Nothing Special   »   [go: up one dir, main page]

JPS5910271A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5910271A
JPS5910271A JP10938483A JP10938483A JPS5910271A JP S5910271 A JPS5910271 A JP S5910271A JP 10938483 A JP10938483 A JP 10938483A JP 10938483 A JP10938483 A JP 10938483A JP S5910271 A JPS5910271 A JP S5910271A
Authority
JP
Japan
Prior art keywords
melting point
high melting
electrode
point metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10938483A
Other languages
Japanese (ja)
Inventor
Naoki Yamamoto
直樹 山本
Mitsumasa Koyanagi
光正 小柳
Tetsuya Hayashida
哲哉 林田
Seiji Ikeda
池田 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10938483A priority Critical patent/JPS5910271A/en
Publication of JPS5910271A publication Critical patent/JPS5910271A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To contrive to endure high temperature even in oxidizing atmosphere, resulting in no generation of the crack and exfoliation of an electrode which contains a high melting point metal, and to have low electric resistance by providing the electrode which contains a double layer composed of the high melting point metal and the silicide thereof. CONSTITUTION:An element isolation Si oxide film 2 and a gate oxide film 3 are formed on an Si substrate 1. Next, a polycrystalline Si layer 4 which contains phoshphorus, the high melting point metallic silicide layer 5, and the high melting point metallic layer 6 are formed. Thereafter, a gate electrode 7 is formed. A source 8 and a drain 9 are formed with the gate electrode 7 as the mask. A lead-out electrode 10 from the source 8 and the drain 9 is formed in the same manner as the gate electrode 7. An interlayer insulation film 11 and a passivation film 12 are formed of phosphorus silicide glass. The high melting point metallic silicide layer is formed by the simultaneous or continuous vapor deposition method of the high melting point metal and Si, and the thickness is suitable in approx. 1-30nm.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高い温度に耐えることができる半導体装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device that can withstand high temperatures.

〔発明の背景〕[Background of the invention]

高融点金属/多結晶ノリコン捷だは高融点金属シリサイ
ド/多結晶ソリコンの二重電極構造は既に知られている
。高融点金属/多結晶ンリコンから成る電極においては
、電極形成後の高温熱処理工程で高融点金属と多結晶ン
リコンが反応し、界面に高融点金属ソリサイド層が生じ
る。このノリサイド層の体積は反応前の高融点金属と7
リコノの体積の和よりも太きい。したがって、この現象
に起因して、高融点金属にわれが生じたり、電極がシリ
コン酸化膜下地等からはがれるという欠点があった。こ
のような現象は、高融点金属の電極を直接ンリコン基板
につけた場合にも同様に見られる。それ故、通常、基板
ンリコ/と高融点金属電極が接触する部分を有する半導
体装置では、その製造過程で経る熱処理温度を約500
℃以下に限定され、高融点金属の長所である高耐熱性が
生かされてい々い。高融点金属シリサイド/多結晶7リ
コンから成る電極はこのような欠点を持っておらず、安
定である。しかしながら、高融点金属シリサイド膜は、
同じ高融点金属膜と較べて、抵抗率が約1桁以上高いと
いう欠点を持っている。
Dual electrode structures of high melting point metal/polycrystalline silicon and high melting point metal silicide/polycrystalline silicon are already known. In an electrode made of high melting point metal/polycrystalline silicon, the high melting point metal and polycrystalline silicon react in a high temperature heat treatment step after electrode formation, and a high melting point metal solicide layer is generated at the interface. The volume of this nolicide layer is 7
It is thicker than the sum of the volumes of Ricono. Therefore, due to this phenomenon, cracks occur in the high-melting point metal, and the electrode peels off from the underlying silicon oxide film, etc., which are disadvantageous. This phenomenon is also observed when a high melting point metal electrode is directly attached to the silicon substrate. Therefore, in a semiconductor device having a part where a high melting point metal electrode comes into contact with a substrate, the heat treatment temperature during the manufacturing process is usually reduced to about 500°C.
℃ or below, and the high heat resistance, which is an advantage of high melting point metals, can be fully utilized. Electrodes made of high melting point metal silicide/polycrystalline 7-licon do not have such drawbacks and are stable. However, the high melting point metal silicide film
It has the disadvantage that its resistivity is about one order of magnitude higher than that of the same high melting point metal film.

