JPS5883233A - Device for measuring characteristic of red blood cell - Google Patents
Device for measuring characteristic of red blood cellInfo
- Publication number
- JPS5883233A JPS5883233A JP56182565A JP18256581A JPS5883233A JP S5883233 A JPS5883233 A JP S5883233A JP 56182565 A JP56182565 A JP 56182565A JP 18256581 A JP18256581 A JP 18256581A JP S5883233 A JPS5883233 A JP S5883233A
- Authority
- JP
- Japan
- Prior art keywords
- red blood
- blood cells
- filters
- holder
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000003743 erythrocyte Anatomy 0.000 title claims abstract description 35
- 239000002245 particle Substances 0.000 claims abstract description 12
- 210000004369 blood Anatomy 0.000 claims abstract description 7
- 239000008280 blood Substances 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 239000011148 porous material Substances 0.000 claims abstract 2
- 238000001514 detection method Methods 0.000 claims description 26
- 239000003085 diluting agent Substances 0.000 claims description 6
- 239000012895 dilution Substances 0.000 claims description 3
- 238000010790 dilution Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Ecology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、赤血球の特性、とくに赤血球が毛細管を通過
する際に様々な状急に変形する能力、すなわち変形能を
測定する装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the properties of red blood cells, in particular the ability of red blood cells to undergo various sudden deformations when passing through capillary tubes, that is, their deformability.
赤血球の種々の特性のうち、赤血球が血管内を絶えず循
環し、通常約8μ前後の直径を有するものが、直径数μ
足らずの毛細管内を自由に通過しているが、これは赤血
球が変形能を有しているためであり、この変形能を調べ
ることによシ、微小循環障害などの診断に役立てること
ができる。一方、赤血球の変形能を定量化する手法の1
つとして、3μ程度のガラス毛細管に吸い込まれるに要
する除圧(吸引圧力)を一定のpH2浸透圧で測定する
方法、または他の手法として、゛3〜5μ程度の多孔性
のフィルタに赤血球を透過させ流量を測定する方法が用
いられていたが、前者は顕微鏡下における赤血球1個宛
の測定であり、測定結果が必ずしも赤血球全体の平均値
を代表しているとは限らず、熟練を要し実用的ではない
。後者は多数の赤血球に対する平均値が得られる反面、
赤血球の崩壊による誤差、赤血球を浮態する液の粘度、
温度などの影響を受け、流量が必ずしも変形能に関連し
たパラメータであるとけ断定できない欠点があった。ま
たいずれの方法も測定に手間を要し、l検体当りの測定
所要時間はかなり長いものであった。Among the various characteristics of red blood cells, red blood cells constantly circulate within blood vessels and have a diameter of approximately 8 μm, whereas red blood cells have a diameter of several μm.
Red blood cells pass freely through the small capillaries, but this is because red blood cells have deformability, and examining this deformability can be useful in diagnosing microcirculatory disorders. On the other hand, one of the methods for quantifying the deformability of red blood cells is
One method is to measure the pressure relief (suction pressure) required to be sucked into a glass capillary with a diameter of about 3μ using a constant pH2 osmotic pressure, or another method is to pass red blood cells through a porous filter with a diameter of about 3 to 5μ. However, the former method involves measuring one red blood cell under a microscope, and the measurement result does not necessarily represent the average value for all red blood cells, and requires skill. Not practical. While the latter provides an average value for a large number of red blood cells,
Errors due to the disintegration of red blood cells, viscosity of the liquid that floats red blood cells,
There is a drawback that it cannot be determined that the flow rate is necessarily a parameter related to deformability because it is affected by temperature and other factors. Furthermore, both methods require time and effort for measurement, and the time required for measurement per 1 sample is quite long.
