JPS59145739A - Method for recovering ruthenium and iridium from metallic electrode - Google Patents
Method for recovering ruthenium and iridium from metallic electrodeInfo
- Publication number
- JPS59145739A JPS59145739A JP58019729A JP1972983A JPS59145739A JP S59145739 A JPS59145739 A JP S59145739A JP 58019729 A JP58019729 A JP 58019729A JP 1972983 A JP1972983 A JP 1972983A JP S59145739 A JPS59145739 A JP S59145739A
- Authority
- JP
- Japan
- Prior art keywords
- hydrochloric acid
- added
- iridium
- ruthenium
- oxidizing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、金属電極からルテニウム及びイリジウムを回
収する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering ruthenium and iridium from metal electrodes.
近年、チタン等の弁金属基体上に、ルテニウムやイリジ
ウムの酸化物等を含む電極被覆を設けた不溶性金属電極
が、種々の電気化学の分野、%に食塩電解工業における
不溶性電極として多量に使用されている。In recent years, insoluble metal electrodes in which an electrode coating containing ruthenium or iridium oxides is provided on a valve metal substrate such as titanium have been used in large quantities as insoluble electrodes in various fields of electrochemistry and in the brine electrolysis industry. ing.
このような金属電極は、かなシの長寿命を有するもので
あるが、使用中に電極被覆が徐々に消耗或は低活性化し
、−短の性能を維持できなくなった際には、新しい電極
に取シ替える必要がある。こうした使用済の金属電極に
は、尚相当量の高価なルテニウムやイリジウム等の貴金
属成分が被覆中に残存し、これらを回収し、有効利用す
ることは、工業上重要である。Such metal electrodes have a long lifespan, but if the electrode coating gradually wears out or becomes less active during use and can no longer maintain its short-term performance, it is necessary to replace it with a new electrode. It needs to be replaced. A considerable amount of expensive precious metal components such as ruthenium and iridium still remain in the coating of these used metal electrodes, and it is industrially important to recover and effectively utilize these components.
従来、この種の技術に関連するものとして、特公昭46
−2697B号及び特公昭48−15144号により、
金属電極被覆を溶融塩を用いて除去する方法が知られて
いる。また、特開昭51−68493号には、ルテニウ
ム又はその化合物を含む難溶性物質の可溶化法が、特開
昭5l−6B49B号には、可溶性ルテニウム又はその
化合物の酸化蒸留法が記載されている。更に特開昭51
−68499号にはルテニウム又はその化合物を含む難
i性物質を処理してルテニウムを回収する方法が示され
ている。Conventionally, as related to this type of technology,
-2697B and Special Publication No. 48-15144,
A method of removing a metal electrode coating using molten salt is known. Furthermore, JP-A-51-68493 describes a method for solubilizing poorly soluble substances containing ruthenium or its compounds, and JP-A-51-6B49B describes an oxidative distillation method for soluble ruthenium or its compounds. There is. Furthermore, JP-A-51
No. 68499 discloses a method for recovering ruthenium by treating a refractory substance containing ruthenium or a compound thereof.
しかし、これらの方法は、いずれも金属電極から貴金属
を回収する部分工程か、ルテニウムの回収に関するもの
で、金属電極から被覆中に共存するルテニウム及びイリ
ジウムを回収する方法は知られていなかった。However, all of these methods involve a partial process of recovering noble metals from metal electrodes or recovery of ruthenium, and no method was known for recovering ruthenium and iridium coexisting in the coating from metal electrodes.
本発明は、叙上の事情に鑑みてなされたもので、その目
的は、金属電極から容易に、かつ効率良くルテニウム及
びイリジウムを共に回収する方法を提供することにある
。The present invention has been made in view of the above circumstances, and its purpose is to provide a method for easily and efficiently recovering both ruthenium and iridium from a metal electrode.
