Nothing Special   »   [go: up one dir, main page]

JPS5916970A - Method for detecting and controlling evaporation amount of evaporation material in ion plating - Google Patents

Method for detecting and controlling evaporation amount of evaporation material in ion plating

Info

Publication number
JPS5916970A
JPS5916970A JP57123455A JP12345582A JPS5916970A JP S5916970 A JPS5916970 A JP S5916970A JP 57123455 A JP57123455 A JP 57123455A JP 12345582 A JP12345582 A JP 12345582A JP S5916970 A JPS5916970 A JP S5916970A
Authority
JP
Japan
Prior art keywords
evaporation
voltage
globe
current
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57123455A
Other languages
Japanese (ja)
Inventor
Mitsugi Enomoto
榎本 貢
Yoji Yoshikawa
吉川 洋治
Masao Koshi
越 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP57123455A priority Critical patent/JPS5916970A/en
Priority to US06/512,499 priority patent/US4579639A/en
Priority to DE19833325614 priority patent/DE3325614A1/en
Priority to KR8303236A priority patent/KR910004411B1/en
Priority to GB08319147A priority patent/GB2125171B/en
Publication of JPS5916970A publication Critical patent/JPS5916970A/en
Priority to HK315/86A priority patent/HK31586A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/544Controlling the film thickness or evaporation rate using measurement in the gas phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To detect the available evaporation amount of an evaporation material from an evaporation source simply and accurately, by measuring the current value or the voltage value of a probe of ion plating when voltage applied to said probe or a current flowed therethrough is made constant. CONSTITUTION:In ion plating wherein the evaporation material 5 in an evaporation source 2 is evaporated under heating by an evaporation power source 6 in a bell jar 1 while a constant current Ip is flowed through a probe 3 by a constant- current power source 10 to form a plasma state and the evaporated substance is adhered on a substrate 4 to which negative voltage is applied by a DC power source 8 to form a thin film, probe voltage Vp between the probe 3 and earth is measured by a DC voltmeter 11. Because the probe voltage Vp almost accurately corresponds to the film thickness on the substrate 4, an available evaporation amount can be detected by said measured value. In addition, a current flowed through the evaporation source 2 is changed so as to keep the probe voltage Vp constant and the available evaporation amount of the evaporation material 5 can be controlled so as to be kept constant.

Description

【発明の詳細な説明】 この発明は、イオンブレーティングにおける蒸発材の有
効蒸発量検知方法及びその検知結果に基づく蒸発量制御
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the effective amount of evaporation of an evaporator in ion blating, and a method for controlling the amount of evaporation based on the detection result.

イオンブレーティングは、蒸着の付着強度を強くシ、且
つ回り込みを大きくする方法として注目       
□され、種々の方法が実用化てれている。
Ion blating is attracting attention as a method to strengthen the adhesion strength of vapor deposition and increase wraparound.
□, and various methods have been put into practical use.

この発明の対象とするネオンブレーティングは、第1図
に示すように、真空容器であるベルジャ1内に、電子ビ
ーム蒸発源等の蒸発源2とグローブ6と基板(この明細
書中では薄膜全形成すべき部材を総称する)4と全間隔
を置いて配置し、蒸発源2に蒸発用゛電源6によって電
力を供給して蒸発材5を加熱して蒸発させると共に、プ
ローブ6に電源7によって正電圧全印加し、蒸発源2及
び蒸発材5から放出される電子を引きつけて蒸発物質ガ
スや雰囲気ガスに衝突させてプラズマ状態を生成し、蒸
発物質又は蒸発物質と雰囲気ガスとの反応による化合物
を、基板4に付着きせて薄膜を形成する方法である。
As shown in FIG. 1, neon blating, which is the object of the present invention, consists of an evaporation source 2 such as an electron beam evaporation source, a globe 6, and a substrate (in this specification, a thin film is entirely The members to be formed are placed at a complete distance from the evaporation source 2 with a power source 6 for heating and evaporating the evaporation material 5, and the probe 6 is heated and evaporated by a power source 7 for evaporation. A full positive voltage is applied to attract the electrons emitted from the evaporation source 2 and the evaporation material 5 and cause them to collide with the evaporation material gas or atmospheric gas to generate a plasma state, and a compound is formed by the reaction between the evaporation material or the evaporation material and the atmospheric gas. In this method, a thin film is formed by adhering the material to the substrate 4.