他方、高融点金属を単独で電極や配線に使用すると、酸
化性雰囲気中で温度を上げることができないという欠点
があった。例えば、窒素ガス雰囲気中での700℃の熱
処理においても、試料を炉に挿入する時に1き込捷れた
微量の酸素によってモリブデンは完Pa5昇華してしま
う。
On the other hand, when a high melting point metal is used alone for electrodes or wiring, there is a drawback that the temperature cannot be raised in an oxidizing atmosphere. For example, even in a heat treatment at 700° C. in a nitrogen gas atmosphere, molybdenum is completely sublimed to Pa5 due to the trace amount of oxygen that is injected into the sample when it is inserted into the furnace.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、したがって、以上述べた欠点を持って
いない高融点金属を含む電極を有する半導体装置を提供
することである。
The object of the invention is therefore to provide a semiconductor device having an electrode comprising a refractory metal, which does not have the disadvantages mentioned above.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために1本発明による半導体装置は
高融点金属とその高融点金属のシリサイドとから成る二
重層を含む電極を有することを要旨とする。
In order to achieve the above object, a semiconductor device according to the present invention has an electrode including a double layer consisting of a high melting point metal and a silicide of the high melting point metal.

〔発明の実施例〕[Embodiments of the invention]

本発明の有利な実施の態様においては、上記電極がMI
S(金属−絶縁膜一半導体)トランジスタのゲート電極
である。
In an advantageous embodiment of the invention, the electrode is MI
This is the gate electrode of an S (metal-insulating film-semiconductor) transistor.

本発明の他の一つの有利な実施の態様においては、電極
が半導体基板へのコンタクト電極である。
In a further advantageous embodiment of the invention, the electrode is a contact electrode to the semiconductor substrate.

本発明のさらに他の一つの有利な実施の態様においては
、電極が上記二重層と、その下層に設けられた多結晶シ
リコン層とから成る。
In a further advantageous embodiment of the invention, the electrode consists of the double layer described above and a layer of polycrystalline silicon below it.

以下に、附図を参照しながら、実施例を用いて本発明を
一層詳しく説明するけれども、それらは例示に過ぎず、
本発明の枠を越えることなく、いろいろの改良や変形が
あり得ることは勿論である。
Hereinafter, the present invention will be explained in more detail using examples with reference to the accompanying drawings, but these are merely illustrative.
Of course, various improvements and modifications can be made without going beyond the scope of the present invention.

実施例 1゜ 第1図に示すように、シリコン基板1上に素子間分離用
シリコン酸化膜2およびゲート酸化膜6を形成する。つ
ぎに、燐を含有する多結晶7937層4、高融点金属シ
リサイド(モリブデン・シリサイド)層5、高融点金属
(モリブデン)層6を形成する。その後、プラズマ・エ
ツチング法によシ、第2図に示すゲート電極7を形成す
る。図は金属−絶縁膜−半導体トランジスタ(以下本明
細書においてはMl、STと略称する。)を示し、ソー
ス8およびトレーン9はゲート電極7をマスクとして形
成される。ソース8およびドレーン9からの引出し電極
10はゲート電極7と同様にして形成される。層間絶縁
膜11およびパノンベーション膜12は燐硅酸ガラスか
ら成る。
Example 1 As shown in FIG. 1, a silicon oxide film 2 for element isolation and a gate oxide film 6 are formed on a silicon substrate 1. Next, a polycrystalline 7937 layer 4 containing phosphorus, a high melting point metal silicide (molybdenum silicide) layer 5, and a high melting point metal (molybdenum) layer 6 are formed. Thereafter, a gate electrode 7 shown in FIG. 2 is formed by plasma etching. The figure shows a metal-insulating film-semiconductor transistor (hereinafter abbreviated as M1, ST), and a source 8 and a train 9 are formed using the gate electrode 7 as a mask. Extracting electrodes 10 from the source 8 and drain 9 are formed in the same manner as the gate electrode 7. The interlayer insulating film 11 and the pannonvation film 12 are made of phosphosilicate glass.