本発明は上記の諸点に鑑みなされたもので、試料容器内
の血液希釈液をチューブの一端から吸引し送り出すチュ
ーブポンプと、このチューブの他端に導入パイプを介し
て接続され直径3μ前後の孔隙を多数有するフィルタを
ホルダに一定間隔に配置し順次フィルタが導入パイプ2
ホルダを介してこの導入パイプに対設された導出パイプ
との間に移動するようにしたフィルタ部と、導入パイプ
および導出パイプに接続され前記チューブポンプを駆動
する差圧検出装置と、前記導出パイプに接続されフィル
タ部を通過した試料を検出器下部に設けられた検出孔に
通過させ赤血球と希釈液との電気的差異に基づいて赤血
球を検出する粒子検出装置とから構成することにより、
所定時間フィルタを通過させた血液希釈液中の赤血球数
から、変形能に関するパラメータを容易に得ることがで
きる赤血球の特性を測定する装置を提供せんとするもの
である。The present invention has been made in view of the above points, and consists of a tube pump that sucks and sends out blood dilution in a sample container from one end of a tube, and a hole with a diameter of approximately 3 μm that is connected to the other end of this tube via an introduction pipe. A large number of filters are placed in a holder at regular intervals, and the filters are sequentially introduced into pipe 2.
a filter section that is movable between a holder and an outlet pipe installed opposite to the inlet pipe; a differential pressure detection device that is connected to the inlet pipe and the outlet pipe and drives the tube pump; and the outlet pipe. and a particle detection device that detects red blood cells based on the electrical difference between the red blood cells and the diluent by allowing the sample that has passed through the filter section to pass through a detection hole provided at the bottom of the detector.
It is an object of the present invention to provide an apparatus for measuring the characteristics of red blood cells that allows parameters related to deformability to be easily obtained from the number of red blood cells in a blood dilution solution that has been passed through a filter for a predetermined period of time.
以下、本発明の構成を図面に基づいて説明する。Hereinafter, the configuration of the present invention will be explained based on the drawings.
第1図は本発明の装置の全体を、第2図はフィルタ部お
よび差圧検出装置を示している。lは血液希釈液、2は
試料容器、3け吸引パイプ、4はチューブポンプである
。チューブポンプ4は吸引パイプ3に接続された細いチ
ューブ5をしごいて吸引し送り出す構造となっている。FIG. 1 shows the entire device of the present invention, and FIG. 2 shows a filter section and a differential pressure detection device. 1 is a blood diluent, 2 is a sample container, 3 suction pipes, and 4 is a tube pump. The tube pump 4 has a structure in which a thin tube 5 connected to a suction pipe 3 is squeezed, sucked, and sent out.
このチューブポンプ4けチューブ劣化の心配はあるが、
耐薬品性やコンタミネーションの面で優れている。チュ
ーブポンプ4は後述の差圧検出装置6からの制御信号に
より駆動されるモータを備え、モータの回転速度または
オン・オフによシ、チューブ5の他端に導入パイプ7を
介して接続されたフィルタ部8のフィルタ9にかかる圧
力を一定圧力に保持する。There is a concern that this tube pump's 4 tubes will deteriorate, but
Excellent in terms of chemical resistance and contamination. The tube pump 4 includes a motor driven by a control signal from a differential pressure detection device 6, which will be described later, and is connected to the other end of the tube 5 via an introduction pipe 7, depending on the rotational speed or on/off of the motor. The pressure applied to the filter 9 of the filter section 8 is maintained at a constant pressure.
フィルタ部8のフィルタ9は第2図に示すよう円
に、たとえば円板状のホルダー0の上の同−y問上に複
数個並べられておシ、ホルダーθごと交換が可能なよう
になっている。ホルダ10#′iその周縁をベーアリン
グ11で支持され、ホルダ100円周面に設けられた刻
み12に噛み合う歯車13をステップモータ14により
回転させ、フィルタ9を順次所定位置に移動させるよう
に構成されている。As shown in FIG. 2, the filters 9 of the filter section 8 are arranged in a circle, for example, on the same plane on a disc-shaped holder 0, so that the filters 9 can be replaced together with the holder θ. ing. The holder 10#'i is supported by a bearing 11 around its periphery, and a step motor 14 rotates a gear 13 that meshes with a notch 12 provided on the circumferential surface of the holder 100, thereby sequentially moving the filter 9 to a predetermined position. ing.