なお、第1図の例では蒸発源2として、ヒータと負の高
圧電極によって電子ビームを放出させ、マグネットで偏
向させて水冷したるつぼ上の蒸発物を照射させるE形電
子銃を用いた電子ビーム蒸発源全使用しているが、これ
に限るものではなく、抵抗加熱や高周波加熱による蒸発
源音用いてもよ゛い。
In the example shown in Figure 1, the evaporation source 2 is an electron beam using an E-type electron gun that emits an electron beam using a heater and a negative high-voltage electrode, deflects it with a magnet, and irradiates the evaporated material on a water-cooled crucible. Although all evaporation sources are used, the present invention is not limited to this, and evaporation source sounds using resistance heating or high-frequency heating may also be used.

また、基板4に直流藏源8によって負電圧(100〜2
00V)k印加しているが、基板4を絶縁状態あるいは
接地状態にしておく場合もある。
Further, a negative voltage (100 to 2
00V)k is applied, but the substrate 4 may be kept in an insulated state or a grounded state.

このようにしてイオンブレーティングを行なう場合、蒸
発源2に供給する電力に、一定にしても、ベルジャ1内
の圧力の変化、雰囲気ガス濃度の変化、その他種々の条
件変化によって蒸発材5の有効蒸発量が変化する。
When performing ion blating in this manner, even if the power supplied to the evaporation source 2 is constant, the effectiveness of the evaporator 5 may vary due to changes in the pressure inside the bell jar 1, changes in atmospheric gas concentration, and other various conditions. The amount of evaporation changes.

なお、この明細書中「有効蒸発量」とは蒸発材の全蒸発
量中薄膜形成に有効な量を云う。
In this specification, the term "effective evaporation amount" refers to the amount effective for forming a thin film out of the total evaporation amount of the evaporator.

したがって、所望の膜厚及び膜構造の薄膜全形成するた
めには、イオンブレーティング中における蒸発材の有効
蒸発量全正確に検出する必要があり、さらには、蒸発量
を一定に保つように制御することが必要になる。
Therefore, in order to fully form a thin film with the desired thickness and structure, it is necessary to accurately detect the total amount of effective evaporation of the evaporator during ion blating, and furthermore, it is necessary to control the evaporation amount to keep it constant. It becomes necessary to do so.

その′ため、従来は一般に水晶膜厚計を使用して、その
水晶振動子をベルジャ内に挿入し、付着する蒸発物質の
量によって発振周波数が変化することによって膜厚を測
定し、その変化速度により蒸発材の有効蒸発量全推定し
ていた。
Therefore, in the past, a crystal film thickness meter was generally used, and the crystal resonator was inserted into a bell jar, and the film thickness was measured by changing the oscillation frequency depending on the amount of evaporated material attached, and the rate of change was The total effective evaporation amount of evaporation material was estimated by

しかしながら、このような蒸発量検知方法では、有効蒸
発量全問接点的に検知するので、正確な蒸発量全知るこ
とができないばかりか、使用する蒸発材によっては測定
不可能になる。
However, in this method of detecting the amount of evaporation, since the entire amount of effective evaporation is detected in a contact manner, it is not possible to accurately know the entire amount of evaporation, and depending on the evaporation material used, measurement may not be possible.

例えば、蒸発材としてチタンTiを使用して、チタン又
は窒素との化合物であるTiNの薄膜全形成する場合、
このTi又はTiNの膜が水晶振動子に4’j’Nfる
と、歪が太きいため発振不良を起し、草らには付着した
膜が剥離したすして、膜厚測定ができず、チタンの有効
蒸発量全正確に知ることができなかった。
For example, when titanium is used as an evaporator to form a thin film of TiN, which is a compound with titanium or nitrogen,
When this Ti or TiN film is applied to a crystal resonator, the strain is large, causing oscillation failure, and the film adhering to the grass peels off, making it impossible to measure the film thickness. It was not possible to accurately determine the effective amount of titanium evaporated.