本発明に用いる高融点金属ノリサイド層は高融点金属と
7リコンの同時または連続蒸着法、気相成長法、スパッ
タ法、等によって形成され、その厚さは1〜3Qnm程
度が適切である。
The high melting point metal nolicide layer used in the present invention is formed by simultaneous or continuous vapor deposition of a high melting point metal and silicon, vapor phase growth, sputtering, etc., and its thickness is suitably about 1 to 3 Q nm.

以上述べた多結晶シリコン層−高融点金属ンリザイド層
−高融点金属層の6層から成る電極は500℃以上の熱
処理工程を経ても電極がわれたりはがれたすせず、かつ
低い電気抵抗を有している。
The electrode consisting of the six layers of polycrystalline silicon layer, high melting point metal resin layer, and high melting point metal layer described above does not crack or peel off even after a heat treatment process of 500°C or higher, and has low electrical resistance. are doing.

実施例 2゜ 第6図を参照すればシリコン基板1に素子間分離用/リ
コン酸化膜2、ゲート酸化膜6、高融点金属(モリブデ
ン)のゲート電極13、層間絶縁膜11、ソース8、ド
レーン9、コンタクト孔14を形成後、スパッタ法によ
ってiQ nmの厚さの高融点金属シリサイド(モリブ
デン・ノリサイド)層5、そして連続的に200 nm
の厚さの高融点金属(モリブデン)層6を形成する。つ
ぎに、第4図に示すように、プラズマ・エツチングによ
って引出し電極15に加工し、パンシベーション膜12
を被着し、MISTを形成する。
Embodiment 2゜Referring to FIG. 6, a silicon substrate 1 is provided with an element isolation/recon oxide film 2, a gate oxide film 6, a gate electrode 13 made of a high melting point metal (molybdenum), an interlayer insulating film 11, a source 8, and a drain. 9. After forming the contact hole 14, a high melting point metal silicide (molybdenum silicide) layer 5 with a thickness of iQ nm is formed by sputtering, and then a layer of 200 nm is continuously formed.
A high melting point metal (molybdenum) layer 6 is formed to have a thickness of . Next, as shown in FIG. 4, the lead electrode 15 is processed by plasma etching, and the pansivation film 12 is
is deposited to form MIST.

以上のように形成したMISTにおいては、500゜℃
以上の高温熱処理を経た場合でも、電極がはがれるとい
う事故は生じなかった。なお、高融点金属シリサイド層
は1〜5Q nm程度の厚さでよい。
In the MIST formed as described above, the temperature was 500°C.
Even after the above-described high-temperature heat treatment, no accident of electrode peeling occurred. Note that the high melting point metal silicide layer may have a thickness of about 1 to 5 Q nm.

まだ、高融点金属シリサイド層は高融点金属とシリコン
の同時あるいは連続蒸着法、気相成長法、スパック法、
等どのような方法によって形成されてもよい。なお、本
実施例のMISTのゲート電極としては、八4や多結晶
シリコン等の他の導体を用いて形成することもできる。
However, the refractory metal silicide layer can still be produced by simultaneous or sequential deposition of refractory metal and silicon, vapor phase epitaxy, spuck method,
It may be formed by any method. Note that the gate electrode of the MIST in this embodiment can also be formed using other conductors such as 84 or polycrystalline silicon.

実施例 6゜ 高融点金属からなる電極や配線表面に高融点金属シリサ
イド層を被覆しておけば、電極や配線の酸化を防止する
ことができる。
Example 6: Oxidation of the electrodes and wiring can be prevented by coating the surfaces of the electrodes and wiring made of a high-melting point metal with a high-melting metal silicide layer.

