Nothing Special   »   [go: up one dir, main page]

JPS5851557A - Large scale integrated circuit device - Google Patents

Large scale integrated circuit device

Info

Publication number
JPS5851557A
JPS5851557A JP14946781A JP14946781A JPS5851557A JP S5851557 A JPS5851557 A JP S5851557A JP 14946781 A JP14946781 A JP 14946781A JP 14946781 A JP14946781 A JP 14946781A JP S5851557 A JPS5851557 A JP S5851557A
Authority
JP
Japan
Prior art keywords
logic
channel
wiring
channel region
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14946781A
Other languages
Japanese (ja)
Inventor
Akira Uchiyama
朗 内山
Akira Takanashi
高梨 「あきら」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP14946781A priority Critical patent/JPS5851557A/en
Publication of JPS5851557A publication Critical patent/JPS5851557A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To effectively increase the number of gates without increasing the size of a chip by forming a logic element under a wiring channel region and connecting the element to the prescribed cell. CONSTITUTION:Many unit cell rows 2, 3, ... of, for example, C-MOS structure are arranged at the prescribed interval on an IC chip 1, with the space at the interval as a wiring channel 6. A logic element 30 such as an inverter or the like is provided on a semiconductor substrate directly under the channel 6. Elements (e.g., a depletion mode load MOSFET, an enhancement mode driver MOSFET) provided on the element 30 are connected to wirings (e.g., a power source line 14, an output line 15, an input line 23 and the like) on the channel region 6, and are connected through the wirings to the prescribed logic elements (NAND gate, an inverter and the like) in the respective cell rows 2, 3.

Description

【発明の詳細な説明】 本発明は大規模集積回路装置、特にOMO8。[Detailed description of the invention] The present invention relates to large scale integrated circuit devices, particularly OMO8.

(complementary MO8)論理LSIK
関するものである。
(complementary MO8) Logic LSIK
It is related to

この種のランダムロジックLSIにおいて0M08論理
を構成する場合、0MO8論理セル列を所定の間隔を置
いて多数本配列せしめ、各関−内に設けられた配線チャ
ネル領域に所定の配■を施して各セル列間及び各セル間
を接続することにより、1つのまとまったシステム機能
を作成している。この場合、更に論理ゲート、例えばイ
ンバータを追加したいときには、論理セル中のダート数
が限られていることからセル中の論理素子をインバータ
として用いることはできない。このため、0M08とは
別の領域にインバータ用の負荷MO8及びド2イパMO
8を設けることKなるが、これではチップ面積が大きく
なり、チップサイズの縮小を図れないことが判明した。
When configuring 0M08 logic in this type of random logic LSI, a large number of 0MO8 logic cell columns are arranged at predetermined intervals, and a predetermined arrangement is applied to the wiring channel region provided within each function. Connections between cell rows and between individual cells create one unified system function. In this case, when it is desired to add a logic gate, for example an inverter, the logic element in the cell cannot be used as an inverter because the number of darts in the logic cell is limited. Therefore, the load MO8 for the inverter and the driver MO2 are placed in an area different from 0M08.
However, it has been found that this increases the chip area and makes it impossible to reduce the chip size.

しかも、このインバータを仮に0MO8で構成すると、
負荷MO8及び)247MO8の対を構造的にみて接近
した位置に設ける必要があるため、その配置に一定の面
積を確保しておかねばならず、配置上の自由度が小さい
上に素子サイズ自体も比較的大きくなることが分ってい
る。
Moreover, if this inverter is configured with 0MO8,
Since the pair of loads MO8 and )247MO8 need to be placed in close proximity from a structural point of view, a certain area must be secured for their arrangement, and the degree of freedom in arrangement is small, and the element size itself is also limited. I know it will be relatively large.

従って、本発明の目的は、チップサイズを大きくするこ
となくゲート数を効果的に増加させた論理L8Iを提供
することKある。
Therefore, an object of the present invention is to provide a logic L8I in which the number of gates is effectively increased without increasing the chip size.