したがって、常に所望の膜厚全得るように制御すること
も困難であった。
Therefore, it is difficult to control the film so that the desired film thickness is always obtained.

この発明は、このような従来のイオンブレーティングに
おける問題点に溝目してなされたもので、チタンのよう
に水晶膜厚計によっては測定子1エ能あるいは測定困難
な物質全蒸発材として使用する場合でも、簡単に且つ正
確にその有効蒸発量をイオンブレーティング中継続的に
検知でさるようにすると共に、その検知結果によって有
効蒸発量を一定に保つようにすることを目的とする。
This invention was made in response to these problems in conventional ion blating, and is used as a total evaporation material for substances such as titanium, which are difficult to measure with a quartz film thickness meter. The purpose of the present invention is to simply and accurately detect the effective evaporation amount continuously during ion blating, and to keep the effective evaporation amount constant based on the detection results.

そのため、第1番目の発明は、前述のようなイオンブレ
ーティングにおいて、プローブVC印加する電圧又は流
す′電流會一定にして、電圧を一定にした時に流れる′
電流値又は電流を一定にした時のグローブの電圧値によ
って、蒸発源からの蒸発材の有効蒸発量を検知する方法
全提供するものである。
Therefore, in the first invention, in the above-mentioned ion blating, the voltage applied to the probe VC or the current flowing when the voltage is kept constant and the voltage flowing when the voltage is kept constant.
The present invention provides a method for detecting the effective amount of evaporation material from an evaporation source based on the current value or the voltage value of the globe when the current is held constant.

また、第2番目の発明は、上記グローブに流れる電流値
又はグローブの′電圧値にLirして蒸発源に供給する
電力を変化式せて、蒸発材の有効蒸発量全推定に保つよ
うにする蒸発材の蒸発量1h1]御方法全提供するもの
である。
Further, the second invention is such that the electric power supplied to the evaporation source is changed by applying Lir to the current value flowing through the globe or the voltage value of the globe to maintain the total estimated effective evaporation amount of the evaporation material. The method for controlling the evaporation amount of the evaporation material (1h1) is provided.

以下、添付図面の第2図以降kE”照してこの発明の詳
細な説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to FIGS.

第2図は、第1査目の発明(im実施するイオンブレー
ティング装置の構成図であυ、第1図の装置と異なる点
は、定電流電源1oによってグローブ6に一定電流Ip
を流すようにし、イオングレーティング中、グローブ6
とアース(ベルジャ1及び蒸発源2のるつばはアースし
である)間に発生する電圧(以下1グローブ奄圧」とい
う) Vp k直流電流計11によって測定し得るよう
にしたことである。
FIG. 2 is a block diagram of the ion brating device to be implemented in the first inspection.The difference from the device in FIG.
During ion grating, glove 6
The voltage (hereinafter referred to as 1-globe force pressure) generated between Vp and earth (the crucibles of bell jar 1 and evaporation source 2 are grounded) can be measured with a DC ammeter 11.

このようなイオンブレーティング装置において、蒸発材
5としてチタンTik使用し、ベルジャ1内に窒素N2
に注入しながら基板4の表面に璧化チタンTiNの薄膜
を形成する場合を例に、蒸発源に供給する′電力(以下
r’E/B′g力」という)とグローブ電圧Vpとの関
係全実験結果に基づいて第3図に示す。
In such an ion blating device, titanium Tik is used as the evaporator 5, and nitrogen N2 is placed inside the bell jar 1.
Taking as an example the case where a thin film of titanium oxide TiN is formed on the surface of the substrate 4 while injecting the The results are shown in FIG. 3 based on all experimental results.

この第6図は、定電流源1Uによってグローブ乙に流す
゛1流値11)’k120Aに保って、それぞれ窒素注
入量、ベルジャ内の圧力、蒸発源2のるつぼの冷却状態
、チタンTiの蒸発面積等の諸条件を変化烙せてイオン
ブレーティングを行なった場合のE / B 電力とグ
ローブ電圧との関係全示し、下側の曲線の条件程同一時
間内に形成される膜厚が厚い。
This figure 6 shows the amount of nitrogen injected, the pressure inside the bell jar, the cooling state of the crucible of evaporation source 2, and the evaporation of titanium Ti while maintaining the flow value 11)'k120A through the globe B by a constant current source 1U. The relationship between E/B power and globe voltage when ion blating is performed while changing various conditions such as area is shown. The lower the curve, the thicker the film formed within the same time.