本発明は、金属電極からルテニウム及びイリジウムを回
収する方法において、金属電極基体上のルテニウム酸化
物及びイリジウム酸化物層を、第1の酸化剤を含むアル
カリ金属水酸化物溶融塩に溶解し、冷却後、水を加えて
水溶液とした後、第2の酸化剤を加えて減圧蒸留し、発
生する四酸化ルテニウムを塩酸中に導入してルテニウム
を塩化物として回収し、蒸留残液に塩酸を加えてPHを
調整し、弁金属水酸化物を生成分離した後、更に塩酸を
加えて該溶液を酸性にし、次いで陽イオン交換樹脂を用
いてアルカリ金属を除去して、イリジウムをイリジウム
塩化物の塩酸溶液として回収することを特徴とするもの
である。The present invention provides a method for recovering ruthenium and iridium from a metal electrode, in which a ruthenium oxide and iridium oxide layer on a metal electrode substrate is dissolved in an alkali metal hydroxide molten salt containing a first oxidizing agent, and then cooled. After that, water is added to make an aqueous solution, a second oxidizing agent is added and distilled under reduced pressure, the generated ruthenium tetroxide is introduced into hydrochloric acid to recover ruthenium as chloride, and hydrochloric acid is added to the distillation residue. After adjusting the pH and separating the valve metal hydroxide, further hydrochloric acid is added to make the solution acidic, and then the alkali metal is removed using a cation exchange resin, and the iridium is converted into iridium chloride with hydrochloric acid. It is characterized by being recovered as a solution.
本発明において弁金属とは、電極基体又は電極被覆成分
として通常用いられるチタン、タンタル、ジルコニウム
、ニオブを意味する。In the present invention, the valve metal means titanium, tantalum, zirconium, and niobium that are commonly used as electrode substrates or electrode coating components.
以下、本発明をよシ詳細に説明する。The present invention will be explained in detail below.
先ず、酸化ルテニウム及ビ酸化イリジウムを含む被覆層
を有する使用済等の金属電極の表面被覆層を第1の酸化
剤を含むアルカリ金属水酸化物溶融塩に溶解する。該溶
解は、金属電極を該溶融塩に直接浸漬等によシ接触させ
て行うことができるが、予めバフ研麿処理法によ一シ剥
離した被覆層粉粒体を溶融塩に溶解して行うこともでき
る。アルカリ金属水酸化物としてはKOH。First, a surface coating layer of a used metal electrode having a coating layer containing ruthenium oxide and iridium bioxide is dissolved in an alkali metal hydroxide molten salt containing a first oxidizing agent. The dissolution can be carried out by directly immersing the metal electrode in the molten salt or by bringing it into contact with the molten salt. You can also do this. KOH is an alkali metal hydroxide.
NaOHが好適であシ、これに含有させる第1の酸化剤
としてはN a N Os + K N Os等のアル
カリ金属硝酸塩、Na意Ot 、K*’O*等のアルカ
リ金属過酸化物、アルカリ土類金属過酸化物、過マンガ
ン酸カリウム等が使用できる。第1の酸化剤の量は、溶
融物全量基準で約2%以上約20%以下とすることが好
ましい。溶融塩溶解における温度は約350〜600℃
が適当であシ、処理時間は通常5〜30分程度で電極基
体を損傷することなく被覆層を容易に溶解することがで
きる。NaOH is preferable, and the first oxidizing agent to be contained therein includes alkali metal nitrates such as NaNOs + KNOs, alkali metal peroxides such as NaOt, K*'O*, and alkali. Earth metal peroxides, potassium permanganate, etc. can be used. The amount of the first oxidizing agent is preferably about 2% or more and about 20% or less based on the total amount of the melt. The temperature for dissolving molten salt is approximately 350-600℃
The treatment time is usually about 5 to 30 minutes, and the coating layer can be easily dissolved without damaging the electrode substrate.
次いで、得られたルテニウム及びイリジウムを含む溶融
物を冷却し、水を加えて水溶液とした後第2の酸化剤を
加えて減圧蒸留する。加える水の量は溶融物の約2〜1
0倍量とすることが好適である。第2の酸化剤としては
、塩素ガスが好適であシ、これを該水溶液に吹き込みな
がら蒸留を行うことができるが、次亜塩素酸ナトリウム
溶液等の他の酸化剤を用いてもよい。Next, the obtained melt containing ruthenium and iridium is cooled, water is added to make an aqueous solution, a second oxidizing agent is added, and the mixture is distilled under reduced pressure. The amount of water added is about 2-1 parts of the melt
It is preferable to use 0 times the amount. Chlorine gas is suitable as the second oxidizing agent, and distillation can be carried out while blowing it into the aqueous solution, but other oxidizing agents such as a sodium hypochlorite solution may also be used.