フィルタ9は赤血球が変形能を有するときのみその間隙
を通過できる程度の3μ前後の狭い通路を多数有してお
シ、合成樹脂製のメンブランフィルタが比較的均一な間
隙を有し使い易いので、使用するのに適している。フィ
ルタ部8においては、所定の位置でフィルタ9を設けた
ホルダ1oを挾持し、気密を保持するように導入パイプ
7と導出パイプ15とが対向してお如、所定のフィルタ
を介してのみ導入パイプ7と導出パイプ15とが連通ず
るようになっている。The filter 9 has a large number of narrow passages of around 3 μm that allow red blood cells to pass through the gaps only when they have deformability, and the membrane filter made of synthetic resin has relatively uniform gaps and is easy to use. suitable for use. In the filter section 8, the holder 1o provided with the filter 9 is held in a predetermined position, and the inlet pipe 7 and the outlet pipe 15 are opposed to each other so as to maintain airtightness. The pipe 7 and the outlet pipe 15 are communicated with each other.
導入パイプ7および導出パイプ15には、それぞれ差圧
検知用のパイプ16.17が設けられ、これらのパイプ
16.17を介して差圧検出装置6に接続されている。The inlet pipe 7 and the outlet pipe 15 are each provided with a pipe 16.17 for differential pressure detection, and are connected to the differential pressure detection device 6 via these pipes 16.17.
この差圧検出装置6け、たとえば第°2図に示すように
、尿銀U字管18に電気接点19.20を設け、水銀2
1をスイッチとしてオン・オフ制御をするように構成す
るのが比較的簡単で高精度の制御が行なえる。また水銀
U字管を用いずに、ピエゾ効果を利用した圧力検知用半
導体を用いることができる。この半導体により圧力が抵
抗変化に変換され、V−F変換回路を用いかつポンプ駆
動用にパルスモータを用いることによシ、かなシ高精度
の圧力制御を行なうことができる。この方法は有害な水
銀を用いないために、水銀がこぼれたシあるいは接点不
良による誤動作がなく、小型に構成することができる。For example, as shown in FIG.
1 as a switch for on/off control is relatively simple and allows highly accurate control. Moreover, a pressure sensing semiconductor using a piezo effect can be used without using a mercury U-shaped tube. This semiconductor converts pressure into a resistance change, and by using a V-F conversion circuit and a pulse motor for driving the pump, highly accurate pressure control can be performed. Since this method does not use harmful mercury, there is no malfunction due to spillage of mercury or poor contact, and the device can be constructed in a small size.
導出パイプ15の他端には粒子検出装置22が接続され
、フィルタ部8を通過した試料が検出容器23に導入さ
れる。粒子検出装置22は従来の血球計数器とほぼ同様
の構成であシ、検出器24の下部に直径100μ程度の
検出孔25が設けられ、検出器24の内外に設けられた
電極26.27により、検出孔25を通過する赤血球と
希釈液とのインピーダンスの差異に基づいて赤血球が検
出され、検出回路28を経て計数回路29で血球バルス
信号が計数される。30は検出器24の上部に接続され
検出器24の内部に試料を吸引する流体制御装置で、被
測定試料の定量装置を内蔵している。A particle detection device 22 is connected to the other end of the outlet pipe 15, and the sample that has passed through the filter section 8 is introduced into a detection container 23. The particle detection device 22 has a configuration similar to that of a conventional hemocytometer, and includes a detection hole 25 with a diameter of about 100 μ at the bottom of the detector 24, and electrodes 26 and 27 provided inside and outside the detector 24. The red blood cells are detected based on the impedance difference between the red blood cells passing through the detection hole 25 and the diluent, and the blood cell pulse signal is counted by the counting circuit 29 via the detection circuit 28. A fluid control device 30 is connected to the upper part of the detector 24 and sucks a sample into the detector 24, and has a built-in device for quantifying the sample to be measured.
