Nothing Special   »   [go: up one dir, main page]

JPS5970217A - Automatic air conditioner for car - Google Patents

Automatic air conditioner for car

Info

Publication number
JPS5970217A
JPS5970217A JP57178362A JP17836282A JPS5970217A JP S5970217 A JPS5970217 A JP S5970217A JP 57178362 A JP57178362 A JP 57178362A JP 17836282 A JP17836282 A JP 17836282A JP S5970217 A JPS5970217 A JP S5970217A
Authority
JP
Japan
Prior art keywords
temperature
control
air
blow
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57178362A
Other languages
Japanese (ja)
Inventor
Tsuguhiro Okada
岡田 次弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automob Antipollut & Saf Res Center
Automobile Appliance Anti Pollution and Safety Research Center
Original Assignee
Automob Antipollut & Saf Res Center
Automobile Appliance Anti Pollution and Safety Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automob Antipollut & Saf Res Center, Automobile Appliance Anti Pollution and Safety Research Center filed Critical Automob Antipollut & Saf Res Center
Priority to JP57178362A priority Critical patent/JPS5970217A/en
Publication of JPS5970217A publication Critical patent/JPS5970217A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00842Damper doors, e.g. position control the system comprising a plurality of damper doors; Air distribution between several outlets

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To maintain the car room temperature distribution at a comfortable state by constructing to control the blow-off air distribution to compute proportionally and integrally the difference between a target value of car room temperature distribution and an actual value and reduce the difference in accordance with the sum thereof. CONSTITUTION:The difference DELTAT between a target temperature T set at an operation part 4 and an average car room temperature Tr are inputted in a control part 3 to obtain the sum of results of proportional and integral computations in a PI computation part, and each part of a heat-exchanging part 1 is controlled to send a heat amount Q proportional to a result thereof X into a car room. Meanwhile, a blow-off control door 31 is controlled for operation to keep the difference between an upper blow-off port temperature Tu and a lower blow-off temperature TL at the optimum value for distributing the heat amount Q to upper and lower blow-off ports. This construction permits to maintain the car room always at a comfortable temperature distribution.

Description

【発明の詳細な説明】 本発明は自動車用自動空調装置に係り、特に快適な車室
内温度分布を自損した当字調装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic air conditioner for an automobile, and more particularly to an air conditioner that provides a comfortable temperature distribution inside a vehicle.

従来の当字調器では、熱交換された空気を車室内へ複数
個の吹出口から吹出すに当シ、その配分を乗員の手動に
委ねるか、又は熱交換量を調節する当字調巻内の配風扉
の位置に対して一義的に決めていた。
Conventional power regulators either blow the heat-exchanged air into the passenger compartment from multiple outlets, leaving the distribution to the manual control of the passenger, or use a power controller to adjust the amount of heat exchange. The position of the ventilation door inside the building was determined uniquely.

配分を手動で調節する場合は車室内の温度分布を希望通
シにできる可能性が高いが、その調節には手間がかかり
厄介であり運転者の注意力を運転からそらせることは危
険である。又、車両環境の変化につれて常時調節が必要
である。
If the distribution is adjusted manually, there is a high possibility that the temperature distribution within the vehicle cabin can be achieved as desired, but the adjustment is time-consuming and troublesome, and it is dangerous to divert the driver's attention from driving. Further, constant adjustment is required as the vehicle environment changes.

上記配風扉の位置に対して上記配分が一義的に決められ
る場合、その対応を極力望ましいものに構成したとして
も、あらゆる車両環境に対しても常時快適な車室内温度
分布に維持することは不可能である。
If the distribution described above is uniquely determined with respect to the position of the ventilation door, even if the distribution is made as desirable as possible, it is difficult to maintain a comfortable temperature distribution in the vehicle interior at all times in any vehicle environment. It's impossible.

本発明の目的は、車室内温度分布全常時快適に保ち得る
自動車用空調装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air conditioner for an automobile that can maintain a comfortable temperature distribution throughout the vehicle interior at all times.