この際、水溶液中に錯体として溶解していると考えられ
るルテニウムは該酸化剤によシ酸化されて揮発性の四酸
化ルテニウムとなシ、純度の高いRub、が気体状で発
生する。蒸留は約1〜650 mHHの減圧下で行うこ
ととが効率的であシ、温度はRuO4の安定のため20
0℃以下が好ましい。発生したR u O&を約10〜
35%程度の塩酸中に導き、溶解反応せしめて、ルテニ
ウムは塩化物として回収される。一方、イリジウムや弁
金属は蒸留残液に残存する。得られる高純度のルテニウ
ム塩化物溶液は、金属電極製造用に再び使用することが
でき、更に、必要に応じて濃縮固化物として、或は還元
処理し金属ルテニウムとして回収することもできる。At this time, ruthenium, which is considered to be dissolved as a complex in the aqueous solution, is oxidized by the oxidizing agent to generate volatile ruthenium tetroxide and highly pure Rub in gaseous form. It is efficient to carry out the distillation under a reduced pressure of about 1 to 650 mHH, and the temperature is 20 mH to stabilize RuO4.
The temperature is preferably 0°C or lower. Approximately 10~
Ruthenium is recovered as chloride by introducing it into about 35% hydrochloric acid and causing a dissolution reaction. On the other hand, iridium and valve metal remain in the distillation residue. The obtained high-purity ruthenium chloride solution can be used again for manufacturing metal electrodes, and can also be recovered as a concentrated solidified product or subjected to reduction treatment and recovered as metal ruthenium, if necessary.
次に、上記で得られた蒸留残液に塩酸を加えPHを調整
する。その目的は、アルカリ性である蒸留残液を中性付
近に中和して、溶存する被覆層中或は電極基体からの弁
金属を水酸化物として析出、沈澱させるためである。そ
のための適当なPHは約3〜11の範囲である。そして
、該生成した弁金属水酸化物はr別法等によシ分離除去
される。Next, hydrochloric acid is added to the distillation residue obtained above to adjust the pH. The purpose of this is to neutralize the alkaline distillation residue to near neutrality and to precipitate the dissolved valve metal in the coating layer or from the electrode base as a hydroxide. A suitable pH for this is in the range of about 3-11. Then, the generated valve metal hydroxide is separated and removed by another method or the like.
かくして、イリジウムの溶解した母液が得られるが、該
液中には、溶融塩による溶解の際に水酸化物として用い
たアルカリ金属が尚残存するので、陽イオン交換樹脂に
接触させてこれらを除去する。その際、液を塩酸を加え
て酸性にすることによって、アルカリ金属及び伺残存す
る弁金属イオン等が完全に除去される。In this way, a mother liquor in which iridium is dissolved is obtained, but since the alkali metals used as hydroxides during dissolution with the molten salt still remain in this solution, these are removed by contacting with a cation exchange resin. do. At this time, the alkali metal and remaining valve metal ions are completely removed by making the liquid acidic by adding hydrochloric acid.
以上の処理によって、イリジウムは純粋なイリジウム塩
素化合物の塩酸溶液として回収される。該イリジウムの
塩酸溶液は、そのまま、または適度の濃度に調製して金
属電極の製造用等に再び使用することができる。更に、
1〜650wx Hg 、約110℃以下の条件で減圧
蒸留し、濃縮固化して塩化イリジウムとして回収するこ
ともできる。また、塩化イリジウムを還元処理すれば金
属イリジウムとして回収することも勿論可能である。Through the above treatment, iridium is recovered as a hydrochloric acid solution of a pure iridium chloride compound. The iridium hydrochloric acid solution can be reused as it is or after being prepared to an appropriate concentration for the production of metal electrodes. Furthermore,
It can also be recovered as iridium chloride by distilling it under reduced pressure under conditions of 1 to 650 wx Hg and about 110°C or less, concentrating and solidifying it. Furthermore, it is of course possible to recover iridium chloride as metallic iridium by subjecting it to reduction treatment.
一方、被覆層を除去した金属基体は殆んど損傷を受けな
いので、そのまま電極基体として再利用することができ
る。On the other hand, since the metal base from which the coating layer has been removed is hardly damaged, it can be reused as an electrode base as it is.
本発明の方法によって、以下の実施例で示す如く、ルテ
ニウム酸化物及びイリジウム酸化物を含む被覆層を有す
る金属電極よシ、高純度のルテニウム及びイリジウムを
効率良く、容易に回収することができ、本発明の工業的
価値は極めて大きいものである。By the method of the present invention, as shown in the following examples, high-purity ruthenium and iridium can be efficiently and easily recovered from a metal electrode having a coating layer containing ruthenium oxide and iridium oxide, The industrial value of the present invention is extremely large.