上記のように構成された装置を用いて赤血球の変形能を
測定するには、試料容器2に血液希釈液を収納し、吸引
パイプ3を介してフィルタ部8に試料を供給すると、所
定の圧力(たとえば200ffHg)でフィルタ9の前
後に圧力がかけられ、変形能を有する赤血球のみが赤血
球の直径(8μ程度)よシも小さいフィルタ9の間隙を
通過し、検出容器23に供給される。変形能の正常な赤
血球は速やかにフィルタ9を通過するが、変形能が低下
した赤血球は・フィルタ9に捕獲されたり、あるいは通
過するのに時間を要する。したがって所定の時間内に検
出容器23に送シ込まれる試料を粒子検出装置22によ
シ測定し、−位体積当りの粒子数を計数すると、粒子の
絶対数、フィルタ通過前後の減少割合あるいは単位時開
光りの通過粒子数などから、変形能に関する重、要なパ
ラメータを得ることができる。このようにして得られた
パラメータは、臨床データとして微小循環障害などの診
断などに提供される。一検体に使用されたフィルタは、
ステップモータ14によシつぎのフィルタと交換され、
さらに全部のフィルタを使い切るとホルダごと交換され
る。測定後、検出容器23の内部の試料はパルプ31を
介して外部へ排出される。なおフィルタおよびホルダは
第2図に示すような円板状のものに限らず、第3図に示
すように、スプロケット32を有する細いフィルム33
に多数の窓をあけ、6窓の部分にフィルタ9を固定して
なるものを用いることも可能である。To measure the deformability of red blood cells using the apparatus configured as described above, a blood diluent is stored in the sample container 2, and a sample is supplied to the filter part 8 via the suction pipe 3, and then a predetermined pressure is applied. A pressure (for example, 200 ffHg) is applied before and after the filter 9, and only deformable red blood cells pass through the gap in the filter 9, which is smaller than the diameter of the red blood cells (about 8 μ), and are supplied to the detection container 23. Red blood cells with normal deformability quickly pass through the filter 9, but red blood cells with reduced deformability are captured by the filter 9 or take time to pass through. Therefore, when the sample sent into the detection container 23 within a predetermined time is measured by the particle detection device 22 and the number of particles per unit volume is counted, the absolute number of particles, the rate of decrease before and after passing through the filter, or the unit Important parameters related to deformability can be obtained from the number of particles passing through the time-spreading beam. The parameters obtained in this manner are provided as clinical data for diagnosis of microcirculatory disorders and the like. The filter used for one sample was
The step motor 14 is replaced with the next filter,
Furthermore, when all the filters are used up, the holder is replaced. After the measurement, the sample inside the detection container 23 is discharged to the outside via the pulp 31. Note that the filter and holder are not limited to disk-shaped ones as shown in FIG.
It is also possible to use one in which a large number of windows are opened in the window and the filter 9 is fixed to each of the six windows.
以上説明したように本発明の装置によれば、フィルタ部
により所定圧力で所定時間の前処理工程が行なわれ、し
かる後に粒子計数測定が行なわれ各種パラメータの測定
が行なわれる。これらの工程は所定のプログラムに従っ
て各検体ごとの測定を自動的に行なうことができ、従来
の研究室的な測定からルーチン化された検体測定を可能
にするものであシ、熟練や高度の技術を必要とせず、簡
単に変形能に関するパラメータを得ることができるとい
う効果がある。As explained above, according to the apparatus of the present invention, a pretreatment process is performed at a predetermined pressure for a predetermined time using the filter section, and then particle counting measurement is performed and various parameters are measured. These processes can automatically measure each specimen according to a predetermined program, and enable routine specimen measurements from conventional laboratory measurements. This method has the advantage that parameters related to deformability can be easily obtained without the need for .
