JPS586275B2 - lead acid battery - Google Patents
lead acid batteryInfo
- Publication number
- JPS586275B2 JPS586275B2 JP52049441A JP4944177A JPS586275B2 JP S586275 B2 JPS586275 B2 JP S586275B2 JP 52049441 A JP52049441 A JP 52049441A JP 4944177 A JP4944177 A JP 4944177A JP S586275 B2 JPS586275 B2 JP S586275B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- acid battery
- antimony
- electrolytic solution
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Description
【発明の詳細な説明】
本発明は低自己放電率を有し、且つ補水不要期間の長い
鉛蓄電池に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lead-acid battery that has a low self-discharge rate and a long period of time during which no rehydration is required.
近年、従来の鉛蓄電池の実用上の欠点である長期間放置
後の補充電や補水の頻度を減少するための改良が試みら
れている。In recent years, attempts have been made to improve the frequency of supplementary charging and water replenishment after long-term storage, which is a practical drawback of conventional lead-acid batteries.
鉛蓄電池は長期間放置すると、自己放電により、蓄電さ
れた電気量が減少し、放電能力が低下するが、その主た
る原因は鉛一アンチモン合金からなる格子体等から電解
液中に溶出したアンチモンが、充電時において負極板に
析出または吸着し、負極活物質との間で局部電池を形成
して負極板が自己放電を起すからである。When lead-acid batteries are left for a long period of time, the amount of stored electricity decreases due to self-discharge, and the discharge capacity decreases.The main cause of this is antimony leached into the electrolyte from the lattice made of lead-antimony alloy. This is because, during charging, it is deposited or adsorbed on the negative electrode plate, forms a local battery with the negative electrode active material, and the negative electrode plate causes self-discharge.
また、負極にアンチモンが析出すると、負極の水分解電
位が貫の方向へ移行し、負極における水分解反応を促進
して減液量が増すので補水の頻度が増大する。Furthermore, when antimony is deposited on the negative electrode, the water-splitting potential of the negative electrode shifts in the direction of penetration, promoting the water-splitting reaction at the negative electrode, increasing the amount of liquid loss, and increasing the frequency of water replenishment.
上記のようなアンチモンの溶出に起因する問題を改善す
るために、次の3方面から研究されている。In order to improve the problems caused by antimony elution as described above, research is being carried out from the following three directions.
(1)格子体の合金組成中の溶出金属の含有量を制限す
る。(1) Limiting the content of eluted metal in the alloy composition of the lattice.
(2)通電量を変える等の製造仕様を変更する。(2) Change manufacturing specifications, such as changing the amount of current applied.
(3)電解液中に溶出した金属を電解液の入れ替え等に
よって除去する。(3) The metal eluted into the electrolyte is removed by replacing the electrolyte.
(1)について、従来の鉛蓄電池の格子体の合金組成は
、鉛、アンチモン、砒素、スズが主体であるが、鉛の次
に含有量の大きいアンチモンは4乃至5%含まれている
。Regarding (1), the alloy composition of the lattice body of a conventional lead-acid battery is mainly lead, antimony, arsenic, and tin, and contains 4 to 5% of antimony, which has the second largest content after lead.
アンチモンの含有率を低下させると、溶出するアンチモ
ンの量は若干減少するが、一旦溶出したアンチモンは負
極に析出していくので期待できる程の効果は認められな
い。When the antimony content is lowered, the amount of antimony eluted is slightly reduced, but since the antimony once eluted is deposited on the negative electrode, the expected effect is not observed.
(2)については、化成または初充電時の通電電気量を
低下させると、第1図に示すように、鉛蓄電池の初期性
能が大幅に低下する欠点がある。Regarding (2), there is a drawback that if the amount of electricity supplied during formation or initial charging is reduced, the initial performance of the lead-acid battery will be significantly reduced, as shown in FIG.
(3)については、化成後、負極板の水洗を行うと、負
極活物質であるスポンジ状鉛が水酸化鉛化するため初充
電時に多くの通電量が必要となり、この初充電によって
新たに溶出したアンチモンが負極に析出する結果となり
、また初充電後鉛蓄電池内の電解液を新しい電解液と入
れ替える場合もあるが、その時排出できる電解液量は3
0乃至40%程度に過ぎず、60乃至70%が残留する
ので、電解液の入れ替えによる効果はあまり期待できな
いのと液替後の補充電が必要である欠点がある。Regarding (3), when the negative electrode plate is washed with water after chemical formation, the sponge-like lead that is the negative electrode active material becomes lead hydroxide, so a large amount of current is required at the first charge, and this first charge causes new elution. This results in antimony being deposited on the negative electrode, and the electrolyte in the lead-acid battery may be replaced with new electrolyte after the first charge, but the amount of electrolyte that can be discharged at that time is 3.