実施例1゜
溶融剤として水酸化ナトリウム50g1第1の酸化剤と
して過マンガン酸カリウム5gを用い、ニッケルルツボ
中で500℃に保持して溶融塩を形成した。これに3
ex X 3 cnxの大きさのチタン基体上に酸化ル
テニウム及び酸化イリジウムを含む被覆層を有する電極
を20分間浸漬したととろ、被゛覆層は完全に溶融塩中
に溶解した。次に1チタン基材を除去した該溶融塩に1
冷却後、200ccの水を加えて溶解し、水溶液とした
後、第2の酸化剤として塩素ガスを100cc/分の速
度で吹き込み、圧力150 mHg %温度80〜85
℃で減圧蒸留を行った。発生した四酸化ルテニウムを塩
酸中に導き、ルテニウム塩化物として吸収させた。この
結果、ルテニウムの回収率は78%であった。Example 1 A molten salt was formed by using 50 g of sodium hydroxide as a melting agent and 5 g of potassium permanganate as a first oxidizing agent and maintaining the temperature at 500° C. in a nickel crucible. 3 to this
When an electrode having a coating layer containing ruthenium oxide and iridium oxide on a titanium substrate having a size of ex X 3 cnx was immersed for 20 minutes, the coating layer was completely dissolved in the molten salt. Next, add 1 to the molten salt from which 1 titanium base material was removed.
After cooling, 200 cc of water was added to dissolve it to form an aqueous solution, and then chlorine gas was blown in as a second oxidizing agent at a rate of 100 cc/min, at a pressure of 150 mHg and a temperature of 80 to 85%.
Vacuum distillation was performed at °C. The generated ruthenium tetroxide was introduced into hydrochloric acid and absorbed as ruthenium chloride. As a result, the recovery rate of ruthenium was 78%.
次いで、該蒸留残液に塩酸を加え、PHを8に調整して
溶液を静置し、生成した弁金属水酸化物等の沈澱をf過
分離した。更に、該r液に塩酸を等量加えた後、H型に
調製した陽イオン交換樹脂(三菱化成工業■製DIAI
ON−8KIB)に通し、含まれるナトリウム、カリウ
ム等の陽イオンを分離除去し、イリジウムを純粋なイリ
ジウム塩化物の塩酸溶液として回収した。この溶液を更
K 15a*Hg、 40℃で減圧蒸留し、塩化イリジ
ウムの固体を得ることもできた。その際のイリジウムの
回収率は72%であった。Next, hydrochloric acid was added to the distillation residue, the pH was adjusted to 8, and the solution was allowed to stand, and the produced precipitates such as valve metal hydroxide were separated. Furthermore, after adding an equal amount of hydrochloric acid to the R liquid, a cation exchange resin prepared into H type (DIAI manufactured by Mitsubishi Chemical Corporation) was added.
ON-8KIB) to separate and remove contained cations such as sodium and potassium, and recover iridium as a hydrochloric acid solution of pure iridium chloride. This solution was further distilled under reduced pressure at 40° C. to obtain solid iridium chloride. The recovery rate of iridium at that time was 72%.
実施例Z
酸化ルテニウム及び酸化イリジウムを含む被覆層をパフ
研麿して剥離させ、粉末化した被覆層10gを溶融塩に
溶解し、他は実施例7と全く同様にして金属電極からル
テニウム及びイリジウムの回収を行った。回収率はルテ
ニウム72%、イリジウム65%であった。Example Z Ruthenium and iridium were removed from the metal electrode in the same manner as in Example 7 except that the coating layer containing ruthenium oxide and iridium oxide was peeled off by puff polishing, and 10 g of the powdered coating layer was dissolved in molten salt. were collected. The recovery rate was 72% for ruthenium and 65% for iridium.
実施例3−5
溶融剤、酸化剤、溶融条件及び蒸留条件を変えた以外は
、実施例1と同様の方法で金属電極からルテニウム及び
イリジウムの回収を行った。Example 3-5 Ruthenium and iridium were recovered from the metal electrode in the same manner as in Example 1, except that the melting agent, oxidizing agent, melting conditions, and distillation conditions were changed.
その結果を表−IK−jとめて示す。The results are shown in Table-IK-j.
