JPH0215011B2 - - Google Patents
Info
- Publication number
- JPH0215011B2 JPH0215011B2 JP56182565A JP18256581A JPH0215011B2 JP H0215011 B2 JPH0215011 B2 JP H0215011B2 JP 56182565 A JP56182565 A JP 56182565A JP 18256581 A JP18256581 A JP 18256581A JP H0215011 B2 JPH0215011 B2 JP H0215011B2
- Authority
- JP
- Japan
- Prior art keywords
- red blood
- pipe
- blood cells
- tube
- detection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 28
- 210000003743 erythrocyte Anatomy 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 10
- 239000003085 diluting agent Substances 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 claims description 5
- 239000008280 blood Substances 0.000 claims description 5
- 238000010790 dilution Methods 0.000 claims description 2
- 239000012895 dilution Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 239000012530 fluid Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Ecology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Description
【発明の詳細な説明】
本発明は、赤血球の特性、とくに赤血球が毛細
管を通過する際に様々な状態に変形する能力、す
なわち変形能を測定する装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the properties of red blood cells, particularly the ability of red blood cells to deform into various states when passing through capillaries, ie, deformability.
赤血球の種々の特性のうち、赤血球が血管内を
絶えず循環し、通常約8μ前後の直径を有するも
のが、直径数μ足らずの毛細管内を自由に通過し
ているが、これは赤血球が変形能を有しているた
めであり、この変形能を調べることにより、微小
循環障害などの診断に役立てることができる。一
方、赤血球の変形能を定量化する手法の1つとし
て、3μ程度のガラス毛細管に吸い込まれるに要
する陰圧(吸引圧力)を一定のPH、浸透圧で測定
する方法、または他の手法として、3〜5μ程度
の多孔性のフイルタに赤血球を透過させ流量を測
定する方法が用いられていたが、前者は顕微鏡下
における赤血球1個宛の測定であり、測定結果が
必ずしも赤血球全体の平均値を代表しているとは
限らず、熟練を要し実用的ではない。後者は多数
の赤血球に対する平均値が得られる反面、赤血球
の崩壊による誤差、赤血球を浮懸する液の粘度、
温度などの影響を受け、流量が必ずしも変形能に
関連したパラメータであるとは断定できない欠点
があつた。またいずれの方法も測定に手間を要
し、1検体当りの測定所要時間はかなり長いもの
であつた。 Among the various characteristics of red blood cells, red blood cells constantly circulate within blood vessels, and those with a diameter of approximately 8 microns can freely pass through capillaries that are less than a few microns in diameter. This is because it has this deformability, and examining this deformability can be useful in diagnosing microcirculatory disorders. On the other hand, one method for quantifying the deformability of red blood cells is to measure the negative pressure (suction pressure) required to be sucked into a glass capillary of about 3μ at a constant pH and osmotic pressure, or as another method. A method was used in which red blood cells were passed through a porous filter of about 3 to 5 microns and the flow rate was measured, but the former method was for measuring a single red blood cell under a microscope, and the measurement results did not necessarily represent the average value for all red blood cells. It is not necessarily representative, requires skill, and is not practical. Although the latter can obtain an average value for a large number of red blood cells, it is also subject to errors due to the disintegration of red blood cells, the viscosity of the liquid in which the red blood cells are suspended,
There was a drawback that it could not be determined that the flow rate was necessarily a parameter related to deformability because it was affected by temperature and other factors. Furthermore, both methods require time and effort for measurement, and the time required for measurement per sample is quite long.
本発明は上記の諸点に鑑みなされたもので、試
料容器内の血液希釈液をチユーブの一端から吸引
し送り出すチユーブポンプと、このチユーブの他
端に導入パイプを介して接続され直径3μ前後の
孔〓を多数有するフイルタをホルダに一定間隔に
配置し順次フイルタが導入パイプとホルダを介し
てこの導入パイプに対設された導出パイプとの間
に移動するようにしたフイルタ部と、導入パイプ
および導出パイプに接続され前記チユーブポンプ
を駆動する差圧検出装置と、前記導出パイプに接
続されフイルタ部を通過した試料を検出器下部に
設けられた検出孔に通過させ赤血球と希釈液との
電気的差異に基づいて赤血球を検出する粒子検出
装置とから構成することにより、所定時間フイル
タを通過させた血液希釈液中の赤血球数から、変
形能に関するパラメータを容易に得ることができ
る赤血球の特性を測定する装置を提供せんとする
ものである。 The present invention has been made in view of the above points, and consists of a tube pump that sucks and sends out blood dilution in a sample container from one end of a tube, and a hole approximately 3 μm in diameter connected to the other end of the tube via an introduction pipe. A filter part having a large number of filters arranged at regular intervals in a holder so that the filters are sequentially moved between an inlet pipe and an outlet pipe installed opposite to the inlet pipe via the holder, an inlet pipe and an outlet. A differential pressure detection device is connected to the pipe and drives the tube pump, and the sample is connected to the lead-out pipe and passes through the filter part through a detection hole provided at the bottom of the detector to detect the electrical difference between the red blood cells and the diluent. By comprising a particle detection device that detects red blood cells based on The aim is to provide the equipment.