このような目的?達成するために本発明は、車室内温度
分布の目標値と実態値との差を比例演算並びに積分演算
し、それらの和に応じて上記配分を上記差が縮まる方向
へ調節する負帰還制御ループを吹出口自動制御に用いる
様にしたものである。
A purpose like this? In order to achieve this, the present invention provides a negative feedback control loop that performs proportional and integral calculations on the difference between the target value and the actual value of the temperature distribution in the vehicle interior, and adjusts the distribution in a direction that reduces the difference according to the sum of these calculations. It is designed to be used for automatic outlet control.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

第1図には、本発明の適用される自動車用空気調和装置
の全体構成が示されている。
FIG. 1 shows the overall configuration of an automotive air conditioner to which the present invention is applied.

図において、1ilt熱交換部であシ、車室外の空気全
吸入する外気吸入口11と車室内の空気全吸入する内気
吸入口12’(r備えている。2は空気調和される単室
であり、熱交換部1から車室2の下部空気吹出し口13
、上部空気吹出し口14、前面防風ガラスへの空気吹出
し口15’ffi備えている。
In the figure, the 1ilt heat exchange part is equipped with an outside air intake port 11 that takes in all the air outside the vehicle interior, and an inside air intake port 12' (r) that takes in all the air inside the vehicle interior. 2 is a single room that is air-conditioned. Yes, from the heat exchange part 1 to the lower air outlet 13 of the passenger compartment 2
, an upper air outlet 14, and an air outlet 15'ffi to the front windshield glass.

3は制御部であシ、4tl;を操作部である。操作部4
によp車室内温度ケ希望温度に選択する温度設定、空気
614和装置の14成各機器を全自動で作動させるか、
一部手動作動とするかのモードの設定等が行えるように
なっている。制御部3は前記操作部4による設定と、空
気調和装置の各種センサーからの入力により、空気調和
装置を構成する後述の各機器の作動を制御する信号勿出
力する。熱交換部lのケース10には内外気切換ドア1
6が設けられ、この内外気切換ドア16は負圧アクチュ
エータ17を介して制御11部3からの電気信号によシ
ミ磁パルプを開閉することにより3位置に切換えられる
。ケース10内にはブロワ−19が設けられモータ20
により回転される、モータ20Vi制御部3により制御
された電圧を印加され回転数、即ちプロワ−19の風量
の制御が行われる。更にケース10内には冷却手段の−
¥A’になす冷却器21が設けられている。この冷却器
21は冷媒圧縮機22、凝縮器、減圧器(図示せず)等
により冷凍サイクルヶ構成している。冷媒圧縮機22は
自動車の内燃機関によシミ磁りラッチ22ak介して駆
動され、この電磁クラッチ22aは制御部3による電気
信号によ多制御され圧縮機22は駆動又は非駆動される
。更にケース10の冷却器21の下流側に加熱手段の一
部會なす加熱器23が設V」゛られ、この加熱器23に
は当山動車の内燃機関の冷却水(温水)が循環し加熱器
23を通過する空気を加熱する。上記冷却水の循環は制
御部3からの信号により温水コック24を閉じることに
より止めることが可能である。また、ケース10には加
熱器23と並列に側路25が設けられている。
3 is a control section, and 4tl is an operation section. Operation unit 4
Depending on the vehicle interior temperature, select the desired temperature setting, operate each of the 14 components of the air conditioning device fully automatically, or
It is possible to set the mode for partial manual operation. The control section 3 outputs signals for controlling the operation of each device that constitutes the air conditioner, which will be described later, based on settings made by the operation section 4 and inputs from various sensors of the air conditioner. The case 10 of the heat exchange section l has an inside/outside air switching door 1.
6, and this internal/external air switching door 16 is switched to three positions by opening and closing the stain magnetic pulp in response to an electric signal from the control unit 3 via a negative pressure actuator 17. A blower 19 is provided in the case 10 and a motor 20
A voltage controlled by the control unit 3 is applied to the motor 20Vi, which is rotated by the motor 20Vi, and the rotation speed, that is, the air volume of the blower 19 is controlled. Furthermore, inside the case 10 there is a cooling means -
A nasu cooler 21 is provided at ¥A'. The cooler 21 includes a refrigerating cycle including a refrigerant compressor 22, a condenser, a pressure reducer (not shown), and the like. The refrigerant compressor 22 is driven by the internal combustion engine of the automobile via a magnetic latch 22ak, and the electromagnetic clutch 22a is controlled by an electric signal from the control section 3, so that the compressor 22 is driven or not driven. Further, on the downstream side of the cooler 21 of the case 10, a heater 23, which is part of the heating means, is installed. Cooling water (hot water) for the internal combustion engine of the motor vehicle is circulated through the heater 23, and the heater 23 is heated. The air passing through 23 is heated. The circulation of the cooling water can be stopped by closing the hot water cock 24 in response to a signal from the control section 3. Further, a side passage 25 is provided in the case 10 in parallel with the heater 23.