Since only about 0 to 40% remains and 60 to 70% remains, there is a drawback that the effect of replacing the electrolytic solution cannot be expected much and supplementary charging is required after replacing the electrolyte.
本発明は、鉛蓄電池の製造上、電解液中へのアンチモン
等の金属の溶出は避けられないものと考え、溶出によっ
て生じたアンチモン種イオン等の金属イオンを負極板に
析出させないことを目的とするものである。The present invention considers that the elution of metals such as antimony into the electrolyte is unavoidable in the manufacture of lead-acid batteries, and aims to prevent metal ions such as antimony species ions generated by elution from being deposited on the negative electrode plate. It is something to do.
上記の目的を達成するために、本発明は電解液に溶出す
る金属と安定な金属錯体を形成して当該金属錯体の電解
液中における還元(析出)電位を卑に移行させる金属錯
化剤を電解液中に存在せしめてなることを特徴とするも
のである。In order to achieve the above object, the present invention uses a metal complexing agent that forms a stable metal complex with a metal eluted into an electrolytic solution and shifts the reduction (deposition) potential of the metal complex in the electrolytic solution to a base state. It is characterized by being present in an electrolytic solution.
未発明の一実施例を説明する。An uninvented embodiment will be described.
希硫酸中のアンチモン種イオンと安定な金属錯体を形成
し、当該金属錯体の希硫酸中における還元(析出)電位
を卑に移行させる金属錯化剤としてエチレンジアミンテ
トラアセテイツクアシツド(以下EDTAという)を見
い出し、これを電解液に添加したNS40ZL型の鉛蓄
電池を製作して、20℃で6ケ月間放置1.7で自己放
電をさせた後の残存容量を5時間率(25℃における5
.6A放電)で測定した結果を第2図に示している。Ethylenediaminetetraacetate acid (hereinafter referred to as EDTA) is used as a metal complexing agent that forms a stable metal complex with antimony species ions in dilute sulfuric acid and shifts the reduction (precipitation) potential of the metal complex in dilute sulfuric acid to a base value. We discovered this and manufactured an NS40ZL type lead-acid battery with this added to the electrolyte solution.We left it at 20℃ for 6 months and allowed it to self-discharge at a rate of 1.7.
.. The results measured at 6A discharge are shown in FIG.
尚、電解液の比重は1.260(20℃)とする。Note that the specific gravity of the electrolytic solution is 1.260 (20° C.).
EDTAを無添加の場合は、残存容量が50%であるの
に対し、EDTAを添加する場合は、l乃至10” p
pm添加する間で残存容量が50%から84%まで向上
し、EDTAを10”ppm以上例えば10’ppm添
加しても殆んどそれ以上の向上は見られないことがわか
った。When EDTA is not added, the remaining capacity is 50%, whereas when EDTA is added, the remaining capacity is 1 to 10" p.
It was found that the residual capacity improved from 50% to 84% while adding 100 pm of EDTA, and that almost no further improvement was observed even when 10'ppm or more of EDTA was added, for example 10'ppm.
すなわちEDTAを10乃至10” ppmを電解液に
添加することによってアンチモンに起因する負極の自己
放電が極めて顕著に抑制できる効果が認められる。That is, by adding 10 to 10'' ppm of EDTA to the electrolytic solution, it is recognized that the self-discharge of the negative electrode caused by antimony can be significantly suppressed.
また、同種の鉛蓄電池において、液温25℃、設定電圧
14.8Vで2400時間の連続定電圧電解を行い、水
分解に伴う減液率を測定した結果を第3図に示す。Further, in the same type of lead-acid battery, continuous constant voltage electrolysis was performed for 2400 hours at a liquid temperature of 25° C. and a set voltage of 14.8 V, and the liquid loss rate due to water splitting was measured. The results are shown in FIG.
EDTA無添加の場合は、減液率が略100%で、すな
わち殆んど水が分解されて消失してしまうのに対し、E
DTAを添加する場合は1乃至103ppm添加する間
で減液率が97%から38%まで低下し、EDTAを1
03ppm以上例えば10’ppm添加しても殆んどそ
れ以上の変化は見られないことがわかった。When EDTA is not added, the liquid reduction rate is approximately 100%, that is, most of the water is decomposed and disappears, whereas E
When adding DTA, the liquid reduction rate decreased from 97% to 38% when adding 1 to 103 ppm;
It has been found that even if 0.03 ppm or more, for example 10' ppm, is added, almost no further change is observed.
すなわちEDTAを10乃至103ppmを電解液に添
加することによって、アンチモンに起因する負極の水分
購反応が極めて顕著に抑制できる効果が認められる。That is, by adding 10 to 103 ppm of EDTA to the electrolytic solution, the effect of extremely significantly suppressing the water purchasing reaction of the negative electrode caused by antimony is observed.