第1図は本発明の装置の一実施態様を示す断面説明図、
第2図はフィルタ部および差圧検出装置の説明図、第3
図はフィルタ部の他の例を示す説明図である。
1・・・血液希釈液、2・・・試料容器、3・・・吸引
パイプ、4・・・チューブポンプ、5・・・チューブ、
6・・・差圧検出装置、7・・・導入パイプ、8・・・
フィルタ部、9・・・フィルタ、lO・・・ホルダ、1
1・・・ベアリング、12・・・刻み、13・・・歯車
、14・・・ステップモータ、15・・・導出パイプ、
16.17・・・パイプ、18・・・水銀U字管、1,
9.20・・・電気接点、21・・・水銀、22・・・
粒子検出装置、23・・・検出容器、24・・・検出器
、25・・・検出孔、26.27・・・電極、28・・
・検出回路、29・・・計数回路、3o・・・流体制御
装置、31・・・パルプ、32・・・スプロケット、3
3・・・フ不ルムFIG. 1 is a cross-sectional explanatory diagram showing one embodiment of the device of the present invention,
Figure 2 is an explanatory diagram of the filter section and differential pressure detection device;
The figure is an explanatory diagram showing another example of the filter section. 1... Blood diluent, 2... Sample container, 3... Suction pipe, 4... Tube pump, 5... Tube,
6...Differential pressure detection device, 7...Introduction pipe, 8...
Filter part, 9... Filter, lO... Holder, 1
DESCRIPTION OF SYMBOLS 1... Bearing, 12... Notch, 13... Gear, 14... Step motor, 15... Leading pipe,
16.17...Pipe, 18...Mercury U-shaped tube, 1,
9.20...Electrical contact, 21...Mercury, 22...
Particle detection device, 23... detection container, 24... detector, 25... detection hole, 26.27... electrode, 28...
・Detection circuit, 29... Counting circuit, 3o... Fluid control device, 31... Pulp, 32... Sprocket, 3
3...Furumu
Claims (1)
し送り出すチューブポンプと、このチューブの他端に導
入パイプを介して接続され直径3μ前後の孔隙を多数有
するフィルタをホルダに一定間隔に配置し順次フィルタ
が導入パイプとホルダを介してこの導入パイプに対設さ
れた導出パイプとの間に移動するようにしたフィルタ部
と、導入パイプおよび導出パイプに接続され前記チュー
ブポンプを駆動する差圧検出装置と、前記導出パイプに
接続されフィルタ部を通過した試料を検出器下部に設け
られた検出孔に通過させ赤血球と希釈液との電気的差異
に基づいて赤血球を検出する粒子検出装置とからなるこ
とを特徴とする赤血球の特性を測定する装置。1. A tube pump that aspirates and sends out the blood dilution liquid in the sample container from one end of the tube, and a filter connected to the other end of this tube via an introduction pipe and having many pores with a diameter of about 3 μm are arranged at regular intervals in a holder. A filter section in which the filter is sequentially moved between an inlet pipe and an outlet pipe installed opposite to the inlet pipe via a holder, and a differential pressure detection unit connected to the inlet pipe and the outlet pipe to drive the tube pump. and a particle detection device that is connected to the lead-out pipe and that detects red blood cells based on the electrical difference between the red blood cells and the diluent by allowing the sample that has passed through the filter section to pass through a detection hole provided at the bottom of the detector. A device for measuring the characteristics of red blood cells, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56182565A JPS5883233A (en) | 1981-11-13 | 1981-11-13 | Device for measuring characteristic of red blood cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56182565A JPS5883233A (en) | 1981-11-13 | 1981-11-13 | Device for measuring characteristic of red blood cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5883233A true JPS5883233A (en) | 1983-05-19 |
JPH0215011B2 JPH0215011B2 (en) | 1990-04-10 |
Family
ID=16120493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56182565A Granted JPS5883233A (en) | 1981-11-13 | 1981-11-13 | Device for measuring characteristic of red blood cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5883233A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59961U (en) * | 1982-06-25 | 1984-01-06 | 東亜医用電子株式会社 | Device that measures the characteristics of blood cells |