側路25と加熱器23を通過する風量の割合ケ変えるこ
とにより車室2に供給する放熱通?変えるための温度制
御ドア26が設けらノL1加熱器23會通過する風量全
O〜100%まで制御、する。上記温度制御ドア26は
制御部3からの副iu信号により、負圧源に接続された
電磁弁28全開閉することにより、負圧アクチュエータ
29により所定位置まで駆動され、同時に温度制御ドア
26の位置會電気信号に変換するポテンショメータ30
による電気信号全制御部3にフィートノ(ツクすること
により正確に所定位置にセットされる。同温度制御ドア
26の駆動方法としては制Will lTl5 :1か
らの電気信号を負圧の圧力に変換し、この圧力によりス
トロークの定まる負圧サーボモータによること等も可能
であることはもちろんである。次に単室2内への空気の
吹出しは、空気吹出し口切腕ドア32、吹出し制御ドア
31會制御部3からの電気信号Vこより電磁弁33,3
72開閉することによ。
Is it possible to supply heat radiation to the passenger compartment 2 by changing the ratio of the air volume passing through the side passage 25 and the heater 23? A temperature control door 26 is provided to control the air volume passing through the L1 heater 23 from 0 to 100%. The temperature control door 26 is driven to a predetermined position by a negative pressure actuator 29 by fully opening and closing a solenoid valve 28 connected to a negative pressure source in response to a sub-IU signal from the control unit 3, and at the same time, the temperature control door 26 is moved to a specified position. Potentiometer 30 for converting into electrical signal
The temperature control door 26 is driven by converting the electric signal from the control unit 3 into a negative pressure. Of course, it is also possible to use a negative pressure servo motor whose stroke is determined by this pressure.Next, the air is blown into the single room 2 through the air outlet cutout door 32 and the blowout control door 31. Solenoid valves 33, 3 from the electric signal V from the control unit 3
72 by opening and closing.

り負圧アクチュエータ34.38’に作動させ制御する
。吹出し制御ドア31には温度制御ドア26と同様ドア
位置を電気16号に変換するポテンショメーター39が
連動しておシ制御部3によシ正確に所定位置にセットさ
れる。27vまサーミスタ等よりなる温度センサーで、
冷却器21’に通過直後の空気温度を検出し電気信号と
して制御部3に入力スル。35.36’ll又温度セン
サーであり車室2の上半分、下半分の代表温度音検出し
て制御部3に電気信号として入力する。
The negative pressure actuators 34 and 38' are actuated and controlled. Like the temperature control door 26, the blowout control door 31 is linked with a potentiometer 39 that converts the door position into an electric number 16, and is set accurately at a predetermined position by the blower control section 3. A temperature sensor consisting of a 27v thermistor, etc.
The temperature of the air immediately after passing through the cooler 21' is detected and input to the control unit 3 as an electrical signal. 35.36'll is also a temperature sensor that detects representative temperature sounds in the upper and lower halves of the vehicle compartment 2 and inputs them to the control unit 3 as electrical signals.