そして、どの条1牛においても、グローブ電圧が同じで
あれば略同−の膜厚が得られることが判明した。  し
かも、このプローブ電圧が低い程膜厚が厚くなり、いか
に他の条件を変えてもこのグローブ電圧が膜厚すなわち
蒸発材5の有効蒸発量と略正確に対応している。
It was also found that approximately the same film thickness could be obtained in any row of cows if the globe voltage was the same. Furthermore, the lower the probe voltage is, the thicker the film becomes, and no matter how other conditions are changed, this probe voltage almost exactly corresponds to the film thickness, that is, the effective evaporation amount of the evaporation material 5.

したがって、このグローブ′鑞圧■pの値k 測定すれ
ば、それによって蒸発材5の有効蒸発量全検知すること
ができる。
Therefore, by measuring the value k of this globe' solder pressure p, the entire effective amount of evaporation of the evaporation material 5 can be detected.

第4図は、第2図の装置における定電流電源1゜に代え
て定′亀圧′電源を使用してグローブ電圧Vpを一定に
し、グローブ6に流れる電流(以下「グローブ′電流」
という)Ip全′に流計音用いて測定した場合のE /
 B ”4力とプローブ電流との関係を示す線図である
In FIG. 4, the globe voltage Vp is kept constant by using a constant voltage power source instead of the constant current power source 1° in the device shown in FIG.
) E / when measured using a flow meter sound for Ip total'
B is a diagram showing the relationship between the four forces and the probe current.

この例も、蒸発材としてチタンTiを使用して窒素N2
を注入し、TiNの薄膜を形成する場合のプローブ電圧
以外の諸条件を変化させてパラメータとしたもので、こ
の場合はグローブ′電流が大きい程膜厚が厚くなり、す
なわち廟効蒸発量が多くなって、しかもこのプローブ電
流と蒸発材の有効蒸発量とが略正確に対応している。
This example also uses titanium as the evaporator and nitrogen N2
The parameters were set by changing various conditions other than the probe voltage when forming a thin TiN film by implanting TiN. Moreover, this probe current corresponds almost exactly to the effective evaporation amount of the evaporation material.

したがって、このグローブ電流Ipの値全測定すれば、
それによって蒸発材の有効蒸発量を検知することができ
る。
Therefore, if all values of this globe current Ip are measured,
Thereby, the effective amount of evaporation of the evaporation material can be detected.

次に、第5図は、第2番目の発明ケ実施するイオンブレ
ーティング装置のブロック構成図である。
Next, FIG. 5 is a block configuration diagram of an ion blating apparatus implementing the second invention.

この実施例は、第2図の実施例と同様に定電流源10に
よってプローブ6に一定′電流を流し、フ。
In this embodiment, like the embodiment shown in FIG. 2, a constant current is applied to the probe 6 by a constant current source 10.

ローブ電圧Vp を電圧検出回路12によって検出する
The lobe voltage Vp is detected by the voltage detection circuit 12.

一方、蒸発材5の所望の有効蒸発量を得るために必要な
グローブ電圧値Vs ′ff:ff:定圧設定回路16
て予め設定しておき、差動増幅器等による誤差検出回路
14によって、イオンブレーティング中この設定値Vs
と実際のプローブ の差に応じた信号Seを出力する。
On the other hand, the globe voltage value Vs'ff:ff: constant pressure setting circuit 16 necessary to obtain the desired effective evaporation amount of the evaporation material 5
This set value Vs is set in advance during ion blating by an error detection circuit 14 using a differential amplifier or the like.
A signal Se corresponding to the difference between the probe and the actual probe is output.