US8562267B2 (en) | 2007-03-31 | 2013-10-22 | Mark Trageser | Pushpin retaining device and method of retaining without object puncture |
CN109276125A (en) * | 2018-11-26 | 2019-01-29 | 珠海格力电器股份有限公司 | Pipeline on-off control device, steam box and steam on-off control method of steam box |
JP2020502479A (en) * | 2016-11-11 | 2020-01-23 | バイオサージカル エス.エル.Biosurgical S.L. | Filtration device |
WO2021153385A1 (en) | 2020-01-30 | 2021-08-05 | Nihon Kohden Corporation | Measuring apparatus and measuring method |
-
1981
- 1981-11-13 JP JP56182565A patent/JPS5883233A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59961U (en) * | 1982-06-25 | 1984-01-06 | 東亜医用電子株式会社 | Device that measures the characteristics of blood cells |
JPH0140049Y2 (en) * | 1982-06-25 | 1989-12-01 | ||
US8562267B2 (en) | 2007-03-31 | 2013-10-22 | Mark Trageser | Pushpin retaining device and method of retaining without object puncture |
JP2020502479A (en) * | 2016-11-11 | 2020-01-23 | バイオサージカル エス.エル.Biosurgical S.L. | Filtration device |
CN109276125A (en) * | 2018-11-26 | 2019-01-29 | 珠海格力电器股份有限公司 | Pipeline on-off control device, steam box and steam on-off control method of steam box |
CN109276125B (en) * | 2018-11-26 | 2020-09-08 | 珠海格力电器股份有限公司 | Pipeline on-off control device, steam box and steam on-off control method of steam box |
WO2021153385A1 (en) | 2020-01-30 | 2021-08-05 | Nihon Kohden Corporation | Measuring apparatus and measuring method |
Also Published As
Publication number | Publication date |
---|---|
JPH0215011B2 (en) | 1990-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2489099C (en) | A disposable cartridge for characterizing particles suspended in a liquid | |
US5023054A (en) | Blood filter and apparatus for hemorheological measurement | |
JP2972367B2 (en) | Cell analyzer | |
US3549994A (en) | Automatic method and apparatus for obtaining different dilutions from blood or the like samples and processing the same by fluid handling and electronics to obtain certain nonelectric parameters | |
US3165692A (en) | Continuously operable apparatus and method for counting particles in successive portions of a flowing fluid stream | |
US5731212A (en) | Test apparatus and method for testing cuvette accommodated samples | |
JP3847053B2 (en) | Blood analyzer | |
JPS60218059A (en) | Device and method of determining analyte in liquid | |
JPS5916667B2 (en) | automatic blood analyzer | |
JP2001258868A5 (en) | ||
JPS5883233A (en) | Device for measuring characteristic of red blood cell | |
TWM592966U (en) | Water quality monitoring system | |
CN112547143B (en) | Micro-fluidic chip and blood cell detection device | |
JP2003107080A (en) | Blood analyzer and method therefor | |
CN114199976A (en) | Potassium ion concentration sensor based on impedance analysis, detection device and method | |
JP2002277479A (en) | Liquid transfer device, hemanalysis apparatus, and their manufacturing method | |
US4863868A (en) | Apparatus for detecting the presence of micro organism in liquid | |
CN113340952B (en) | Instant diagnosis testing device and application thereof | |
JPH02502401A (en) | Device for measuring the rate of oxygen consumption by microorganisms in liquid media | |
JPS6140541A (en) | Measuring device for predetermined characteristic of suspended particle in carrying medium | |
JPH0140049Y2 (en) | ||
JP2003083926A (en) | Apparatus and method for hemanalysis | |
JPH0219893B2 (en) | ||
WO2019127958A1 (en) | Medical rapid biochemical detection system and detection method | |
JP2017116405A (en) | Blood coagulation inspection method |