次に、本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

第2図は本実施例で採用している自動温度制御の原理ヶ
示したものである。操作部4で設定された目標設定温度
工゛、と、車室内平均温度T2と全比較し、その温度差
ΔT=T、−’1’r’kPI演算する。′1゛2は単
室上半分、下半分の温度TUTLのの結果7xと置けば
次式が成り立つ。
FIG. 2 shows the principle of automatic temperature control employed in this embodiment. The target set temperature set by the operation unit 4 is compared with the vehicle interior average temperature T2, and the temperature difference ΔT=T, -'1'r'kPI is calculated. If we set '1゛2 as 7x, which is the result of the temperature TUTL of the upper half and lower half of the single room, the following equation holds true.

x=klΔT+に2/Δ’l’dt PI演J1.は自動制御の分野で一般に使われる手法で
あり上式に見る如く、目標と制御対象の実状との差の比
例分と時間的蓄積分と?合計し、制御対象上目標状態へ
移行させるに必要な所量ヲ計量する。制御部3Vi上記
演算結果Xの値に比例した熱量Qヶ第1図に図示した車
室2内へ送る様に前記熱交換部1を駆動する。車室内空
気(熱負荷)は上記熱量Qの他外乱熱Q、ok受ける。
x=klΔT+2/Δ'l'dt PI performance J1. is a method commonly used in the field of automatic control, and as seen in the above equation, it is calculated by calculating the proportional amount and the temporal accumulation of the difference between the target and the actual state of the controlled object. Add the total amount and measure the required amount to move the controlled object to the target state. The control section 3Vi drives the heat exchange section 1 so as to send an amount of heat Q proportional to the value of the calculation result X into the passenger compartment 2 shown in FIG. In addition to the above-mentioned amount of heat Q, the air inside the vehicle (heat load) receives disturbance heat Q, OK.

外乱熱Q、oには、車室外からの侵入熱、日射による輻
射熱、エンジン室からの伝達熱、乗員の発熱等である。
The disturbance heat Q, o includes heat entering from outside the vehicle, radiant heat from sunlight, heat transferred from the engine compartment, heat generated by the occupants, and the like.

車室内空気は、Q、 + Q Dの熱量を受け、−次T
U+TL 遅れで温度Tu、Tt、が変化する。このT、=−は制
御部3へ負帰還される。こうした負帰還制御系は、各要
素の係数が適当であればT、は安定にT、に収束するこ
とが数学的に証明されるので自動温度制御が達成される
、 第3図は、前述の制御信号Xにほぼ比例した熱量Qヶ供
給する上記熱交換部1の作動説明図である。横軸は上記
の量Xである。XQより右の領域は第1図図示車室2が
加熱力?要求している場合、即ち暖房時であり、Xoよ
り左の領域は冷房の場合である。そして、X>XOでは
加熱手段が作動(第1図図示温水コツク24が開)し冷
却手段は作動しない。x (x 6では加熱手段は作動
せず、冷却手段が作動(第1図図示冷媒圧#?7M22
が作動)する。第3図図示Aid第1図図示ブロワ−1
9の風量ヲ示し、モータ20への印加電圧を制御するこ
とにより、X<XI及びx > x 4で最大風量(印
加電圧的14V)Xz <X<Xsで最小風量(印加電
圧的4V)、X、  とX2間及びXzとX1間はリニ
アに変化させている。Anは上記風量の白灯熱器23盆
通過する風通を示し、x、)〜X3間では第1図図示温
度制御ドア26の開度を変えることによシ制御する。θ
は前記第1図図示温度制御ドア26の開度でありx(x
(1で全閉、X 、> X 3では全開でありXoとX
3間て制御されてx(1−X4間でArkリニアに増加
させる。
The air inside the vehicle receives a heat amount of Q, + Q D, and -th
Temperatures Tu and Tt change due to U+TL delay. This T,=- is negatively fed back to the control section 3. In such a negative feedback control system, automatic temperature control is achieved because it is mathematically proven that if the coefficients of each element are appropriate, T stably converges to T. FIG. 3 is an explanatory diagram of the operation of the heat exchanger 1 that supplies an amount of heat Q that is approximately proportional to the control signal X. The horizontal axis is the above quantity X. Is the area to the right of XQ the heating power of vehicle compartment 2 shown in Figure 1? When the request is made, that is, during heating, the area to the left of Xo is during cooling. When X>XO, the heating means is activated (hot water pot 24 shown in FIG. 1 is opened) and the cooling means is not activated. x (at x 6, the heating means does not operate and the cooling means operates (Fig. 1 refrigerant pressure #?7M22
is activated). Figure 3 Illustrated Aid Figure 1 Illustrated Blower-1
By controlling the voltage applied to the motor 20, the maximum air volume (applied voltage: 14 V) when X<XI and x > x 4, the minimum air volume (applied voltage: 4 V) when The distances between X, and X2 and between Xz and X1 are changed linearly. An indicates the airflow passing through the white lamp heater 23 tray at the above-mentioned air volume, and is controlled by changing the opening degree of the temperature control door 26 shown in FIG. 1 between x, ) and X3. θ
is the opening degree of the temperature control door 26 shown in FIG.
(1 is fully closed, X, > X 3 is fully open, and Xo and
3 and increases linearly between x(1-X4).