この信号SeをPID回路を通して、その4g号Seの
太すキに応じて比例,積分,又は微分した信号SCとし
て蒸発用電源16のi制御端子に入力して、蒸発源2に
供給する電力(E/B’に力)を変化嘔せて、グローブ
電圧Vp力i一定になるようにする。
This signal Se is input to the i control terminal of the evaporation power source 16 as a proportional, integrated, or differentiated signal SC according to the thickness of the 4g Se through a PID circuit, and the electric power ( E/B' (force) is varied so that the globe voltage Vp and force i become constant.

例えば、グローブ電圧Vpが設定値Vsより上った時に
は、第6図から判るようにE/B’亀力を電力くするよ
うに蒸発用電源16を制御すれば、グローブ電圧Vpが
下がジ、設定値Vsと寺しくすることができる。
For example, when the globe voltage Vp rises above the set value Vs, if the evaporation power source 16 is controlled so that the E/B' torque becomes electric power as shown in FIG. , the set value Vs.

このようにして、グローブ′亀圧Vp k常妃設定値V
sと等しくするように制御することによって、他の条件
が変化しても、例えばTiの有効蒸発量を一定にしてT
iNの薄膜全基板4上に形成することができる。
In this way, the globe' turtle pressure Vp k constant value V
By controlling T to be equal to s, even if other conditions change, for example, the effective evaporation amount of Ti can be kept constant.
A thin film of iN can be formed over the entire substrate 4.

さらに、第5図の定電流電源10に代えて定屯圧竜源を
使用してプローブ乙に一定の紙圧を印加し、プローブ電
流Ipを検出して予め設定した′電流値と比較し、その
差に応じて蒸発用電源16を制御してグローブ電流Ip
′ff:設定値に一致させるようにしても、蒸発材の蒸
発量を一定にして薄膜全形成することができる。
Furthermore, a constant pressure source is used in place of the constant current power source 10 in FIG. The evaporation power source 16 is controlled according to the difference to generate a globe current Ip.
'ff: Even if it is made to match the set value, the entire thin film can be formed while keeping the evaporation amount of the evaporator constant.

ところで、例えば時計の外装や装飾品の表面にTiNの
薄膜を形成する場合、′riの割合によって色が変わる
ため、従来は常に所望の色に仕上げるのに苦労していた
が、この発明を実施すれば、Tiの有効蒸発量全所望の
値に制御できるので、TiN薄膜の色のコントロールも
容易である。 また、膜厚の制御も容易になる。
By the way, when forming a thin TiN film on the exterior of a watch or on the surface of an ornament, for example, the color changes depending on the ratio of 'ri, so conventionally it was always difficult to achieve the desired color, but this invention has now been implemented. Then, the total effective evaporation amount of Ti can be controlled to a desired value, and the color of the TiN thin film can also be easily controlled. Furthermore, control of film thickness becomes easier.

この発明は、TiNの薄膜形成に限るものではな(、T
 1+ TtC+ 6るいは蒸発材として、シリコンS
i、 ’)ルコニウムZr、ハフニウムHf等他の物質
全使用して、その蒸発物質自体又はそれと雰囲気ガスと
の化合物による薄膜全形成するイオンブレーティングに
も同様に適用し得る。
This invention is not limited to the formation of thin films of TiN (T
1+ TtC+ 6 or silicon S as evaporator
i, ') It can be similarly applied to ion blasting in which other substances such as ruconium Zr and hafnium Hf are used to form a thin film entirely of the evaporated substance itself or a compound of it and an atmospheric gas.

以上説明したように、第1査目の発明によれば、例えは
チタンのように水晶膜厚計では蒸発量の測定が不可能な
蒸発材全使用するイオンブレーティングにおいても、簡
単且つ正確にその有効蒸発量全イオンブレーティング中
継続的に検知できるので、形成ちれる薄膜の組成、色、
膜厚等全知ることができ、その制御も容易になる。
As explained above, according to the first invention, it is possible to easily and accurately perform ion blating, which uses all evaporation materials, such as titanium, for which the amount of evaporation cannot be measured with a quartz film thickness meter. The effective evaporation amount can be continuously detected during all ion blating, so the composition, color, and
You can know everything about the film thickness, etc., making it easier to control it.

