JPS63125676A - Film formation by sputtering - Google Patents
Film formation by sputteringInfo
- Publication number
- JPS63125676A JPS63125676A JP27008386A JP27008386A JPS63125676A JP S63125676 A JPS63125676 A JP S63125676A JP 27008386 A JP27008386 A JP 27008386A JP 27008386 A JP27008386 A JP 27008386A JP S63125676 A JPS63125676 A JP S63125676A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- film
- substrate
- magnetic field
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004544 sputter deposition Methods 0.000 title claims description 5
- 230000015572 biosynthetic process Effects 0.000 title description 7
- 150000002500 ions Chemical class 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 6
- 230000005684 electric field Effects 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 12
- 239000000758 substrate Substances 0.000 abstract description 18
- 238000012544 monitoring process Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 206010017577 Gait disturbance Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、高周波あるいは直流グロー放電を利用した
ス、ieツタリング法(マグネトロン方式等磁場を付加
させる場合も含む)における生成膜をコントロールする
方法に関するものである。[Detailed Description of the Invention] (Industrial Application Field) The present invention is a method for controlling a film formed in the S, IE stumbling method (including cases in which a magnetic field is applied, such as the magnetron method) using high frequency or DC glow discharge. It is related to.
(従来の技術)
従来、高周波あるいは直流グロー放電を利用しく1)
たスパッタリング現象に基づく成膜法では放電領域およ
びターケ゛ソトに対する基板の位置、放電ガス圧力、混
合ガス分圧、成膜レートあるいは温度等が・ぐラメータ
とされ、これらをコントロールして目的とする生成膜の
性質を一定に保つようにされてきた。(Prior art) Conventionally, in film forming methods based on sputtering phenomena that utilize high frequency or direct current glow discharge, the position of the substrate relative to the discharge area and target, discharge gas pressure, mixed gas partial pressure, film forming rate, temperature, etc. has been considered as a parameter, and these have been controlled to maintain the desired properties of the produced film constant.
しかるにこれを阻害する要因があり、例えば焼結体ター
ケ゛ノド等では同一の物質であっても焼結状態あるいは
表面の荒れ具合等により、他の成膜条件が一定であって
もス・ぐツタレートは相当変動する。従って通常、一定
の膜質を得るだめにはターケ8ノドの条件によって変化
したスパッタレートを一定にすべく放電電力をコントロ
ールし、それに伴う成膜温度の変化の方は基板ヒータを
コントロールして対応するといっだ方法が用いられてい
る。しかし、このように成膜レートを一定に保つために
放電電力を変化させると、プラズマの空間密度が変化し
、基板に到達するイオンあるいはラジカル等の量が変化
し、成長する膜の特性に著しい変化をきたす事が確かめ
られた。However, there are factors that inhibit this. For example, in the case of sintered substrates, even if the material is the same, the sintering state or surface roughness may cause the sulfate rate to change even if other film formation conditions are constant. It fluctuates considerably. Therefore, in order to obtain a constant film quality, it is usually necessary to control the discharge power to keep the sputtering rate constant, which varies depending on the conditions of the heater, and to deal with the accompanying change in the film forming temperature by controlling the substrate heater. A method is used. However, when the discharge power is changed in order to keep the film formation rate constant, the spatial density of the plasma changes, and the amount of ions or radicals that reach the substrate changes, which significantly affects the characteristics of the growing film. It was confirmed that there was a change.
(発明の目的)
この発明は、上記のような欠点を改善するだめになされ
たものであって、基板近傍のプラズマ状態(主としてプ
ラズマ密度および温度)を一定にするように、随時この
プラズマ状態をモニターし放電電力および収束磁場等を
コントロールして所定の特性の膜を再現性良く得ようと
するものである。(Objective of the Invention) The present invention has been made to improve the above-mentioned drawbacks, and the present invention is designed to improve the plasma state (mainly plasma density and temperature) near the substrate at any time so as to keep the plasma state (mainly plasma density and temperature) constant. The purpose is to monitor and control the discharge power, focused magnetic field, etc. to obtain a film with predetermined characteristics with good reproducibility.