T、は第1図図示冷却器21通過直後の空気温度であり
x (x 2では前記冷却器21の表面凍結寸前の最低
温度、XzとX6間ではリニアに高く成る様に前記冷却
手段ヶ稼動、非稼動(第1図図示冷媒圧縮機22全駆動
、非駆動)させる。
T is the temperature of the air immediately after passing through the cooler 21 shown in FIG. , the refrigerant compressor 22 shown in FIG. 1 is fully driven and is not driven.

以上の作動による車室2への放熱量Q、(x<xnの冷
房領域では負になる)で示したものが第4図である。x
 〈x Hは最大冷房時k、X 、> X 4 kよ最
大暖房時を示す。XI<X<X4間は放熱)+1:Qケ
リニアに制御Iiaする範囲である。上記範囲でX−で
XQの範囲ではQ、−(1”、 −T、 ) Aと表わ
され、x (x 2では(’l’−Tr)がほぼ一定、
Aがリニアに変化するためQがIJ ニアに変化す4+
、)Xz<x (x (1ではAが一定、(T。−Tr
)がリニアに変化するため、やはりQがリニアに変化す
る。
FIG. 4 shows the amount of heat radiated to the passenger compartment 2 due to the above operation, expressed as Q (negative in the cooling region where x<xn). x
<x H indicates maximum cooling time k, X , > X 4 k indicates maximum heating time. Heat dissipation between XI<X<X4)+1:Q is the range of control Iia linearly. In the range of X- and XQ in the above range, it is expressed as Q, -(1", -T, ) A, and x
Since A changes linearly, Q changes linearly to IJ 4+
, )Xz<x (x (at 1, A is constant, (T.-Tr
) changes linearly, so Q also changes linearly.

x ) x 6では、Q、 ” (T n  T r 
) X A Hと表わされ(Tu −’J”、 、 )
が、はぼ一定、AHがリニアに変化するためQが+7 
ニアに変化する。ここにTHは加熱器21通過直後の空
気温度でありX〉XQでほぼ一定と考えてよい。
x ) x 6, Q, ” (T n T r
) X A H (Tu −'J”, , )
However, Q is approximately constant and AH changes linearly, so Q is +7
Changes to near. Here, TH is the air temperature immediately after passing through the heater 21, and can be considered to be approximately constant as X>XQ.

従って、車室2の要求熱量に見合った前記量Xの変化に
対して熱交換部の放熱量Qは最大冷房力から最大加熱力
迄一様単調連続的に変化する。
Therefore, in response to a change in the amount X that corresponds to the amount of heat required by the vehicle compartment 2, the heat radiation amount Q of the heat exchange section uniformly and monotonically and continuously changes from the maximum cooling power to the maximum heating power.

以上、車室内平均温度T、に目標設定+1.A度T。As above, the target is set for the average temperature T in the vehicle interior +1. A degree T.

に自動温度制御する作動原理を説明したが、この後本発
明のポイントである車室内の快適な温度分布制御につき
説明する。
The operating principle of automatic temperature control has been explained above, and now the key point of the present invention, which is controlling the comfortable temperature distribution in the vehicle interior, will be explained.

’1.’ u + T L 熱交換部の放熱量QはT 、 = −□ k T 、に
維持するために必要な量に自動制御されているが、その
Q’(l−上部吹出口14と下部吹出口13へ振分ける
割合に依りTuとTLに差ケ持たせることができる。一
般にはTL−Tu:TULが5度程度が快適と言われ車
室外環境温度、日射の有無に依っても変化する。
'1. ' u + T L The heat radiation amount Q of the heat exchange section is automatically controlled to the amount necessary to maintain T, = -□ k T, but the A difference can be made between Tu and TL depending on the ratio of distribution to exit 13.Generally, it is said that TL-Tu:TUL of about 5 degrees is comfortable, and it changes depending on the environmental temperature outside the vehicle and the presence or absence of sunlight. .