また、第2番目の発明によれば、イオンブレーティング
中における蒸発材の有効蒸発量を他の条件の変化に係わ
らず一定に保つことができるので、継続時間に応じた所
定の膜厚全得ることができ、膜の組成や色を一定に保つ
ことも容易でろ仝。
Furthermore, according to the second invention, since the effective evaporation amount of the evaporator during ion blating can be kept constant regardless of changes in other conditions, a predetermined total film thickness can be obtained depending on the duration. It is also easy to keep the composition and color of the film constant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明全適用するイオンブレーティング装
置の一例を示す構成図である。 第2図は、第1番目の発明を実施するイオンブレーティ
ング装置の例を示す構成図である。 第6図及び第4図は、蒸発材としてチタン全使用してT
iN薄膜全形成する場合におけるグローブ電流ケ一定に
した時のE/B%力とプローブ電圧との関係、及びグロ
ーブ電圧を一定にした時のE / B ”K力とプロー
ブ電流との関係を示す線図である。 第5図は、第2番目の発明全実施するイオンブレーティ
ング装置の例葡示すブロック構成図である。 1・・・ベルジャ(真空容器) 2・・・蒸発源6・・
・プローブ     4・・・基板5・・・蒸発材  
    10・・・定゛電流電源11・・直流電圧計 
   12・・電圧検出回路16・・・蒸発用電源 E/B  篭カ (KW) 第5図
FIG. 1 is a block diagram showing an example of an ion brating apparatus to which the present invention is applied. FIG. 2 is a configuration diagram showing an example of an ion brating device implementing the first invention. Figures 6 and 4 show T
Shows the relationship between the E/B% force and the probe voltage when the globe current is kept constant, and the relationship between the E/B'K force and the probe current when the globe voltage is kept constant when forming the entire iN thin film. Fig. 5 is a block configuration diagram showing an example of an ion brating device that fully implements the second invention. 1... Bell jar (vacuum container) 2... Evaporation source 6...
・Probe 4...Substrate 5...Evaporation material
10...Constant current power supply 11...DC voltmeter
12... Voltage detection circuit 16... Evaporation power supply E/B cage (KW) Fig. 5

Claims (1)

【特許請求の範囲】 1 真空容器内に蒸発源とグローブと基板と全間隔を置
いて配置し、前記蒸発源によって蒸発材全蒸発嘔せると
共に、前記グローブによってプラズマ状態を生成して、
蒸発物質又は該蒸発物質と雰囲気カスとの反応による化
合物を前記基板に付着させて薄膜全形成するイオンブレ
ーティングにおいて、 前記グローブに印加する′電圧又は流す電流k 一定に
して、電圧ケ一定にした時に流れる・電流値又は電流全
一定にした時の前記グローブの電圧値によって、前記蒸
発源からの蒸発材の有効蒸発量を検知すること全特徴と
する蒸発材の蒸発量検知方法。 2 真空容器内に蒸発源とグローブと基板とを間隔を置
いて配置し、前記蒸発源によって蒸発材を蒸発させると
共に、前記プローブによってプラズマ状態を生成して、
蒸発物質又は該蒸発物質と雰囲気ガスとの反応による化
合物全前記基板に付着させて薄膜を形成するイオンブレ
ーティングにおいて、 前記グローブに印加する電圧又は流す電流k 一定にし
て、電圧を一定にした時に流れる電流値又は電流を一定
にしたときの前記グローブの電圧値に応じて前記蒸発源
に供給する電力を変化させて、前記蒸発材の有効蒸発量
全一定に保つようにすることを特徴とする蒸発材の蒸発
量制御方法。
[Scope of Claims] 1. An evaporation source, a globe, and a substrate are arranged with a full distance between them in a vacuum container, the evaporation material is completely evaporated by the evaporation source, and a plasma state is generated by the globe,
In ion blating, in which an evaporated substance or a compound resulting from a reaction between the evaporated substance and atmospheric debris is deposited on the substrate to form a thin film, the voltage applied to the globe or the current k applied to the globe is kept constant, and the voltage is kept constant. A method for detecting the amount of evaporation of evaporation material, characterized in that the effective amount of evaporation of evaporation material from the evaporation source is detected based on the value of the current flowing at a certain time or the voltage value of the globe when the current is completely constant. 2. Arranging an evaporation source, a globe, and a substrate at intervals in a vacuum container, evaporating an evaporation material by the evaporation source, and generating a plasma state by the probe,
In ion blating in which a thin film is formed by depositing all of the evaporated substances or compounds resulting from the reaction between the evaporated substances and the atmospheric gas onto the substrate, when the voltage applied to the globe or the current k applied to the globe is kept constant, when the voltage is kept constant. The electric power supplied to the evaporation source is changed according to the flowing current value or the voltage value of the globe when the current is constant, so that the total effective evaporation amount of the evaporation material is kept constant. Method for controlling the amount of evaporation material.
JP57123455A 1982-07-15 1982-07-15 Method for detecting and controlling evaporation amount of evaporation material in ion plating Pending JPS5916970A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57123455A JPS5916970A (en) 1982-07-15 1982-07-15 Method for detecting and controlling evaporation amount of evaporation material in ion plating
US06/512,499 US4579639A (en) 1982-07-15 1983-07-11 Method of sensing the amount of a thin film deposited during an ion plating process
DE19833325614 DE3325614A1 (en) 1982-07-15 1983-07-15 METHOD FOR PERCEPING THE VAPORIZED DURING DURING A CERTAIN TIME INTERVAL AND MATERIAL AMOUNT TO BE SUBSTRATED ON A SUBSTRATE
KR8303236A KR910004411B1 (en) 1982-07-15 1983-07-15 Thickness checking machine
GB08319147A GB2125171B (en) 1982-07-15 1983-07-15 A method of sensing the amount of a thin film deposited during an ion plating process
HK315/86A HK31586A (en) 1982-07-15 1986-05-08 A method of sensing the amount of a thin film deposited during an ion plating process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123455A JPS5916970A (en) 1982-07-15 1982-07-15 Method for detecting and controlling evaporation amount of evaporation material in ion plating