なお参考例1.2として少量の第1の酸化剤を用いて溶
融した場合及び溶融時間の短い場合を合わせて表−1に
示した。As Reference Example 1.2, cases in which a small amount of the first oxidizing agent was used for melting and a case in which the melting time was short are shown in Table 1.
表−1Table-1
Claims (1)
物を含む被覆層を、第1の酸化剤を含むアルカリ金属水
酸化物溶融塩に溶解し、冷却後、水を加えて水溶液とし
た後、第2の酸化剤を加えて減圧蒸留し、発生する四酸
化ルテニウムを塩酸中に導入してルテニウムを塩化物と
して回収し、蒸留残液に塩酸を加えてPHを調整し、弁
金属水酸化物を生成分離した後、更に塩酸を加えて該溶
液を酸性にし、次いで陽イオン交換樹脂を用いてアルカ
リ金属を除去して、イリジウムをイリジウム塩化物の塩
酸溶液として回収することを特徴とする金属電極からル
テニウム及びイリジウムを回収する方法。 (2) 溶融塩による溶解を550〜600℃で行う
第(1)項の方法。 (3)被覆層溶解後の溶融塩に2〜10倍量の水を加え
る第(1)項の方法。 (4) 第2の酸化剤として塩素ガスを吹き込みなが
ら200℃以下、1〜650 wHgで減圧蒸留を行う
第(1)項の方法。 (5)蒸留残液に塩酸を加えてPHを3〜11Vc調整
する第(1)項の方法。 (6) イリジウム塩化物の塩酸溶液を110℃以下
、1〜650mHgで減圧蒸留し濃縮固化する第(1)
項の方法。[Claims] A coating layer containing ruthenium oxide and iridium oxide on a metal electrode substrate is dissolved in a molten alkali metal hydroxide salt containing a first oxidizing agent, and after cooling, water is added to form an aqueous solution. After that, a second oxidizing agent is added and distilled under reduced pressure, and the generated ruthenium tetroxide is introduced into hydrochloric acid to recover ruthenium as chloride. Hydrochloric acid is added to the distillation residue to adjust the pH. After the metal hydroxide is generated and separated, hydrochloric acid is further added to make the solution acidic, and then the alkali metal is removed using a cation exchange resin, and iridium is recovered as a hydrochloric acid solution of iridium chloride. A method for recovering ruthenium and iridium from metal electrodes. (2) The method according to item (1), wherein the dissolution with the molten salt is carried out at 550 to 600°C. (3) The method of item (1), in which 2 to 10 times the amount of water is added to the molten salt after the coating layer has been dissolved. (4) The method according to item (1), in which vacuum distillation is carried out at 200° C. or lower and 1 to 650 wHg while blowing chlorine gas as the second oxidizing agent. (5) The method of item (1), in which hydrochloric acid is added to the distillation residue to adjust the pH from 3 to 11 Vc. (6) Step (1) in which the hydrochloric acid solution of iridium chloride is distilled under reduced pressure at 110°C or lower and 1 to 650 mHg to concentrate and solidify it.
Section method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58019729A JPS59145739A (en) | 1983-02-10 | 1983-02-10 | Method for recovering ruthenium and iridium from metallic electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58019729A JPS59145739A (en) | 1983-02-10 | 1983-02-10 | Method for recovering ruthenium and iridium from metallic electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59145739A true JPS59145739A (en) | 1984-08-21 |
JPS6254850B2 JPS6254850B2 (en) | 1987-11-17 |
Family
ID=12007399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58019729A Granted JPS59145739A (en) | 1983-02-10 | 1983-02-10 | Method for recovering ruthenium and iridium from metallic electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59145739A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63195230A (en) * | 1987-02-10 | 1988-08-12 | Tanaka Kikinzoku Kogyo Kk | Refining method for platinum group metal |
JP2009179880A (en) * | 2008-01-30 | 2009-08-13 | Wc Heraeus Gmbh | Process for the recovery of ruthenium from material containing ruthenium or ruthenium oxide or from ruthenium-containing noble metal ore concentrate |
WO2016034301A1 (en) * | 2014-09-03 | 2016-03-10 | Heraeus Deutschland GmbH & Co. KG | Process for the preparation and/or purification of ruthenium(iii) chloride |
EP2998275A1 (en) * | 2014-09-19 | 2016-03-23 | Heraeus Deutschland GmbH & Co. KG | Process for the preparation and/or purification of ruthenium(III) chloride |
JP2018511707A (en) * | 2015-04-21 | 2018-04-26 | ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー | Method for decomposing a mixture of solid particles of metal iridium and / or iridium oxide |