当吹出し制御に関係するものは吹出し制御ドア31であ
り、吹出し切換ドア32は関係がないので以下吹出口1
5は閉じている場合だけを考える。
What is related to this blowout control is the blowout control door 31, and the blowout switching door 32 is not related, so the following will be referred to as the blowout port 1.
5 considers only the closed case.

第5図は本実施例で採用している自動吹出し制御の原理
を示したものである。第2図と原理は同じなので詳細は
省くがPI演算部の演算結果yに応じて下部吹出部の吹
出し制御ドア31が駆動され、yの増加に対して前記Q
の内、下部吹出口13へ振分けられる熱量QLが単調一
様に増加するようになっている。外乱熱Q′Dは例えば
車室上半分から下半分へ侵入する熱量である。
FIG. 5 shows the principle of automatic blow-off control employed in this embodiment. Since the principle is the same as that in FIG. 2, the details will be omitted, but the blowout control door 31 of the lower blowout section is driven according to the calculation result y of the PI calculation section, and the
Of these, the amount of heat QL distributed to the lower outlet 13 increases monotonically and uniformly. The disturbance heat Q'D is, for example, the amount of heat that invades from the upper half of the vehicle interior to the lower half.

■ 第2図と同様、TLはT 、 + −T ULに向って
安定的に制御され III、が変動してもそれに常に追
随する。
■ As in Fig. 2, TL is stably controlled toward T, + -TUL, and always follows it even if III changes.

故、Tr、 −Tu =TIJLが成シ立つ。Therefore, Tr, -Tu = TIJL holds true.

第6図は第5図に示した下部吹出部の作動説明図である
。PI演算結果yに対する吹出し制御ドア3工の目標位
置(第1図の角度ψ)を示しておシ2つに大別される。
FIG. 6 is an explanatory diagram of the operation of the lower blow-off section shown in FIG. 5. The target position of the blowout control door 3 (angle ψ in FIG. 1) with respect to the PI calculation result y is roughly divided into two.

第3図にてX≦Xo即ち冷房領域では温度制御ドア26
がθ=0の位11tにある故、冷却器21で冷やされた
空気は全て側路25へ送られる。そこで吹出し制御ドア
31?11−ψが増加の方向へ開く程、QLは負値にて
減少する。
In FIG. 3, X≦Xo, that is, in the cooling area, the temperature control door 26
is at 11t where θ=0, all the air cooled by the cooler 21 is sent to the side passage 25. Therefore, as the blowout control door 31?11-ψ opens in the direction of increase, QL decreases to a negative value.

故にX≦x(1にてyとψの関係留第6図の様にすれば
y≧yoではQ、 b = 0、y≦Yoではψ≦ψ1
.□ (ψの最大値)の範囲でyが小さくなる程QLが
減少する。
Therefore, the relationship between y and ψ when
.. QL decreases as y becomes smaller within the range of □ (maximum value of ψ).

X 2− X 3の加熱領域では温度制御ドア2611
:振シ切れておりθ=θ、。(θの最大値)導入空気は
全て加熱器23には加熱される。そこで制御ドア31’
にψが増加の方向へ開く後、Q、L)ま正確にて増加す
る。
Temperature control door 2611 in the heating area of X 2-X 3
: It is out of swing and θ=θ. (Maximum value of θ) All the introduced air is heated by the heater 23. There, the control door 31'
After ψ opens in the direction of increase, Q, L) increases exactly.