以下、本発明の構成を図面に基づいて説明す
る。第1図は本発明の装置の全体を、第2図はフ
イルタ部および差圧検出装置を示している。1は
血液希釈液、2は試料容器、3は吸引パイプ、4
はチユーブポンプである。チユーブポンプ4は吸
引パイプ3に接続された細いチユーブ5をしごい
て吸引し送り出す構造となつている。このチユー
ブポンプ4はチユーブ劣化の心配はあるが、耐薬
品性やコンタミネーシヨンの面で優れている。チ
ユーブポンプ4は後述の差圧検出装置6からの制
御信号により駆動されるモータを備え、モータの
回転速度またはオン・オフにより、チユーブ5の
他端に導入パイプ7を介して接続されたフイルタ
部8のフイルタ9にかかる圧力を一定圧力に保持
する。 Hereinafter, the configuration of the present invention will be explained based on the drawings. FIG. 1 shows the entire device of the present invention, and FIG. 2 shows a filter section and a differential pressure detection device. 1 is a blood diluent, 2 is a sample container, 3 is a suction pipe, 4
is a tube pump. The tube pump 4 has a structure in which a thin tube 5 connected to the suction pipe 3 is squeezed to suck and send out. Although this tube pump 4 is concerned about tube deterioration, it is excellent in terms of chemical resistance and contamination. The tube pump 4 is equipped with a motor that is driven by a control signal from a differential pressure detection device 6 (to be described later), and a filter section connected to the other end of the tube 5 via an introduction pipe 7 is controlled by the rotational speed or on/off of the motor. The pressure applied to the filter 9 of 8 is maintained at a constant pressure.
フイルタ部8のフイルタ9は第2図に示すよう
に、たとえば円板状のホルダ10の上の同一円周
上に複数個並べられており、ホルダ10ごと交換
が可能なようになつている。ホルダ10はその周
縁をベアリング11で支持され、ホルダ10の円
周面に設けられた刻み12に噛み合う歯車13を
ステツプモータ14により回転させ、フイルタ9
を順次所定位置に移動させるように構成されてい
る。フイルタ9は赤血球が変形能を有するときの
みその間〓を通過できる程度の3μ前後の狭い通
路を多数有しており、合成樹脂製のメンブランフ
イルタが比較的均一な間〓を有し使い易いので、
使用するのに適している。フイルタ部8において
は、所定の位置でフイルタ9を設けたホルダ10
を挾持し、気密を保持するように導入パイプ7と
導出パイプ15とが対向しており、所定のフイル
タを介してのみ導入パイプ7と導出パイプ15と
が連通するようになつている。 As shown in FIG. 2, a plurality of filters 9 of the filter section 8 are arranged on the same circumference on, for example, a disc-shaped holder 10, so that the holder 10 can be replaced together. The holder 10 has its peripheral edge supported by a bearing 11, and a gear 13 that meshes with a notch 12 provided on the circumferential surface of the holder 10 is rotated by a step motor 14.
is configured to sequentially move to a predetermined position. The filter 9 has a large number of narrow passages of about 3 μm that allow red blood cells to pass through only when they have deformability, and the membrane filter made of synthetic resin has a relatively uniform width and is easy to use.
suitable for use. In the filter section 8, a holder 10 is provided with a filter 9 at a predetermined position.
The inlet pipe 7 and the outlet pipe 15 face each other so as to sandwich and maintain airtightness, and the inlet pipe 7 and the outlet pipe 15 communicate with each other only through a predetermined filter.