この目的を達成するためk、本発明によれば、セル列間
の配線チャネル領域がチップ内でかなりの面積を占めて
いることに着目し、配線チャネル領域下にインバータ等
の論理素子(特に単一導電型チャネルのMOS)を形成
し、これを所定のセルと接続するよ5Cしている。
In order to achieve this objective, the present invention focuses on the fact that the wiring channel region between cell columns occupies a considerable area within a chip. A MOS of one conductivity type channel is formed and connected to a predetermined cell by 5C.

以下、本発明の実施例を図面について詳細に述べる。 
        ″ 第1図は、大規模ランダムロジックにおける主要部のレ
イアウトを示すものである。IOチップ1には、0M0
8構造の多数のユニットセル列2゜3.4.5・・・・
・・が所定の間隔を置いて配列されており、その間隔内
は配線チャネル領域6となっている。また、隣接するセ
ル列間に亘って、共通のN−[半導体基板26に仮想線
で示すPfJウェル8が形成され、このウェル内に含ま
れる各論理セルには論理ゲートとしてのNチャネルMI
8FET (Metal  In5ulator  8
amiconductor  FieldEffect
 Translstor)部2a、  3m、4a。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
'' Figure 1 shows the layout of the main parts of the large-scale random logic.The IO chip 1 has 0M0
Numerous unit cell rows with 8 structure 2゜3.4.5...
... are arranged at predetermined intervals, and the wiring channel region 6 is located within the interval. Further, a common N-[PfJ well 8 shown by a virtual line in the semiconductor substrate 26 is formed between adjacent cell columns, and each logic cell included in this well has an N-channel MI as a logic gate.
8FET (Metal In5ulator 8
amiconductor FieldEffect
Translstor) parts 2a, 3m, 4a.

Sm・・・・・・が設けられ【いる。ウェル8外の基板
誌上の各論理セルにも、上記NチャネルMI8FETと
対に論理ゲートを構成するPチャネルMII9FffT
部2b、3b、4b、5b・・・・・・が設けられ℃い
る。なお、図面ではセル列2.3の一部のセルを区分し
て示したが、他のセルも同様に配列されるので簡略化し
て図示している。
Sm... is provided. Each logic cell on the substrate outside well 8 also has a P-channel MII9FffT that forms a logic gate in pair with the N-channel MI8FET.
Sections 2b, 3b, 4b, 5b, . . . are provided. Note that in the drawing, some cells in the cell row 2.3 are shown separately, but other cells are also arranged in the same way, so they are shown in a simplified manner.

ここで注目すべきことは、配線チャネル領域6において
、その直下の半導体基板にインバータ等の論1!素子部
30.31・・・・・・が設けられ、後述する如(K配
線チャネル領域6上の各起磁に接続されると共に、各セ
ル列中の所定の論理素子(伺えばNANDゲート、イン
バータ)K接続されることである。ウェル8中の論理素
子N530はすべてNチャネルMI8FBTからなり、
他方N−5基板26に設けられる論311累子部31は
すべてPチャネルMIspg’rからなってい℃、共K
JIL−導電型チャネル(シングルチャネル)で夫々構
成されている。以下では、ウェル8中のNチャネルMI
8FI8Tを主として説明するが、基板lのPチャネル
MI 8FETも同様である。
What should be noted here is that in the wiring channel region 6, there is an inverter etc. on the semiconductor substrate directly below it! Element portions 30, 31, etc. are provided and are connected to each magnetomotive force on the K wiring channel region 6 as described later, and are connected to predetermined logic elements in each cell column (such as NAND gates, etc.). (inverter) K connection.The logic elements N530 in well 8 are all composed of N-channel MI8FBT,
On the other hand, the logic 311 resistor section 31 provided on the N-5 substrate 26 is entirely composed of P-channel MIspg'r.
Each channel is composed of a JIL-conductivity type channel (single channel). Below, the N-channel MI in well 8
Although the 8FI8T will be mainly explained, the P-channel MI 8FET on the substrate 1 is also similar.

第2図には、配線チャネル領域6下のP型ウェル8にイ
ンバータな設けた状態が示されている。
FIG. 2 shows a state in which an inverter is provided in the P-type well 8 under the wiring channel region 6.