x3≧X≧x6の加熱領域ではθ、、、X≧θ≧0であ
シ吸込んだ昼の温度の空気の一部は側路25へ導かれる
が、その風は熱交換部lの構造よシもし吹出制御ドア3
1が無ければ上部吹出口14から吹出し易くなっている
。そして加熱器23にて加熱された空気は下部吹出口及
び上部吹出口14から吹出し易くなっている。依って吹
出し制御ドア31が中間位置にある場合上部吹出口14
から吹出す風の温度は、下部吹出口13から吹出す風の
温度より低くなる傾向にあるが、これvJ車室内温度分
布を構造面からも頭匁足熱の快感状態に維持し易くする
ためである、 そこで、θwax−,>θ〉0の場合、吹出し制御ドア
31全ψがJ外加の方向へ開くと、始めkA Qtが正
値にて増加するが或角度ψ−18を越えると、側路25
を経た風が下部吹出口13へ導かれ、QLの増加が止ま
る又は減少ケ始める。第7図にθとψ’matの関係を
示す。
In the heating region where x3≧X≧x6, θ,... Shimoshi blowout control door 3
1, it would be easier to blow out from the upper air outlet 14. The air heated by the heater 23 is easily blown out from the lower outlet and the upper outlet 14. Therefore, when the blowout control door 31 is in the intermediate position, the upper blowout port 14
The temperature of the air blown from the lower air outlet 13 tends to be lower than the temperature of the air blown from the lower air outlet 13, but this makes it easier to maintain the temperature distribution inside the vJ vehicle in a pleasant state of head-to-head heat from a structural standpoint. Therefore, in the case of θwax-,>θ〉0, when all the blowout control doors 31 ψ open in the direction of J addition, kAQt initially increases to a positive value, but when it exceeds a certain angle ψ-18, Side road 25
The wind that has passed through is guided to the lower air outlet 13, and the QL stops increasing or begins to decrease. FIG. 7 shows the relationship between θ and ψ'mat.

故にy ’、< x 6にてyとψの関係ケ第6図の様
にすればy≦YoではQ L :0、y≧Yoではψが
θで決まるψ−,8以下の範囲でyが大きくなる福Q、
Lが増大する。
Therefore, if the relationship between y and ψ is shown in Figure 6 when y', < Lucky Q that increases,
L increases.

以上よシ飽和限界内において、QLはyの増加に対して
常に単調一様に増加する。
As described above, within the saturation limit, QL always increases monotonically and uniformly as y increases.

従って本発明の実施例に依れば、車室内平均温度T1が
目標設定温度T、に向かって自動制御される傍ら、車室
内上下の温度差も快適な所定値に確実に自動制御される
Therefore, according to the embodiment of the present invention, while the average vehicle interior temperature T1 is automatically controlled toward the target set temperature T, the temperature difference between the upper and lower parts of the vehicle interior is also reliably automatically controlled to a comfortable predetermined value.

本発明に依れば、車室内上下の温度差が常時確実に快適
な所定値に自動制御される効果を有する。・
According to the present invention, there is an effect that the temperature difference between the upper and lower parts of the vehicle interior is automatically controlled to a comfortable predetermined value at all times.・

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本’zb明に基づく一実施例の空調装置全体構
成図、第2図は前記空調装置の自動温度制御原理図、第
3図は前記空調装置の熱交換部の作動説明図、第4図は
前記熱交換部の放熱特性図、第5図は前記視調器の自動
吹出し制御の原理図、第6図は前記自動吹出し制御原理
図にある下部吹出部の作動説明図、第7図は第6図の補
助図である。 l・・・熱交換部、2・・・車室、3・・・制御部、4
・・・操作部、19・・・7’ oヮー、21・・・冷
却器、23・・・加熱器、25・・・側路、26・・・
温度制御ドア、3工・・・吹出制御ドア、13・・・下
部吹出口、14・・・上部吹出口。
FIG. 1 is an overall configuration diagram of an air conditioner according to an embodiment based on the book, FIG. 2 is a diagram of the automatic temperature control principle of the air conditioner, and FIG. 3 is an explanatory diagram of the operation of the heat exchange section of the air conditioner. FIG. 4 is a heat radiation characteristic diagram of the heat exchange section, FIG. 5 is a principle diagram of the automatic blow-off control of the visual control device, FIG. 6 is an explanatory diagram of the operation of the lower blow-off section in the automatic blow-off control principle diagram, and FIG. FIG. 7 is an auxiliary diagram of FIG. l... Heat exchange section, 2... Vehicle interior, 3... Control section, 4
...Operation unit, 19...7' ow, 21...Cooler, 23...Heater, 25...Side channel, 26...
Temperature control door, 3 construction...Blowout control door, 13...Lower air outlet, 14...Upper air outlet.