導入パイプ7および導出パイプ15には、それ
ぞれ差圧検知用のパイプ16,17が設けられ、
これらのパイプ16,17を介して差圧検出装置
6に接続されている。この差圧検出装置6は、た
とえば第2図に示すように、水銀U字管18に電
気接点19,20を設け、水銀21をスイツチと
してオン・オフ制御をするように構成するのが比
較的簡単で高精度の制御が行なえる。また水銀U
字管を用いずに、ピエゾ効果を利用した圧力検知
用半導体を用いることができる。この半導体によ
り圧力が抵抗変化に変換され、V−F変換回路を
用いかつポンプ駆動用にパルスモータを用いるこ
とにより、かなり高精度の圧力制御を行なうこと
ができる。この方法は有害な水銀を用いないため
に、水銀がこぼれたりあるいは接点不良による誤
動作がなく、小型に構成することができる。 The inlet pipe 7 and the outlet pipe 15 are provided with pipes 16 and 17 for differential pressure detection, respectively.
It is connected to the differential pressure detection device 6 via these pipes 16 and 17. For example, as shown in FIG. 2, this differential pressure detection device 6 is relatively constructed so that electrical contacts 19 and 20 are provided in a mercury U-shaped tube 18, and the mercury 21 is used as a switch to perform on/off control. Easy and highly accurate control is possible. Also mercury U
A pressure sensing semiconductor that utilizes the piezo effect can be used without using a tube. This semiconductor converts pressure into a change in resistance, and by using a V-F conversion circuit and a pulse motor for driving the pump, it is possible to control pressure with high precision. Since this method does not use harmful mercury, there is no malfunction due to spillage of mercury or poor contact, and the device can be constructed in a small size.
導出パイプ15の他端には粒子検出装置22が
接続され、フイルタ部8を通過した試料が検出容
器23に導入される。粒子検出装置22は従来の
血球計数器とほぼ同様の構成であり、検出器24
の下部に直径100μ程度の検出孔25が設けられ、
検出器24の内外に設けられた電極26,27に
より、検出孔25を通過する赤血球と希釈液との
インピーダンスの差異に基づいて赤血球が検出さ
れ、検出回路28を経て計数回路29で血球パル
ス信号が計数される。30は検出器24の上部に
接続され検出器24の内部に試料を吸引する流体
制御装置で、被測定試料の定量装置を内蔵してい
る。 A particle detection device 22 is connected to the other end of the outlet pipe 15, and the sample that has passed through the filter section 8 is introduced into a detection container 23. The particle detection device 22 has almost the same configuration as a conventional hemocytometer, and has a detector 24.
A detection hole 25 with a diameter of about 100μ is provided at the bottom of the
Red blood cells are detected by electrodes 26 and 27 provided inside and outside the detector 24 based on the impedance difference between the red blood cells passing through the detection hole 25 and the diluent, and a blood cell pulse signal is sent to the counting circuit 29 via the detection circuit 28. is counted. A fluid control device 30 is connected to the upper part of the detector 24 and sucks a sample into the detector 24, and has a built-in device for quantifying the sample to be measured.
上記のように構成された装置を用いて赤血球の
変形能を測定するには、試料容器2に血液希釈液
を収納し、吸引パイプ3を介してフイルタ部8に
試料を供給すると、所定の圧力(たとえば200mm
Hg)でフイルタ9の前後に圧力がかけられ、変
形能を有する赤血球のみが赤血球の直径(8μ程
度)よりも小さいフイルタ9の間〓を通過し、検
出容器23に供給される。変形能の正常な赤血球
は速やかにフイルタ9を通過するが、変形能が低
下した赤血球はフイルタ9に捕獲されたり、ある
いは通過するのに時間を要する。したがつて所定
の時間内に検出容器23に送り込まれる試料を粒
子検出装置22により測定し、単位体積当りの粒
子数を計数すると、粒子の絶対数、フイルタ通過
前後の減少割合あるいは単位時間当りの通過粒子
数などから、変形能に関する重要なパラメータを
得ることができる。このようにして得られたパラ
メータは、臨床データとして微小循環障害などの
診断などに提供される。一検体に使用されたフイ
ルタは、ステツプモータ14によりつぎのフイル
タと交換され、さらに全部のフイルタを使い切る
とホルダごと交換される。測定後、検出容器23
の内部の試料はバルブ31を介して外部へ排出さ
れる。なおフイルタおよびホルダは第2図に示す
ような円板状のものに限らず、第3図に示すよう
に、スプロケツト32を有する細いフイルム33
に多数の窓をあけ、各窓の部分にフイルタ9を固
定してなるものを用いることも可能である。 To measure the deformability of red blood cells using the apparatus configured as described above, a blood diluent is stored in the sample container 2, and the sample is supplied to the filter section 8 via the suction pipe 3. (For example 200mm
Pressure is applied before and after the filter 9 with Hg), and only deformable red blood cells pass between the filters 9, which are smaller in diameter than the red blood cells (about 8 μm), and are supplied to the detection container 23. Red blood cells with normal deformability quickly pass through the filter 9, but red blood cells with reduced deformability are captured by the filter 9 or require time to pass through. Therefore, if the sample fed into the detection container 23 within a predetermined time is measured by the particle detection device 22 and the number of particles per unit volume is counted, the absolute number of particles, the reduction rate before and after passing through the filter, or the reduction rate per unit time can be determined. Important parameters regarding deformability can be obtained from the number of particles passing through. The parameters obtained in this manner are provided as clinical data for diagnosis of microcirculatory disorders and the like. The filter used for one sample is replaced by the next filter by the step motor 14, and when all the filters are used up, the holder is replaced with another. After measurement, the detection container 23
The sample inside is discharged to the outside through the valve 31. Note that the filter and holder are not limited to disk-shaped ones as shown in FIG.