KR20230083146A (en) * | 2021-12-02 | 2023-06-09 | 희성촉매 주식회사 | Method for preparing iridium chloride hydrate and method for preparing iridium chloride |
KR20230090032A (en) * | 2021-12-14 | 2023-06-21 | 희성촉매 주식회사 | Method for preparing iridium oxide |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63161059U (en) * | 1987-04-10 | 1988-10-20 |
-
1983
- 1983-02-10 JP JP58019729A patent/JPS59145739A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63195230A (en) * | 1987-02-10 | 1988-08-12 | Tanaka Kikinzoku Kogyo Kk | Refining method for platinum group metal |
JP2009179880A (en) * | 2008-01-30 | 2009-08-13 | Wc Heraeus Gmbh | Process for the recovery of ruthenium from material containing ruthenium or ruthenium oxide or from ruthenium-containing noble metal ore concentrate |
WO2016034301A1 (en) * | 2014-09-03 | 2016-03-10 | Heraeus Deutschland GmbH & Co. KG | Process for the preparation and/or purification of ruthenium(iii) chloride |
CN106660827A (en) * | 2014-09-03 | 2017-05-10 | 贺利氏德国有限两合公司 | Method for producing and/or purifying ruthenium (III) trichloride |
US9994458B2 (en) | 2014-09-03 | 2018-06-12 | Heraeus Deutschland GmbH & Co. KG | Process for the preparation and/or purification of ruthenium(III) chloride |
EP2998275A1 (en) * | 2014-09-19 | 2016-03-23 | Heraeus Deutschland GmbH & Co. KG | Process for the preparation and/or purification of ruthenium(III) chloride |
JP2018511707A (en) * | 2015-04-21 | 2018-04-26 | ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー | Method for decomposing a mixture of solid particles of metal iridium and / or iridium oxide |
KR20230083146A (en) * | 2021-12-02 | 2023-06-09 | 희성촉매 주식회사 | Method for preparing iridium chloride hydrate and method for preparing iridium chloride |
KR20230090032A (en) * | 2021-12-14 | 2023-06-21 | 희성촉매 주식회사 | Method for preparing iridium oxide |
Also Published As
Publication number | Publication date |
---|---|
JPS6254850B2 (en) | 1987-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3400027A (en) | Crystallization recovery of spent hydrogen peroxide etchants | |
JP4551994B2 (en) | Method for recovering tin, tin alloy or lead alloy from printed circuit board | |
WO1990015168A1 (en) | Electrolytic method for regenerating tin or tin-lead alloy stripping compositions | |
TWI428451B (en) | Valuable metal recovery method from lead-free waste solder | |
JPS59145739A (en) | Method for recovering ruthenium and iridium from metallic electrode | |
JPH0321490B2 (en) | ||
JPS59104438A (en) | Recovery of ruthenium from metal electrode | |
JPS6254849B2 (en) | ||
JPS5997536A (en) | Method for recovering ruthenium from metallic electrode | |
JPS63502600A (en) | How to recycle solder stripping solution | |
JP4607303B2 (en) | Method for recovering platinum group metals from metal electrodes | |
JPS6191335A (en) | Method for recovering platinum group metal | |
RU2094534C1 (en) | Electrolytic method for dissolving platinum, platinum metals' impurities and/or platinum metals' alloys containing radium, palladium, iridium, gold, and silver | |
JPS6179736A (en) | Recovering method of platinum group metal | |
US2404453A (en) | Removal of chlorate from caustic soda | |
JPS6293319A (en) | Method for selectively recovering sn from sn coated material | |
JP2002088494A5 (en) | ||
US4144090A (en) | Non-oxidative removal of gold films | |
US4895626A (en) | Process for refining and purifying gold | |
US3399090A (en) | Process of etching metal with ammonium persulfate with recovery and recycling | |
JP2777955B2 (en) | Desilvering or silver recovery method | |
JP2002212650A (en) | Method for recovering platinum group metals from metal electrodes | |
JP2002194581A (en) | Method for recovering platinum group metals from metal electrodes | |
KR20070039211A (en) | Purification method of high purity silver from silver scrap | |
WO1987003623A1 (en) | An electrolytic process for the simultaneous deposition of gold and replenishment of elemental iodine |