technology Research Institute Vol. 45.11-12, 1981), but none of them have achieved significant results. This results in an increase in cost, and the effect of promoting heat transfer cannot be achieved when heat is input during a phase change from a solid phase to a liquid phase.
この発明は、か−る実状にかんがみてなされたもので、
固相で相転移を行なう結晶が蓄熱材料として使用できる
点に着目し、太陽熱、排ガス、排水等から得られる熱エ
ネルギーを蓄熱する方法およびその蓄熱器を提供するも
のである。This invention was made in view of the actual situation.
Focusing on the fact that crystals that undergo a phase transition in the solid phase can be used as heat storage materials, the present invention provides a method and a heat storage device for storing thermal energy obtained from solar heat, exhaust gas, waste water, etc.
同相で相転移を行なう結晶な蓄熱材料として用いると、
液相−固相間の相変化がないため熱交換向上の対策が立
て易いという利点があり、さらに、常に固相であるため
に、取り扱いが極めて容易になる。When used as a crystalline heat storage material that undergoes phase transition in the same phase,
Since there is no phase change between the liquid phase and the solid phase, it has the advantage that it is easy to take measures to improve heat exchange, and furthermore, since it is always in the solid phase, it is extremely easy to handle.
特に、樹脂、化粧品、爆薬等の原料として使用されるペ
ンタエリスリトール(C(CH20H)4 ’)lは、
188℃での転移熱がはX 280 kJ/kg程度に
なり、蓄熱材として十分に実用化できることが分かった
。以下この発明゛を図面により説明する。In particular, pentaerythritol (C(CH20H)4')l, which is used as a raw material for resins, cosmetics, explosives, etc.
The heat of transition at 188° C. was approximately X 280 kJ/kg, and it was found that it could be sufficiently put to practical use as a heat storage material. This invention will be explained below with reference to the drawings.
第1図はこの発明の一実施例を示す蓄熱器の断面図で、
1はペンタエリスリトール等からなる蓄熱材料結晶、2
は前記蓄熱材料結晶1と溶は合わない流体、3は蓄熱容
器、4は攪拌機である。蓄熱容器3内には、1本もしく
は複数の伝熱管5が設げられており、該伝熱管5内を熱
媒体6が流れて蓄熱物質と熱交換を行なうようにしであ
る。FIG. 1 is a sectional view of a heat storage device showing an embodiment of the present invention.
1 is a heat storage material crystal made of pentaerythritol etc., 2
is a fluid that does not dissolve in the heat storage material crystal 1, 3 is a heat storage container, and 4 is a stirrer. One or more heat transfer tubes 5 are provided in the heat storage container 3, and a heat medium 6 flows through the heat transfer tubes 5 to exchange heat with the heat storage material.
この発明の蓄熱器は、従来の潜熱蓄熱器と異なり、蓄熱
容器3内部の蓄熱材料は、流体2に分散した状態である
ため、・伝熱面積が大きく、さらに、攪拌することによ
って、より一層の伝熱促進をすることができる。Unlike conventional latent heat heat storage devices, the heat storage material of the present invention has a large heat transfer area because the heat storage material inside the heat storage container 3 is dispersed in the fluid 2. can promote heat transfer.
また、第2図に示すように攪拌がなくとも、伝熱管50
本数な増加しておけば流体2の自然対流が生じるために
、伝熱は従来のものより促進されるとい5効果がある。Moreover, as shown in FIG. 2, even without stirring, the heat exchanger tube 50
If the number is increased, natural convection of the fluid 2 will occur, and heat transfer will be promoted more than in the conventional case.
第3図はこの発明の他の実施例な示すもので、前記した
蓄熱材料結晶1と流体2の流動性蓄熱物質を小容器10
内に密封し、これを蓄熱容器3内に複数本収容し、小容
器100間隙に熱媒体6な流路8から流路9へ流すこと
によって、熱交換を行なう蓄熱器の概略図である。小容
器10としては、例えば直径1011m+、長さ500
ma程反の薄肉円管のように、熱容量が小さく、半径
方向の熱体・導抵抗が小さくなるようなものが望ましい
。この蓄熱器においても、前記第1図または第2図に示
した実施例の蓄熱器と同様、蓄熱材料の回りで対流が発
生するため、伝熱促進を図ることができる。FIG. 3 shows another embodiment of the present invention, in which the above-described heat storage material crystals 1 and fluid 2 are placed in a small container 10.