It is also possible to use one in which a large number of windows are opened in the window and a filter 9 is fixed to each window.
以上説明したように本発明の装置によれば、フ
イルタ部により所定圧力で所定時間の前処理工程
が行なわれ、しかる後に粒子計数測定が行なわれ
各種パラメータの測定が行なわれる。これらの工
程は所定のプログラムに従つて各検体ごとの測定
を自動的に行なうことができ、従来の研究室的な
測定からルーチン化された検体測定を可能にする
ものであり、熟練や高度の技術を必要とせず、簡
単に変形能に関するパラメータを得ることができ
るという効果がある。 As explained above, according to the apparatus of the present invention, a pretreatment step is performed by the filter section at a predetermined pressure for a predetermined time, and then particle counting measurement is performed and various parameters are measured. These processes can automatically measure each sample according to a predetermined program, making it possible to perform routine sample measurements from conventional laboratory measurements. This method has the advantage that parameters related to deformability can be easily obtained without requiring any technical skills.
第1図は本発明の装置の一実施態様を示す断面
説明図、第2図はフイルタ部および差圧検出装置
の説明図、第3図はフイルタ部の他の例を示す説
明図である。
1……血液希釈液、2……試料容器、3……吸
引パイプ、4……チユーブポンプ、5……チユー
ブ、6……差圧検出装置、7……導入パイプ、8
……フイルタ部、9……フイルタ、10……ホル
ダ、11……ベアリング、12……刻み、13…
…歯車、14……ステツプモータ、15……導出
パイプ、16,17……パイプ、18……水銀U
字管、19,20……電気接点、21……水銀、
22……粒子検出装置、23……検出容器、24
……検出器、25……検出孔、26,27……電
極、28……検出回路、29……計数回路、30
……流体制御装置、31……バルブ、32……ス
プロケツト、33……フイルム。
FIG. 1 is an explanatory cross-sectional view showing one embodiment of the device of the present invention, FIG. 2 is an explanatory view of a filter section and a differential pressure detection device, and FIG. 3 is an explanatory view showing another example of the filter section. 1...Blood diluent, 2...Sample container, 3...Suction pipe, 4...Tube pump, 5...Tube, 6...Differential pressure detection device, 7...Introduction pipe, 8
... Filter section, 9 ... Filter, 10 ... Holder, 11 ... Bearing, 12 ... Notch, 13 ...
... Gear, 14 ... Step motor, 15 ... Output pipe, 16, 17 ... Pipe, 18 ... Mercury U
Tube, 19, 20...Electric contact, 21...Mercury,
22...Particle detection device, 23...Detection container, 24
...detector, 25 ... detection hole, 26, 27 ... electrode, 28 ... detection circuit, 29 ... counting circuit, 30
... Fluid control device, 31 ... Valve, 32 ... Sprocket, 33 ... Film.