高融点金属ソリサイドは高温酸化処理によって表面にノ
リコン酸化膜が形成され、この酸化膜が高融点金属の耐
酸化効果を持つ。なお、この酸化膜は通常の/リコン酸
化膜エツチング液で除去することができる。
High-melting point metal solicide has a Noricon oxide film formed on its surface through high-temperature oxidation treatment, and this oxide film has the oxidation-resistant effect of a high-melting point metal. Note that this oxide film can be removed with a normal/recon oxide film etching solution.

第5図を参照すれば、シリコン基板1上に素子間分離用
シリコン酸化膜2、ゲート酸化膜6を形成した後、20
0 nm厚の高融点金属(モリブデン)層6、高融点金
属シリサイド(モリブデン・シリサイド)層5を連続し
て形成する。ついで、第6図に示すように、プラズマ・
エツチングによってゲート電極16を形成し、続いてイ
オン打込みによってソース8およびドレーン9、燐硅酸
ガラスの層間絶縁膜11、コンタクト孔14を形成する
Referring to FIG. 5, after forming a silicon oxide film 2 for element isolation and a gate oxide film 6 on a silicon substrate 1,
A refractory metal (molybdenum) layer 6 and a refractory metal silicide (molybdenum silicide) layer 5 having a thickness of 0 nm are successively formed. Next, as shown in Figure 6, the plasma
A gate electrode 16 is formed by etching, and then a source 8, a drain 9, an interlayer insulating film 11 of phosphosilicate glass, and a contact hole 14 are formed by ion implantation.

つぎに、コンタクト孔が開いている部分のみ不純物拡散
層が深くなるように高温で燐を拡散し、深いソース8′
および深いトレー79′を作る。この燐拡散工程は酸化
雰囲気であるため、ゲート電極16のコンタクト部分の
高融点金属シリサイド表面にシリコン酸化膜17が形成
され、拡散工程中の高融点金1の昇華を阻止する。この
シリコン酸化膜17を弗酸系エツチング液で除去した後
、第7図に見るように、アルミニウムの引出し電極18
、パノ/ベーション膜12を形成してMISTを作成す
る。
Next, phosphorus is diffused at high temperature so that the impurity diffusion layer becomes deep only in the area where the contact hole is opened, and the deep source 8'
and make a deep tray 79'. Since this phosphorus diffusion process is performed in an oxidizing atmosphere, a silicon oxide film 17 is formed on the high melting point metal silicide surface of the contact portion of the gate electrode 16 to prevent sublimation of the high melting point gold 1 during the diffusion process. After removing this silicon oxide film 17 with a hydrofluoric acid etching solution, as shown in FIG.
, a pano/vation film 12 is formed to create a MIST.