即ち、P型ウェル8内には、デプレッションモードの負
荷MOS用のN”ffi拡散領域9.10がソース又は
ドレイン領域として形成され、またエンハンスメント毫
−ドのドライノ<MOS用のN+温拡散領域11.12
がソース又はドレイン領域として形成されている。負荷
MO8のドレイン領域lOはアル電ニウム配置ll 3
により電源電圧vcc供給供給子ル電ニウム配置ll 
4に接続され、ソース領域9は出力取出し用のアルミニ
ウム配915Kll絖され、更にポリシリコンのゲート
電極16はアルミニウム配線17により上記出力ライン
15KW!絖されている。他方、ドライ、<MOSにお
いては、ドレイン領域12がアルミニウム配@isKよ
り負荷MO8と共通の出力ライン15に接続1れると共
に、ソース領域11はアルミニウム配線19により接地
レベルのアルミニウム配線20Klll絖され、更にポ
リシリコンのゲート電極21はアル1=ウム配@22f
lCより入力信号供給用のアルミニウム配@23に接続
されている。そして、このシソグルチャネλのインノく
一部の人力信号ライン23はアルミニウム配−24(多
層配線構造02層目アル1=ウム)Kより論理セル列3
の例えばインバータ等のセルの出力端子Kljl絖され
る一方、出カライン15はアル建ニウム配@ZS(同2
層目アルζニウム)により他の論理セル列2の例えば2
人力NANDゲートの入力端子に@続1れている。なお
、基1[7m体に設けるPチャネルの負荷MO8及びド
ライバMO8(嬉1図の10)も同様に構成され、所定
のセルに同様KII絖されていてよい。
That is, in the P-type well 8, an N"ffi diffusion region 9.10 for a depletion mode load MOS is formed as a source or drain region, and an N+ warm diffusion region 11 for an enhancement mode dry node MOS is formed. .12
is formed as a source or drain region. The drain region lO of the load MO8 has an aluminum arrangement ll 3
Due to the power supply voltage VCC supply supply element arrangement ll
4, the source region 9 is connected to the output line 15KW! by an aluminum wiring 915Kll for output extraction, and the polysilicon gate electrode 16 is connected to the output line 15KW by an aluminum wiring 17. It is threaded. On the other hand, in the dry <MOS, the drain region 12 is connected to the output line 15 common to the load MO8 through the aluminum wiring @isK, and the source region 11 is connected to the ground level aluminum wiring 20Klll by the aluminum wiring 19. The polysilicon gate electrode 21 has an Al=U arrangement @22f
It is connected to the aluminum wiring @23 for input signal supply from the IC. Then, a part of the human input signal line 23 of this sysoglu channel λ is connected to the logic cell column 3 from the aluminum wiring 24 (multilayer wiring structure 02nd layer Al=Um) K.
For example, the output terminal Kljl of a cell such as an inverter is wired, while the output line 15 is wired with aluminum wire @ZS (same as 2
For example, 2 of the other logic cell column 2 is
It is connected to the input terminal of the human-powered NAND gate. Note that the P-channel load MO8 and driver MO8 (10 in Figure 1) provided on the base 1 [7m body] may be similarly configured and may be similarly KII-wired in a predetermined cell.

このように、配線チャネル領域6を利用してここにデプ
レッションモードのMOSを負荷とする論理素子、例え
ばインバータを設け、これをセル列内の所定のセルに接
続することによって、チップサイズを何ら増大させるこ
となく論理ゲート数を増やすことが可能となる。逆VC
*えは、ゲート数を同じにした場合にはチップサイズを
縮小することができる点で、0MO8@理回路のみでは
チップサイズが必然的に大きくな−、てしまう論理LS
Iを小型化することができる。
In this way, by utilizing the wiring channel region 6 and providing a logic element, such as an inverter, loaded with a depletion mode MOS, and connecting this to a predetermined cell in the cell string, the chip size can be increased. It becomes possible to increase the number of logic gates without increasing the number of logic gates. reverse VC
*The advantage is that if the number of gates is kept the same, the chip size can be reduced.
I can be made smaller.