2 is a schematic diagram of a heat storage device in which a plurality of heat storage containers 3 are sealed, and a plurality of heat storage containers 3 are housed, and heat exchange is performed by flowing a heat medium 6 from a flow path 8 to a flow path 9 in a gap between a small container 100. FIG. For example, the small container 10 has a diameter of 1011 m+ and a length of 500 m.
It is desirable to use a material with a small heat capacity, such as a thin-walled circular pipe with a diameter of about 100 m, and a small heating element and conductive resistance in the radial direction. In this heat storage device, as in the heat storage device of the embodiment shown in FIG. 1 or 2, convection occurs around the heat storage material, so that heat transfer can be promoted.
また、蓄熱材料が分散相となっているため、小容器10
への充填、取り出しが極めて容易であるという利点があ
る。In addition, since the heat storage material is a dispersed phase, the small container 10
It has the advantage of being extremely easy to fill and take out.
第4図に示した蓄熱器では、蓄熱材料結晶1と流体2の
流動性蓄熱物質を蓄熱容器3内にためておき、蓄熱時に
はポンプ7を用いて流路9から蓄熱容器3外へ循環させ
て熱交換器12等で熱を奪った後、流路8から蓄熱容器
3内へ戻すようにしている。また、放熱時には逆に、流
路8より蓄熱容器3外へ循環させて、熱交換器12等に
熱を放出した後に、流路9から蓄熱容器3内へ戻す。In the heat storage device shown in FIG. 4, fluid heat storage materials such as heat storage material crystals 1 and fluid 2 are stored in a heat storage container 3, and during heat storage, they are circulated through a flow path 9 to the outside of the heat storage container 3 using a pump 7. After the heat is removed by a heat exchanger 12 or the like, it is returned into the heat storage container 3 through the flow path 8. Conversely, during heat dissipation, the heat is circulated out of the heat storage container 3 through the flow path 8, and after being released to the heat exchanger 12 and the like, it is returned into the heat storage container 3 through the flow path 9.
この場合、蓄熱材料結晶1を第5図に示すようにフィル
タ11によって蓄熱容器3の外へ出さないようにしても
よい。蓄熱材料結晶1が細かい場合には、フィルタ11
の目詰りがあるため、前記した第4図の方が望ましく、
蓄熱材料結晶1が粗い場合には、ポンプ7による円滑な
送液が難しいため、第5図に示したように流体2のみな
循環させる方がよい。In this case, the heat storage material crystal 1 may be prevented from coming out of the heat storage container 3 by a filter 11 as shown in FIG. When the heat storage material crystal 1 is fine, the filter 11
Because of the clogging, the above-mentioned figure 4 is preferable.
If the heat storage material crystal 1 is rough, it is difficult to smoothly feed the fluid by the pump 7, so it is better to circulate only the fluid 2 as shown in FIG.
なお、この発明の蓄熱器に用いる蓄熱材料結晶1は、粉
末状でも、10關以下の顆粒状でも同様の効果を発揮す
るが、それ以上の大きさであると結晶内の熱伝導抵抗が
大きくなり、蓄熱器の熱交換性能が低下するので好まし
くない。Note that the heat storage material crystal 1 used in the heat storage device of the present invention exhibits the same effect whether it is in the form of a powder or a granule of 10 degrees or less, but if the size is larger than that, the thermal conduction resistance within the crystal increases. This is undesirable because the heat exchange performance of the heat storage device deteriorates.
また、結晶と混合させる流体は、結晶の性質を変えない
気体ならば、比熱、熱伝導率の高いものが好ましく、ま
た、結晶と溶は合わない液体ならば、粘度が低く、比熱
、熱伝導率の高いものが好ましい。In addition, if the fluid to be mixed with the crystal is a gas that does not change the properties of the crystal, it is preferably one with high specific heat and thermal conductivity, and if the fluid is a liquid that does not mix with the crystal, it has a low viscosity, specific heat, and thermal conductivity. A high ratio is preferable.
例えば、蓄熱材料としてペンタエリスリトールを使用す
る場合は、Heガス、シリコーン油や炭化水素系液体が
好ましい。For example, when using pentaerythritol as the heat storage material, He gas, silicone oil, or hydrocarbon liquid is preferable.