Claims (1)
ら吸引し送り出すチユーブポンプと、このチユー
ブの他端に導入パイプを介して接続され直径3μ
前後の孔〓を多数有するフイルタをホルダに一定
間隔に配置し順次フイルタが導入パイプとホルダ
を介してこの導入パイプに対設された導出パイプ
との間に移動するようにしたフイルタ部と、導入
パイプおよび導出パイプに接続され前記チユーブ
ポンプを駆動する差圧検出装置と、前記導出パイ
プに接続されフイルタ部を通過した試料を検出器
下部に設けられた検出孔に通過させ赤血球と希釈
液との電気的差異に基づいて赤血球を検出する粒
子検出装置とからなることを特徴とする赤血球の
特性を測定する装置。1 A tube pump that aspirates and sends out the blood dilution liquid in the sample container from one end of the tube, and a tube pump with a diameter of 3μ connected to the other end of this tube via an introduction pipe.
A filter part having a large number of front and rear holes arranged in a holder at regular intervals so that the filters are sequentially moved between an inlet pipe and an outlet pipe installed opposite to the inlet pipe via the holder; A differential pressure detection device is connected to the pipe and the lead-out pipe and drives the tube pump, and a differential pressure detection device is connected to the lead-out pipe and passes the sample that has passed through the filter section through a detection hole provided at the bottom of the detector to separate the red blood cells and the diluent. 1. A device for measuring the characteristics of red blood cells, comprising a particle detection device that detects red blood cells based on electrical differences.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56182565A JPS5883233A (en) | 1981-11-13 | 1981-11-13 | Device for measuring characteristic of red blood cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56182565A JPS5883233A (en) | 1981-11-13 | 1981-11-13 | Device for measuring characteristic of red blood cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5883233A JPS5883233A (en) | 1983-05-19 |
JPH0215011B2 true JPH0215011B2 (en) | 1990-04-10 |
Family
ID=16120493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56182565A Granted JPS5883233A (en) | 1981-11-13 | 1981-11-13 | Device for measuring characteristic of red blood cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5883233A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59961U (en) * | 1982-06-25 | 1984-01-06 | 東亜医用電子株式会社 | Device that measures the characteristics of blood cells |
US8353656B2 (en) | 2007-03-31 | 2013-01-15 | Mark Trageser | Pushpin retaining device and method of retaining without object puncture |
CA3036624A1 (en) * | 2016-11-11 | 2018-05-17 | Biosurgical S.L | Filtration apparatus |
CN109276125B (en) * | 2018-11-26 | 2020-09-08 | 珠海格力电器股份有限公司 | Pipeline on-off control device, steam box and steam on-off control method of steam box |
JP7544485B2 (en) | 2020-01-30 | 2024-09-03 | 日本光電工業株式会社 | Measuring device and measuring method |
-
1981
- 1981-11-13 JP JP56182565A patent/JPS5883233A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5883233A (en) | 1983-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2489099C (en) | A disposable cartridge for characterizing particles suspended in a liquid | |
JP2685544B2 (en) | Blood filter, blood test method, and blood test apparatus | |
ES2316376T3 (en) | PARTICLE CHARACTERIZATION DEVICE. | |
US20030121313A1 (en) | Micromachined fluid analysis device and method | |
US3165692A (en) | Continuously operable apparatus and method for counting particles in successive portions of a flowing fluid stream | |
JPS60218059A (en) | Device and method of determining analyte in liquid | |
JPS62266438A (en) | Method and device for detecting relative dynamic liquid surface activity | |
JPH0215011B2 (en) | ||
JPS5999248A (en) | Blood analyzer | |
JP2005534896A (en) | Disposable cartridge for characterizing particles suspended in liquid | |
US4863868A (en) | Apparatus for detecting the presence of micro organism in liquid | |
JP2003107080A (en) | Blood analyzer and method therefor | |
JPH0140049Y2 (en) | ||
CN221007596U (en) | Instrument and reagent card for detecting hematocrit based on blood flow velocity | |
CN113340952B (en) | Instant diagnosis testing device and application thereof | |
JPH11183359A (en) | Particle analyzer | |
JPS6130707B2 (en) | ||
JPH0219893B2 (en) | ||
JP2003083926A (en) | Apparatus and method for hemanalysis | |
JPH02213745A (en) | Device for inspecting sample | |
JPH02213744A (en) | Method and device for inspecting sample | |
EP4090960A1 (en) | Solid state ion selective electrodes | |
JPS6239697B2 (en) | ||
JPS5883231A (en) | Method and device for measuring characteristic of red blood cell | |
JPH0230457B2 (en) | KETSUKYUNOTOKUSEIOSOKUTEISURUSOCHI |