特に例えばEDTAを電解液に10”ppm添加した場
合でも、無添加の時に比して自己放電量および減液量が
半減するので実用上十分である。In particular, even when 10'' ppm of EDTA is added to the electrolytic solution, the amount of self-discharge and the amount of liquid loss are halved compared to when no addition is made, which is sufficient for practical use.
上述したように、本発明鉛蓄電池は、電解液に溶出する
金属と安定な金属錯体を形成して描該金属錯体の電解液
中における還元電位を卑に移行させる金属錯化剤を電解
液中に存在せしめてなることによって、電池性能の劣化
、製造仕様の大幅変更および工程の増.加を生じること
なく、自己放電率を低下し且っ補水不要期間を長くする
ことが極めて有効にできる点工業的価値甚だ大なるもの
である。As described above, the lead-acid battery of the present invention includes a metal complexing agent in the electrolyte that forms a stable metal complex with the metal eluted into the electrolyte and shifts the reduction potential of the metal complex in the electrolyte to a base state. As a result, battery performance deteriorates, manufacturing specifications change significantly, and the number of processes increases. It has great industrial value because it is extremely effective in reducing the self-discharge rate and lengthening the period during which water replenishment is not required, without causing any additional water replenishment.
第1図は従来の鉛蓄電池において、化成時の通電量と初
期放電容量の関係を示す曲線図、第2図は本発明鉛蓄電
池において、EDTAの添加量と自己放電後の残存容量
との関係を示す曲線図、第3図は同じくEDTAの添加
量と連続定電圧電解後の減液率との関係を示す曲線図で
ある。Figure 1 is a curve diagram showing the relationship between the amount of current applied during formation and the initial discharge capacity in a conventional lead-acid battery, and Figure 2 is the relationship between the amount of EDTA added and the remaining capacity after self-discharge in the lead-acid battery of the present invention. FIG. 3 is a curve diagram showing the relationship between the amount of EDTA added and the liquid reduction rate after continuous constant voltage electrolysis.
Claims (1)
当該金属錯体の電解液中における還元電位を卑に移行さ
せる金属錯化剤を電解液中に存在せしめてなる鉛蓄電池
。1. A lead-acid battery in which a metal complexing agent is present in an electrolytic solution, which forms a stable metal complex with a metal eluted into the electrolytic solution and shifts the reduction potential of the metal complex in the electrolytic solution to a base state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52049441A JPS586275B2 (en) | 1977-04-28 | 1977-04-28 | lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52049441A JPS586275B2 (en) | 1977-04-28 | 1977-04-28 | lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53135430A JPS53135430A (en) | 1978-11-27 |
JPS586275B2 true JPS586275B2 (en) | 1983-02-03 |
Family
ID=12831195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52049441A Expired JPS586275B2 (en) | 1977-04-28 | 1977-04-28 | lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS586275B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5580267A (en) * | 1978-12-11 | 1980-06-17 | Nippon Muki Kk | Isolating plate for lead storage battery |
JPH0821418B2 (en) * | 1987-06-29 | 1996-03-04 | 松下電器産業株式会社 | Lead acid battery |
-
1977
- 1977-04-28 JP JP52049441A patent/JPS586275B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS53135430A (en) | 1978-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5024908A (en) | Lead storage battery | |
JPS5910024B2 (en) | Mitsupei alkaline chikudenchi | |
JP3215447B2 (en) | Zinc alkaline battery | |
JPS586275B2 (en) | lead acid battery | |
US2582845A (en) | Means for reducing local action in lead acid storage batteries | |
JPH07211344A (en) | Electrolyte for battery | |
US2994626A (en) | Low loss battery | |
JPH04179063A (en) | Sealed type lead-acid battery | |
JPH079806B2 (en) | Zinc electrode for alkaline storage battery | |
JPH01117279A (en) | Lead-acid battery | |
JPH01267965A (en) | Sealed lead-acid battery | |
JP2553858B2 (en) | Lead acid battery | |
JPH0745282A (en) | Nickel electrode for alkaline storage battery | |
JPH06243862A (en) | Forming method for lead-acid battery negative electrode plate using copper lattice | |
JPS61198574A (en) | Lead storage battery | |
JPH079807B2 (en) | Zinc electrode for alkaline storage battery | |
JPS6280964A (en) | Sealed lead-acid battery | |
JPS58225565A (en) | Alkaline battery | |
JPS60117552A (en) | Manufacture of anode plate for alkaline storage battery | |
JP2558759B2 (en) | Manufacturing method of cadmium negative electrode for alkaline storage battery | |
JPS6224911B2 (en) | ||
JPS58209063A (en) | Manufacture of plate for lead-acid battery | |
JPS61128465A (en) | Electrode plate for lead-acid battery | |
JPS5947431B2 (en) | alkaline battery | |
JPS6129100B2 (en) |