以上説明したように、この発明の蓄熱方法および蓄熱器
は、同相で相転移に伴う転移熱を吸収・放出する物質と
、この物質と溶は合わない流体とを混合し、流動性蓄熱
物質として使用するようにしたので、従来の蓄熱物質に
みられるように液相−固相間の相変化がなく、熱交換の
向上対策が立て易いという利点がある。さらに、常に流
動性蓄熱物質の状態となっているのでその取り扱いは極
めて容易であり、蓄熱器の構造もシンプルになるので保
守1点検の上でも有利であり、かつコストも低減できる
という効果がある;As explained above, the heat storage method and heat storage device of the present invention mixes a substance that is in the same phase and absorbs and releases transition heat associated with phase transition, and a fluid that does not dissolve in the substance, and forms a fluid heat storage material. Since it is used, there is no phase change between liquid phase and solid phase as seen in conventional heat storage materials, and there is an advantage that it is easy to take measures to improve heat exchange. Furthermore, since it is always in the state of a fluid heat storage material, it is extremely easy to handle, and the structure of the heat storage device is simple, which is advantageous in terms of maintenance and inspection, and has the effect of reducing costs. ;
第1図はこの発明の一実施例を示す蓄熱器の断面図、第
2図、第3図はこの発明の他の実施例を示す蓄熱器の概
略図、第4図はこの発明の蓄熱方法の一実施例を示す概
略図、第5図はこの発明の他の実施例を示す蓄熱方法の
概略図である。
図中、1は蓄熱材料結晶、2は流体、3は蓄熱容器、4
は攪拌機、5は伝熱管、6は熱媒体、7はポンプ、8,
9は流路、10は小容器、11は第1図
〜1
〜2
5
第4図
第5図FIG. 1 is a sectional view of a heat storage device showing one embodiment of the present invention, FIGS. 2 and 3 are schematic diagrams of a heat storage device showing other embodiments of the invention, and FIG. 4 is a heat storage method of the present invention. FIG. 5 is a schematic diagram showing one embodiment of the present invention, and FIG. 5 is a schematic diagram of a heat storage method showing another embodiment of the present invention. In the figure, 1 is a heat storage material crystal, 2 is a fluid, 3 is a heat storage container, and 4
is a stirrer, 5 is a heat exchanger tube, 6 is a heat medium, 7 is a pump, 8,
9 is a flow path, 10 is a small container, 11 is Fig. 1 - 1 - 2 5 Fig. 4 Fig. 5
Claims (1)
なう物質と、該物質と溶は合わない流体とを混合し、流
動性蓄熱物質として使用することを特徴とする蓄熱方法
。 し) 物質としてペンタエリスリトールを使用すること
を特徴とする特許請求の範囲第(1)項記載の蓄熱方法
。 (3) 流体としてヘリウムガス、炭化水素系液体も
しくはシリコン油を使用することを特徴とする特許請求
の範囲第(2)項記載の蓄熱方法。 (4) 同相で相転移に伴う転移熱の吸収・放出を行
なう物質と、該物質と溶は合わない流体とを混合した流
動性蓄熱物質を蓄熱容器内に充填し、前記蓄熱容器内に
設けた伝熱管内を流れる熱媒体と熱の交換を行なわせる
ことを特徴とする蓄熱器。 (5) 蓄熱容器内の流動性蓄熱物質を攪拌すること
を特徴とする特許請求の範囲第(4)項記載の蓄熱器。 (6)同相で相転移に伴う転移熱の吸収・放出を行なう
物質と、該物質と溶は合わない流体とを混合した流動性
蓄熱物質を複数個の小容器内に密封し、熱媒体が流れる
蓄熱容器内に収容したことを特徴とする蓄熱器。 (7) 固相で相転移に伴う転移熱の吸収・放出を行
なう物質と、該物質と溶は合わない流体とを混合した流
動性蓄熱物質を蓄熱容器内に収容し、前記流動性蓄熱物
質、もしくは前記流体のみを蓄熱容器外に循環させて熱
の出し入れを行なわせることを特徴とする蓄熱器。[Claims] (1) A material that is in the same phase and absorbs and releases transition heat associated with phase transition, and a fluid that does not dissolve in the material are mixed and used as a fluid heat storage material. A method of storing heat. (b) The heat storage method according to claim (1), characterized in that pentaerythritol is used as the substance. (3) The heat storage method according to claim (2), characterized in that helium gas, hydrocarbon liquid, or silicone oil is used as the fluid. (4) Fill a heat storage container with a fluid heat storage material that is a mixture of a material that absorbs and releases transition heat associated with phase transition in the same phase and a fluid that does not dissolve in the material, and install it in the heat storage container. A heat storage device characterized by exchanging heat with a heat medium flowing inside a heat transfer tube. (5) The heat storage device according to claim (4), characterized in that the fluid heat storage material in the heat storage container is stirred. (6) A fluid heat storage material that is a mixture of a substance that absorbs and releases transition heat associated with a phase transition in the same phase and a fluid that is incompatible