高融点金属シリサイド層は、上記の燐拡散工程以外の窒
素アンニール、燐硅酸ガラス被着工程においても、高融
点金属の昇華防止に役立つ。
The high melting point metal silicide layer also helps to prevent sublimation of the high melting point metal in nitrogen annealing and phosphosilicate glass deposition steps other than the above-mentioned phosphorus diffusion step.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明による半導体装置は酸化性雰
囲気中においても高い温度に耐え、高融点金属を含む電
極がわれたり、はがれたりすることば々く、かつ低い電
気抵抗を持つという長所を有する。
As explained above, the semiconductor device according to the present invention has the advantage that it can withstand high temperatures even in an oxidizing atmosphere, that electrodes containing high melting point metals often break or peel off, and that it has low electrical resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の第1の実施の態様におけ
る半導体装置の製造工程を示す断面図、第3図および第
4図は本発明の第2の実施の態様における半導体装置の
製造工程を示す断面図、第5図、第6図および第7図は
本発明による第3の実施の態様における半導体装置の製
造工程を示す断面図である。 1・・/リコン基板 2・・素子間分離用シリコン酸化膜 6・・ケート酸化膜   4 ・多結晶シリコン層5・
高融点金属シリサイド層 6・高融点金属層 7.1ろ、16・ ゲート電極 8.8・・ノース    9.9・・・ドレーン10.
15.18・・引出し電極 11・・層間絶縁膜 12・・パノ/ベーション膜 14・・コンタク+一孔17・・ンリコン酸化膜代理人
弁理士 中利純之助 先 1 図 大 2 図 5       6     1     ソ7I73
[Zl A74[2] 148         3C)          
      1?5図 8’8399’
1 and 2 are cross-sectional views showing the manufacturing process of a semiconductor device according to a first embodiment of the present invention, and FIGS. 3 and 4 are sectional views showing the manufacturing process of a semiconductor device according to a second embodiment of the present invention. 5, 6, and 7 are cross-sectional views showing steps for manufacturing a semiconductor device according to a third embodiment of the present invention. 1.../Recon board 2... Silicon oxide film for isolation between elements 6... Kate oxide film 4 ・Polycrystalline silicon layer 5 ・
High melting point metal silicide layer 6, high melting point metal layer 7.1, 16, gate electrode 8.8, north 9.9, drain 10.
15.18...Extracting electrode 11...Interlayer insulating film 12...Pano/bation film 14...Contact+one hole 17...Nlicon oxide film Patent attorney Junnosuke Nakatoshi Address 1 Figure 2 Figure 5 6 1 So 7I73
[Zl A74[2] 148 3C)
1?5 Figure 8'8399'

Claims (1)

【特許請求の範囲】 (1)  高融点金属とその高融点金属のシリサイドと
から成る二重層を含む電極を有することを特徴とする半
導体装置。 (2)上記電極がMTS(金属−絶縁膜一半導体)トラ
ンジスタのゲート電極であることを特徴とする特許請求
の範囲第1項による半導体装置。 (ロ)上記電極が半導体基板へのコンタクト電極である
ことを特徴とする特許請求の範囲第1項による半導体装
置。 (4)上記電極は上記二重層の下層に設けられた多結晶
シリコン層をさらに含むことを特徴とする特許請求の範
囲第1項、第2項まだは第6項のいずれか一つによる半
導体装置。
[Scope of Claims] (1) A semiconductor device characterized by having an electrode including a double layer consisting of a high melting point metal and a silicide of the high melting point metal. (2) The semiconductor device according to claim 1, wherein the electrode is a gate electrode of an MTS (metal-insulator-semiconductor) transistor. (b) The semiconductor device according to claim 1, wherein the electrode is a contact electrode to a semiconductor substrate. (4) The semiconductor according to any one of claims 1, 2, and 6, wherein the electrode further includes a polycrystalline silicon layer provided below the double layer. Device.
JP10938483A 1983-06-20 1983-06-20 Semiconductor device Pending JPS5910271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10938483A JPS5910271A (en) 1983-06-20 1983-06-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10938483A JPS5910271A (en) 1983-06-20 1983-06-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5910271A true JPS5910271A (en) 1984-01-19