(発明の構成)
高周波あるいは直流グロー放電を用いてプラズマを生起
させ(磁場等を併用してプラズマ密度を空間的に上げた
りする方法はこれらの変形と考える)その中に存在する
ネオンを電界で加速し運動エネルギーをターケ゛ノドを
構成する物質の結合エネルギーより十分大きくしてター
ケゞノドに突入させス・ぐツタされた粒子を目的とする
物体上に膜状に生成させる方法、あるいはプラズマ中で
イオン化されたりラジカルになった物質の化学反応によ
りプラズマ中にスノやツタされたタニケゝット構成物質
を目的とする物体上に膜状に生成させる方法は既に良く
知られている。また、プラズマ中で成膜するためプラズ
マからのイオン、電子、中性高速粒子およびラジカル等
が生成される膜の性質に影響を与えることも良く知られ
ている。(Structure of the Invention) Plasma is generated using high frequency or direct current glow discharge (methods that spatially increase plasma density using a magnetic field etc. are considered to be a variation of these methods), and the neon present in the plasma is generated using an electric field. A method in which the particles are accelerated and their kinetic energy is made sufficiently larger than the binding energy of the substances that make up the target object, and the particles are then thrown into the target object to form a film on the target object, or they are ionized in plasma. It is already well known that a method is known in which tourniquet components, which have been smeared or dripped in plasma, are formed into a film on a target object through a chemical reaction of substances that have become radicals. It is also well known that since the film is formed in plasma, ions, electrons, neutral high-velocity particles, radicals, etc. from the plasma affect the properties of the produced film.
これに対して従来は目的とする質の膜を生成させようと
する物体とプラズマあるいはターケ8ットの位置関係の
調整、あるいはマグネトロン放電を用い磁場によシミ子
をトラツプする等の方法によシ基板に入射する上記状態
の粒子の量を調整してきた。しかし、これはあくまで生
成する膜質と放電電力や基板位置の関係等により求めら
れており、前述のようにターケ゛ットの荒れ具合や焼結
密度等が微妙に変化してもス・ぐツタ−が異なり、放電
電力のコントロールにより成膜レートを一定にしようと
すると再び同一の膜質を得るような生成条件を出すため
には基板位置や生成温度等の・ぐラメータをふり直さな
ければならない等の問題があったわけで、発明者の研究
では、これは多分に放電電力を変化させることにより基
板位置のプラズマの状態が変化することが膜質の変化に
大きく影響しており、成膜しようとする目的の物体の近
傍のプラズマ状態を一定にすることが膜質の安定に必要
であることが判った。Conventionally, methods such as adjusting the positional relationship between the object and plasma or target 8 to produce a film of the desired quality, or trapping the smudges in a magnetic field using magnetron discharge have been used. The amount of particles in the above state incident on the substrate has been adjusted. However, this is determined based on the relationship between the quality of the film produced, the discharge power, and the position of the substrate, and as mentioned above, even if the roughness of the target or the sintering density changes slightly, the speed will vary. However, when trying to keep the film formation rate constant by controlling the discharge power, there are problems such as having to reconfigure parameters such as the substrate position and formation temperature in order to obtain the formation conditions that will produce the same film quality again. According to the inventor's research, this is probably due to changes in the state of plasma at the substrate position due to changes in discharge power, which has a large effect on changes in film quality. It was found that it is necessary to maintain a constant plasma state in the vicinity of the film in order to stabilize the film quality.
(実施例) 第1図に本発明を実施する場合の一例を示す。(Example) FIG. 1 shows an example of implementing the present invention.