Claims (1)

【特許請求の範囲】[Claims] 1、 加熱と冷却の両手段?有し、車室内外から導入し
た空気?加熱・又は冷却した後、車室内へ複数個の吹出
口より吹出して車室内平均温度全自動制御すると共に、
当吹出空気の前記複数個の吹出口からの配分を適宜調節
することに依り車室内の温度分布も自動制御する様に成
した自動車用空調器において、車室内温度分布の目標値
と実態値との差音比例演算並びに積分演算し、それらの
和に応じて上記配分を上記差が縮まる方向へ調節する負
帰還制御ループ?有することを特徴とする前記空調装置
1. Both heating and cooling means? Air introduced from outside and inside the vehicle? After being heated or cooled, it is blown into the vehicle interior through multiple outlets to fully automatically control the average temperature in the vehicle interior.
In an automobile air conditioner configured to automatically control the temperature distribution in the vehicle interior by appropriately adjusting the distribution of the blown air from the plurality of outlets, the target value and the actual value of the temperature distribution in the vehicle interior are determined. Negative feedback control loop that calculates the difference in sound proportionality and integration, and adjusts the above distribution in a direction that reduces the above difference according to the sum of the two? The air conditioner comprising:
JP57178362A 1982-10-13 1982-10-13 Automatic air conditioner for car Pending JPS5970217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57178362A JPS5970217A (en) 1982-10-13 1982-10-13 Automatic air conditioner for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57178362A JPS5970217A (en) 1982-10-13 1982-10-13 Automatic air conditioner for car

Publications (1)

Publication Number Publication Date
JPS5970217A true JPS5970217A (en) 1984-04-20

Family

ID=16047160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57178362A Pending JPS5970217A (en) 1982-10-13 1982-10-13 Automatic air conditioner for car

Country Status (1)

Country Link
JP (1) JPS5970217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185212A (en) * 1984-10-02 1986-04-30 Nissan Motor Co Ltd Air-conditioner for vehicles
US6011428A (en) * 1992-10-15 2000-01-04 Mitsubishi Denki Kabushiki Kaisha Voltage supply circuit and semiconductor device including such circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185212A (en) * 1984-10-02 1986-04-30 Nissan Motor Co Ltd Air-conditioner for vehicles
JPH0515570B2 (en) * 1984-10-02 1993-03-02 Nissan Motor
US6011428A (en) * 1992-10-15 2000-01-04 Mitsubishi Denki Kabushiki Kaisha Voltage supply circuit and semiconductor device including such circuit
US6097180A (en) * 1992-10-15 2000-08-01 Mitsubishi Denki Kabushiki Kaisha Voltage supply circuit and semiconductor device including such circuit

Similar Documents

Publication Publication Date Title
US4562954A (en) Method and apparatus for air conditioner control
US4523715A (en) Method and apparatus for air conditioner control
JPH0141522B2 (en)
US7017659B2 (en) Vehicle air-conditioning system
US5142881A (en) Automobile air conditioning system
JPH06457B2 (en) Air conditioner temperature control method
JPS5970217A (en) Automatic air conditioner for car
JPS6238163B2 (en)
JPS58156410A (en) Air conditioning method for automobile
JP3324335B2 (en) Vehicle air conditioner
JPH0390430A (en) Automotive heat pump device
JPS6144015A (en) Air conditioning equipment for car
JPH11254945A (en) Vehicle air-conditioning device
JPH0125696Y2 (en)
JP3325428B2 (en) Automotive air conditioners
JPH0986137A (en) Air conditioning control device of vehicle
US9776471B2 (en) Method of controlling the discharge of temperature-conditioned air
IT202000005959A1 (en) Air conditioning system for a motor vehicle.
JPS60979Y2 (en) Vehicle air conditioner
JPS638015A (en) Hot water type heating device for automobile
JPS6061321A (en) Automatic air conditioner for vehicle
JPS60163717A (en) Air-conditioning system for automobile
JPH07285326A (en) Heat pump type cooling/heating device for vehicle
JPS5933689Y2 (en) Vehicle air conditioning system
JP2000318425A (en) Air conditioner for automobile