Family

ID=14508868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10938483A Pending JPS5910271A (en) 1983-06-20 1983-06-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5910271A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225475A (en) * 1984-04-23 1985-11-09 Mitsubishi Electric Corp Semiconductor device
JPS6132476A (en) * 1984-07-23 1986-02-15 Sharp Corp Semiconductor device
JPS6132477A (en) * 1984-07-23 1986-02-15 Sharp Corp Manufacture of semiconductor device
JPS6182479A (en) * 1984-09-28 1986-04-26 Sharp Corp Manufacture of semiconductor device
US6197702B1 (en) 1997-05-30 2001-03-06 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US7049187B2 (en) 2001-03-12 2006-05-23 Renesas Technology Corp. Manufacturing method of polymetal gate electrode
US7053459B2 (en) 2001-03-12 2006-05-30 Renesas Technology Corp. Semiconductor integrated circuit device and process for producing the same
US7221056B2 (en) 2003-09-24 2007-05-22 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926462A (en) * 1972-07-04 1974-03-08
JPS4940859A (en) * 1972-08-25 1974-04-17
JPS5612754A (en) * 1979-06-11 1981-02-07 Gen Electric Composite structure and method of forming same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926462A (en) * 1972-07-04 1974-03-08
JPS4940859A (en) * 1972-08-25 1974-04-17
JPS5612754A (en) * 1979-06-11 1981-02-07 Gen Electric Composite structure and method of forming same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225475A (en) * 1984-04-23 1985-11-09 Mitsubishi Electric Corp Semiconductor device
JPS6132476A (en) * 1984-07-23 1986-02-15 Sharp Corp Semiconductor device
JPS6132477A (en) * 1984-07-23 1986-02-15 Sharp Corp Manufacture of semiconductor device
JPS6182479A (en) * 1984-09-28 1986-04-26 Sharp Corp Manufacture of semiconductor device
US6987069B2 (en) 1997-05-30 2006-01-17 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US6503819B2 (en) 1997-05-30 2003-01-07 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US6528403B2 (en) 1997-05-30 2003-03-04 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US6784116B2 (en) 1997-05-30 2004-08-31 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US6197702B1 (en) 1997-05-30 2001-03-06 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US7122469B2 (en) 1997-05-30 2006-10-17 Hitachi, Ltd. Fabrication process of a semiconductor integrated circuit device
US7049187B2 (en) 2001-03-12 2006-05-23 Renesas Technology Corp. Manufacturing method of polymetal gate electrode
US7053459B2 (en) 2001-03-12 2006-05-30 Renesas Technology Corp. Semiconductor integrated circuit device and process for producing the same
US7144766B2 (en) 2001-03-12 2006-12-05 Renesas Technology Corp. Method of manufacturing semiconductor integrated circuit device having polymetal gate electrode
US7300833B2 (en) 2001-03-12 2007-11-27 Renesas Technology Corp. Process for producing semiconductor integrated circuit device
US7375013B2 (en) 2001-03-12 2008-05-20 Renesas Technology Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7632744B2 (en) 2001-03-12 2009-12-15 Renesas Technology Corp. Semiconductor integrated circuit device and process for manufacturing the same
US7221056B2 (en) 2003-09-24 2007-05-22 Renesas Technology Corp. Semiconductor integrated circuit device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4378628A (en) Cobalt silicide metallization for semiconductor integrated circuits
JPS61142739A (en) Manufacture of semiconductor device
US5003375A (en) MIS type semiconductor integrated circuit device having a refractory metal gate electrode and refractory metal silicide film covering the gate electrode
JPS6213819B2 (en)
JPS5910271A (en) Semiconductor device
JPS62113421A (en) Manufacture of semiconductor device
JPH0258259A (en) Manufacture of semiconductor device
US4871617A (en) Ohmic contacts and interconnects to silicon and method of making same
JP2918914B2 (en) Semiconductor device and manufacturing method thereof
JPS6063962A (en) Manufacture of bi-polar transistor
JP2906489B2 (en) Method for manufacturing semiconductor device
JPS6350042A (en) Multilayer interconnection and electrode film structure
JPH04284668A (en) Semiconductor device and manufacture thereof
JPH01238144A (en) Manufacture of semiconductor device
JPS5873136A (en) Method of producing semiconductor device
EP0225224A2 (en) After oxide metal alloy process
JPS62252961A (en) Manufacture of semiconductor device
JPH0441510B2 (en)
JPS5889869A (en) Manufacture of semiconductor device
JPH0377661B2 (en)
JPH0232537A (en) Manufacture of semiconductor device
JPH01286468A (en) Manufacture of semiconductor device
JPS63265448A (en) Manufacture of mos type semiconductor device
JPS60219772A (en) Manufacture of semiconductor device
JPS63227058A (en) High melting-point metallic silicide gate mos field-effect transistor