ペルジャー1の中は真空状態とされ」二部電極2と下部
電極3との間に加えられた高周波電力によりプラズマ4
が生起される。通常高周波の周波数は13、56 MH
7でイオンと電子の移動度の差によりターゲット5の面
上は負にバイアスされ、正のイオンの衝撃を受ける。ま
た、プラズマ4を収束するためのコイル6に加える電流
をコントロールしてプラズマ4の形を制御する。The inside of the Pelger 1 is in a vacuum state, and plasma 4 is generated by high frequency power applied between the two-part electrode 2 and the lower electrode 3.
is caused. Usually the frequency of high frequency is 13, 56 MH
At step 7, the surface of the target 5 is negatively biased due to the difference in mobility between ions and electrons, and is bombarded with positive ions. Further, the shape of the plasma 4 is controlled by controlling the current applied to the coil 6 for converging the plasma 4.
ターケゝント5あるいは治具(図示せず)の交換により
他の条件が同一であっても前記のようにこれが原因で基
板7上に生成する膜の成膜レートが変ると膜質に大きな
影響を与えると考えられ、それを交換前の値に戻すのに
放電電力を変えて対応する。この時、前述のようにプラ
ズマ4の状態が変化しているわけであるが、モニター8
を通じてプラズマ測定装置9で測定しプラズマ密度とプ
ラズマ温度の情報を取り出しフ0ラズマコントローラ1
0に送る。プラズマコントローラ10は基板位置のプラ
ズマ密度、同温度が所定の状態になるように収束磁場コ
ントローラ11および高周波電力コントローラ12に信
号を送る。Even if other conditions are the same, if the target 5 or the jig (not shown) is replaced, the film formation rate on the substrate 7 changes due to this change, which will have a large effect on the film quality. This is thought to be the case, and the solution is to change the discharge power to return it to the value before replacement. At this time, as mentioned above, the state of the plasma 4 is changing, but the monitor 8
The plasma measurement device 9 measures the plasma density and plasma temperature through the plasma controller 1.
Send to 0. The plasma controller 10 sends signals to the convergence magnetic field controller 11 and the high frequency power controller 12 so that the plasma density and temperature at the substrate position are in a predetermined state.
その他、基板温度は基板ヒータ13と基板ヒータコント
ローラ14によりコントロールサレ、スノやツタ圧力は
ガス流量コントローラ15によりコントロールされるの
は従来法と変るところは無い。Other than that, there is no difference from the conventional method in that the substrate temperature is controlled by the substrate heater 13 and the substrate heater controller 14, and the groove and ivy pressures are controlled by the gas flow rate controller 15.
なお、モニター8は一対のプローブ16をプラズマ中に
露出しだものでこれとプラズマ測定装置9との間は絶縁
被覆導線17で結ばれ、プラズマ測定装置9とプラズマ
コントローラ10との間はプラズマ密度と同温度の情報
が導線18.19を通じ各々併行して伝達される。The monitor 8 has a pair of probes 16 exposed in the plasma, and this and the plasma measuring device 9 are connected by an insulated conductor 17, and the plasma measuring device 9 and the plasma controller 10 are connected to each other by a plasma density Information about the same temperature is transmitted in parallel through conductors 18 and 19, respectively.
(発明の効果)
この発明は上記のように構成したものであるが、ターケ
8ノドや治具の交換等により成膜条件が変っても、膜質
をパラメータにとって条件を出し直す必要が殆んど無く
なシ安定した膜質が得られるようになり、正確で短時間
の条件設定が可能となった。(Effects of the Invention) Although this invention is configured as described above, even if the film forming conditions change due to replacement of the 8-node or jig, there is almost no need to readjust the conditions based on the film quality as a parameter. It has become possible to obtain stable film quality without any problems, and it has become possible to set conditions accurately and in a short time.