Publications (1)

Publication Number Publication Date
JPS5916970A true JPS5916970A (en) 1984-01-28

Family

ID=14861032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123455A Pending JPS5916970A (en) 1982-07-15 1982-07-15 Method for detecting and controlling evaporation amount of evaporation material in ion plating

Country Status (6)

Country Link
US (1) US4579639A (en)
JP (1) JPS5916970A (en)
KR (1) KR910004411B1 (en)
DE (1) DE3325614A1 (en)
GB (1) GB2125171B (en)
HK (1) HK31586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871226A (en) * 1981-10-23 1983-04-27 Nissan Motor Co Ltd Instrument panel for car
JPS60193026A (en) * 1984-02-17 1985-10-01 テイーアイ(グループ サービシーズ) Controller for current density

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129698A (en) * 1985-11-28 1987-06-11 Kansai Electric Power Co Inc:The Anticorrosion and antidirt control device for condenser
JPS62129697A (en) * 1985-11-28 1987-06-11 Kansai Electric Power Co Inc:The Anticorrosion and antidirt control method for copper-alloy-made condenser tubes
DE3710365A1 (en) * 1987-03-28 1988-10-13 Messerschmitt Boelkow Blohm METHOD FOR REPRODUCIBLE FORMATION OF MATERIAL LAYERS AND / OR TREATMENT OF SEMICONDUCTOR MATERIAL LAYERS
US4827870A (en) * 1987-10-05 1989-05-09 Honeywell Inc. Apparatus for applying multilayer optical interference coating on complex curved substrates
US5009920A (en) * 1990-03-30 1991-04-23 Honeywell Inc. Method for applying optical interference coating
JP2833230B2 (en) * 1991-02-08 1998-12-09 松下電器産業株式会社 Vapor deposition equipment
US5325019A (en) * 1992-08-21 1994-06-28 Sematech, Inc. Control of plasma process by use of harmonic frequency components of voltage and current
EP0598422B1 (en) * 1992-10-15 2000-09-13 Koninklijke Philips Electronics N.V. Method of forming a Ti and a TiN layer on a semiconductor body by a sputtering process, comprising an additional step of cleaning the target
EP0989202B1 (en) * 1997-02-20 2011-04-20 Shibaura Mechatronics Corporation Power supply device for sputtering and sputtering device using the same
ATE411610T1 (en) * 1997-12-23 2008-10-15 Oc Oerlikon Balzers Ag VACUUM TREATMENT SYSTEM
US6090246A (en) * 1998-01-20 2000-07-18 Micron Technology, Inc. Methods and apparatus for detecting reflected neutrals in a sputtering process
US6454910B1 (en) * 2001-09-21 2002-09-24 Kaufman & Robinson, Inc. Ion-assisted magnetron deposition
KR100790402B1 (en) * 2005-09-28 2008-01-02 건국대학교 산학협력단 Method of measuring thickness of thin film using microwave
US7183772B1 (en) * 2005-09-30 2007-02-27 Saintech Pty Ltd Ion detector
US8261690B2 (en) * 2006-07-14 2012-09-11 Georgia Tech Research Corporation In-situ flux measurement devices, methods, and systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521125A1 (en) * 1965-11-18 1969-08-07 Ascot S R L Method and device for the formation of controlled deposits of vaporized substances on the surfaces of objects