with the substance is sealed in multiple small containers, and the heat medium is A heat storage device characterized by being housed in a flowing heat storage container. (7) A fluid heat storage material that is a mixture of a substance that absorbs and releases transition heat associated with a phase transition in a solid phase and a fluid that does not dissolve in the material is housed in a heat storage container, and the fluid heat storage material Alternatively, a heat storage device characterized in that only the fluid is circulated outside the heat storage container to take in and take out heat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57197356A JPS5986894A (en) | 1982-11-10 | 1982-11-10 | Regenerating method and regenerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57197356A JPS5986894A (en) | 1982-11-10 | 1982-11-10 | Regenerating method and regenerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5986894A true JPS5986894A (en) | 1984-05-19 |
JPH0323836B2 JPH0323836B2 (en) | 1991-03-29 |
Family
ID=16373120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57197356A Granted JPS5986894A (en) | 1982-11-10 | 1982-11-10 | Regenerating method and regenerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5986894A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6136696A (en) * | 1984-07-26 | 1986-02-21 | Hitachi Zosen Corp | Steady heat generating heat exchanger |
JPS62795A (en) * | 1985-06-26 | 1987-01-06 | Agency Of Ind Science & Technol | Heat accumulating device utilizing spiral type heat exchanger |
JPS63118596A (en) * | 1986-11-06 | 1988-05-23 | Agency Of Ind Science & Technol | Heat accumulating device |
JPH02267462A (en) * | 1989-04-07 | 1990-11-01 | Takuma Sogo Kenkyusho:Kk | Heat storage type electrical hot water heater and steam generator |
JP2006308256A (en) * | 2005-05-02 | 2006-11-09 | Kobe Steel Ltd | Heat storage device and method of operating heat storage device |
JP2007285701A (en) * | 2007-08-06 | 2007-11-01 | Kobe Steel Ltd | Heat storage device and method of operating heat storage device |
WO2010070704A1 (en) * | 2008-12-16 | 2010-06-24 | 社団法人日本銅センター | Heat accumulator |
CN106052439A (en) * | 2016-07-22 | 2016-10-26 | 金陵科技学院 | Novel runner phase change heat exchange device and work method thereof |
CN106225542A (en) * | 2016-09-12 | 2016-12-14 | 重庆大学 | A kind of active solid-liquid phase change material recuperated cycle system |
JP2021155480A (en) * | 2020-03-25 | 2021-10-07 | 東邦瓦斯株式会社 | Latent heat storage material composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53136736A (en) * | 1976-01-05 | 1978-11-29 | Laing Ingeborg | Regenerator utilizing fusion enthalpy |
JPS53149877A (en) * | 1977-04-04 | 1978-12-27 | Monsanto Co | Bridged bond crystal polymer for cooling and heating |
JPS5776078A (en) * | 1980-10-29 | 1982-05-12 | Agency Of Ind Science & Technol | Heat accumulator utilizing latent heat |
JPS57146004A (en) * | 1981-03-03 | 1982-09-09 | Agency Of Ind Science & Technol | Thermal accumulator |
-
1982
- 1982-11-10 JP JP57197356A patent/JPS5986894A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53136736A (en) * | 1976-01-05 | 1978-11-29 | Laing Ingeborg | Regenerator utilizing fusion enthalpy |
JPS53149877A (en) * | 1977-04-04 | 1978-12-27 | Monsanto Co | Bridged bond crystal polymer for cooling and heating |
JPS5776078A (en) * | 1980-10-29 | 1982-05-12 | Agency Of Ind Science & Technol | Heat accumulator utilizing latent heat |
JPS57146004A (en) * | 1981-03-03 | 1982-09-09 | Agency Of Ind Science & Technol | Thermal accumulator |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6136696A (en) * | 1984-07-26 | 1986-02-21 | Hitachi Zosen Corp | Steady heat generating heat exchanger |