第1図は本発明を実行する場合の装置の構成を示す0
トベルジャー、2・・上部電極、3・・・下部電極、4
・プラズマ、5・ターケ8ット、6・プラズマ収束用コ
イル、7・・・基板、8・・・モニター、9・・・プラ
ズマ測定装置、10・・・プラズマコントローラ、11
・・・収束磁場コントローラ、12・・・高周波電力コ
ントローラ。
出願人 日本航空電子工業株式会社
# 1 図FIG. 1 shows the configuration of an apparatus for carrying out the present invention.
・Plasma, 5・Turkey 8t, 6・Plasma convergence coil, 7...Substrate, 8...Monitor, 9...Plasma measuring device, 10...Plasma controller, 11
... Convergent magnetic field controller, 12... High frequency power controller. Applicant: Japan Aviation Electronics Industry, Ltd. #1 Figure
Claims (1)
法によりプラズマを励起し、プラズマ中のイオンを電界
により加速して、ターゲットに入射させ、スパッタされ
た粒子を目的とする物体上に付着させ膜を形成させる方
法において、この膜を形成させる近傍のプラズマ中にモ
ニターを設け、放電電源や収束磁場を制御するようにし
たスパッタリング成膜法。A method in which a plasma is excited by a sputtering method using high frequency or direct current glow discharge, ions in the plasma are accelerated by an electric field, and the ions are incident on a target, and the sputtered particles are deposited on the target object to form a film. , a sputtering film-forming method in which a monitor is installed in the plasma near where the film is formed, and the discharge power source and focused magnetic field are controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27008386A JPS63125676A (en) | 1986-11-13 | 1986-11-13 | Film formation by sputtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27008386A JPS63125676A (en) | 1986-11-13 | 1986-11-13 | Film formation by sputtering |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63125676A true JPS63125676A (en) | 1988-05-28 |
Family
ID=17481292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27008386A Pending JPS63125676A (en) | 1986-11-13 | 1986-11-13 | Film formation by sputtering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63125676A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5897203A (en) * | 1981-12-02 | 1983-06-09 | 株式会社日立製作所 | Method of forming transparent conductive film |
JPS6039161A (en) * | 1983-07-19 | 1985-02-28 | バリアン・アソシエイツ・インコーポレイテツド | Method and device for controlling sputter coating |
-
1986
- 1986-11-13 JP JP27008386A patent/JPS63125676A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5897203A (en) * | 1981-12-02 | 1983-06-09 | 株式会社日立製作所 | Method of forming transparent conductive film |
JPS6039161A (en) * | 1983-07-19 | 1985-02-28 | バリアン・アソシエイツ・インコーポレイテツド | Method and device for controlling sputter coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10509557A (en) | Method and apparatus for measuring ion flow in plasma | |
EP3788181B1 (en) | Method of low-temperature plasma generation, method of an electrically conductive or ferromagnetic tube coating using pulsed plasma and corresponding devices | |
US4962461A (en) | Method for the reproducable formation of material layers and/or the treatment of semiconductor materials layers | |
JP2003234200A (en) | Plasma impedance adjustment device | |
JPS63125676A (en) | Film formation by sputtering | |
JPH04196708A (en) | Frequency adjustment device and method for piezoelectric element | |
JP3739511B2 (en) | Plasma space potential measuring device | |
JPH0472064A (en) | Plasma control system | |
JPH02185967A (en) | Method and device for bias sputtering | |
JP2002020865A (en) | Sputtering system, sputtering backup unit, and method for controlling sputtering | |
JPH0230384B2 (en) | SUPATSUTAHOHOOYOBISOCHI | |
Roggendorf et al. | Experimental investigations of plasma dynamics in the hysteresis regime of reactive RF sputter processes | |
JPS596376A (en) | Sputtering apparatus | |
JPH02243762A (en) | Sputtering device | |
JPH049465A (en) | Method and device for controlling dc potential in thin film forming device | |
JP3038828B2 (en) | Plasma processing method | |
JP3937272B2 (en) | Sputtering apparatus and sputtering method | |
JP2985230B2 (en) | Plasma equipment | |
JP3084944B2 (en) | Plasma generation method | |
RU2058423C1 (en) | Vacuum-arc device | |
JPH0146587B2 (en) | ||
JPS61292312A (en) | Method and apparatus for maufacturing oriented ferromagneticthin film | |
JPH0684800A (en) | Plasma processing device | |
JP3460953B2 (en) | Method of controlling the amount and energy of ions extracted from plasma | |
JP2918926B2 (en) | Film forming method and apparatus |