US3670693A (en) * 1971-03-23 1972-06-20 Collins Radio Co Quartz crystal resonator tuning control apparatus
US3734620A (en) * 1971-04-01 1973-05-22 Ibm Multiple band atomic absorption apparatus for simultaneously measuring different physical parameters of a material
JPS51106641A (en) * 1975-03-17 1976-09-21 Matsushita Electric Ind Co Ltd IONPUREETEINGUSOCHI
JPS5635763A (en) * 1979-08-29 1981-04-08 Tdk Corp Film thickness controlling system
US4399013A (en) * 1980-03-07 1983-08-16 Matsushita Electric Industrial Co., Ltd. Method of producing a magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871226A (en) * 1981-10-23 1983-04-27 Nissan Motor Co Ltd Instrument panel for car
JPS6147730B2 (en) * 1981-10-23 1986-10-21 Nitsusan Jidosha Kk
JPS60193026A (en) * 1984-02-17 1985-10-01 テイーアイ(グループ サービシーズ) Controller for current density

Also Published As

Publication number Publication date
GB2125171B (en) 1985-10-23
KR910004411B1 (en) 1991-06-27
US4579639A (en) 1986-04-01
GB2125171A (en) 1984-02-29
KR840005549A (en) 1984-11-14
DE3325614A1 (en) 1984-01-19
HK31586A (en) 1986-05-16
GB8319147D0 (en) 1983-08-17

Similar Documents

Publication Publication Date Title
JPS5916970A (en) Method for detecting and controlling evaporation amount of evaporation material in ion plating
Maniv et al. Surface oxidation kinetics of sputtering targets
JPH04196708A (en) Frequency adjustment device and method for piezoelectric element
JP4642212B2 (en) Vacuum processing apparatus and vacuum processing method
JP2002020865A (en) Sputtering system, sputtering backup unit, and method for controlling sputtering
JP4735291B2 (en) Deposition method
JPH0472064A (en) Plasma control system
Nenadović et al. Some characteristic properties of NiCr thin films
JPH1030178A (en) Sputtering method and device therefor
JP3422724B2 (en) Frequency adjustment device for piezoelectric element
JPH0146587B2 (en)
JPH02305963A (en) Material evaporation rate detector and material evaporation rate controller for ion plating device
JPH08246169A (en) Plasma-treating device
JPS63125676A (en) Film formation by sputtering
JPS63102333A (en) Maintenance interval judgment of semiconductor manufacturing equipment
JPS59199038A (en) Method for forming insulative thin film
JPH0758031A (en) Ion deposition thin film forming apparatus and film forming method using the same
JPS5894703A (en) Method of producing transparent electrode and device for producing same
SU875208A1 (en) Method of determining rougth-surface area of electrically conductive articles
JPH02171605A (en) Method for measuring film thickness in case of metallic thin film growth
JPH04276073A (en) Method for measuring film forming rate during sputtering
JPS61138106A (en) Film thickness monitor
JPH0315197A (en) Surface cleaning method for measuring probe for plasma parameter
JPS62211376A (en) Control device for film growth
JPS60181273A (en) Detector for discharge intensity of discharge electrode of dc potential control type