JPS62795A (en) * | 1985-06-26 | 1987-01-06 | Agency Of Ind Science & Technol | Heat accumulating device utilizing spiral type heat exchanger |
JPS63118596A (en) * | 1986-11-06 | 1988-05-23 | Agency Of Ind Science & Technol | Heat accumulating device |
JPH0527039B2 (en) * | 1986-11-06 | 1993-04-19 | Kogyo Gijutsu Incho | |
JPH02267462A (en) * | 1989-04-07 | 1990-11-01 | Takuma Sogo Kenkyusho:Kk | Heat storage type electrical hot water heater and steam generator |
JP2006308256A (en) * | 2005-05-02 | 2006-11-09 | Kobe Steel Ltd | Heat storage device and method of operating heat storage device |
JP2007285701A (en) * | 2007-08-06 | 2007-11-01 | Kobe Steel Ltd | Heat storage device and method of operating heat storage device |
WO2010070704A1 (en) * | 2008-12-16 | 2010-06-24 | 社団法人日本銅センター | Heat accumulator |
JP5350807B2 (en) * | 2008-12-16 | 2013-11-27 | 社団法人日本銅センター | Heat storage device |
CN106052439A (en) * | 2016-07-22 | 2016-10-26 | 金陵科技学院 | Novel runner phase change heat exchange device and work method thereof |
CN106225542A (en) * | 2016-09-12 | 2016-12-14 | 重庆大学 | A kind of active solid-liquid phase change material recuperated cycle system |
CN106225542B (en) * | 2016-09-12 | 2018-01-09 | 重庆大学 | A kind of active solid-liquid phase change material recuperated cycle system |
JP2021155480A (en) * | 2020-03-25 | 2021-10-07 | 東邦瓦斯株式会社 | Latent heat storage material composition |
Also Published As
Publication number | Publication date |
---|---|
JPH0323836B2 (en) | 1991-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Elarem et al. | A comprehensive review of heat transfer intensification methods for latent heat storage units | |
Liu et al. | Phase change materials application in battery thermal management system: a review | |
CN105518100B (en) | Hard shell microencapsulation latent heat transmission material and preparation method thereof | |
US4109702A (en) | Energy storage and retrieval as heat | |
JPS5986894A (en) | Regenerating method and regenerator | |
US20130105106A1 (en) | Systems And Methods For Thermal Energy Storage | |
CN107502299B (en) | Multi-phase medium phase-change heat storage material and preparation method thereof | |
JPS5818598B2 (en) | Method of receiving or dissipating heat from a heat storage device | |
CN110081753A (en) | A kind of high temperature step phase transition heat accumulation unit and heat accumulation method | |
Colvin et al. | Enhanced heat transport in environmental systems using microencapsulated phase change materials | |
US4535837A (en) | Latent heat storage device | |
Diaconu et al. | Latent Heat Storage Systems for Thermal Management of Electric Vehicle Batteries: Thermal Performance Enhancement and Modulation of the Phase Transition Process Dynamics: A Literature Review | |
Almadhoni et al. | A review—An optimization of macro-encapsulated paraffin used in solar latent heat storage unit | |
CN110360865A (en) | A kind of finned multiple phase change materials heat-storing sphere | |
JPS6136696A (en) | Steady heat generating heat exchanger | |
JPH0933184A (en) | Heat exchanger | |
Datta | Natural convection heat transfer in a rectangular enclosure with suspensions of microencapsulated phase change materials: a parametric study | |
JP2000130975A (en) | Heat-transferring device | |
JPS58127047A (en) | Heat regenerative type hot water supply system | |
JPS5945916B2 (en) | Multi-stage heat storage device | |
Minea | Overview of Encapsulated Phase Change Materials for Thermal Runaway Control | |
JPH09132773A (en) | Heat transporting capsule, its production and heat transporting medium | |
Sankar et al. | Performance Analysis of PCM Based Thermal Energy Storage System Containing Nanoparticles | |
JP3363922B2 (en) | Thermo-functional multiphase fluid | |
JPH04278186A (en) | Heat accumulator employing paraffin as heat accumulating material |