tた、上記の負荷MO&及びドライバMO8は共にシン
グルチャネルであるから、配線チャネル領域の任意の箇
所に夫々設けることができ、これらのMOIIを0MO
8で構成する場合のように両MOBを接近して配する必
要はない。従う【、配置上の自由度が増すと共に、0M
08に比べて素子サイズ自体も小さくすることができる
。なお、本実施例におい【は、各セル列を0MO8で構
成したのでこの面では消費電力を少なくすることができ
るが、上記の負荷MO8及びドライバMO8は一定の電
力を負5%のであるから、実際に適用されるLaIとし
てはあるIl&の消費電力の増大を許春できるものにす
ることがMtしい、従って、本実施例による構造は、消
費電力の増大を許ぜる製品に好適であって、そのチップ
サイズを低減させると共KOMO8によってはじめて実
現できる論m回路と混在させることにより、小型の論l
lLSIを低コストで得ることのできるものとなる。
In addition, since both the load MO& and the driver MO8 described above are single channels, they can be provided at any location in the wiring channel region, and these MOII can be set to 0 MO.
It is not necessary to arrange both MOBs close to each other as in the case of configuring with 8 MOBs. Follow [, with increased flexibility in placement, 0M
The element size itself can also be made smaller compared to 08. Note that in this embodiment, each cell row is configured with 0 MO8, so power consumption can be reduced in this respect, but since the load MO8 and driver MO8 described above have a constant power of negative 5%, For LaI that is actually applied, it is desirable to be able to tolerate an increase in the power consumption of Il&, so the structure according to this embodiment is suitable for products that can tolerate an increase in power consumption. By reducing the chip size and mixing it with the logic circuit that can be realized for the first time with KOMO8, it is possible to create a small logic circuit.
This makes it possible to obtain an IC at low cost.

なお、上記の負荷MO8はデプレッシ■ンモードである
から、公知のイオン打込み技#tKよってチャネルII
Kイオン打込みを行ない、しきい値電圧■thを下げて
おく。また、実際には、上記の如き負荷MO8及びドラ
イバMO8等の論理素子は配線チャネル領域の所望の箇
所に任意個数設けることができ、目的に応じて追加すべ
きゲート数を決めることができる。
In addition, since the load MO8 mentioned above is in the depressin mode, the well-known ion implantation technique #tK allows channel II
K ion implantation is performed to lower the threshold voltage ■th. Furthermore, in practice, any number of logic elements such as the load MO8 and the driver MO8 described above can be provided at desired locations in the wiring channel region, and the number of gates to be added can be determined depending on the purpose.

萬3図には、上記の論理素子1130と七ル列糊の0M
083との断面構造が示されている。この断面は、各素
子部の構造の理解を容鳥にするために、アルきニウム配
線とのコンタクト部分が表われる↓5に示されて込る。
Figure 3 shows the above logic element 1130 and the 0M
083 is shown. This cross section is shown in ↓5, where the contact portion with the aluminum wiring is exposed, in order to facilitate understanding of the structure of each element part.

仁の図におい工、26はN”[1シリコン基板、27は
フィールド8iO1膜、28はゲート酸化膜、29はポ
リシリコン膜の表面酸化膜、45はリンシリケートガラ
ス膜である。0MO8、例えばインバータ3は、ウェル
8内に形成されたN++ソース領域32及び33とポリ
シリコンゲート電極34とからなるNチャネルMI8F
ETと、基[26自体に形成されたP”llソース領域
35及びドレイン領域36とポリシリコンゲート電極3
7とからなるPチャネルMI8FiilTとによって構
成されている。各ゲート電4ii34.17には入力信
号が加えられ、P+雛領領域36びN+麿領領域32接
続するアルミニウム配置138からは出力が取出される
。またp+■領域35はアル<=りム配11m9により
接地さtL、N“層領域33はアルミニウム配置140
により電源(Vcc) <接続されている。
26 is an N"[1 silicon substrate, 27 is a field 8iO1 film, 28 is a gate oxide film, 29 is a surface oxide film of a polysilicon film, and 45 is a phosphosilicate glass film.0MO8, for example, an inverter. 3 is an N-channel MI8F consisting of N++ source regions 32 and 33 formed in the well 8 and a polysilicon gate electrode 34.
ET and the P''ll source region 35 and drain region 36 formed on the base [26 itself] and the polysilicon gate electrode 3.
7 and P channel MI8FiilT. An input signal is applied to each gate electrode 4ii34.17, and an output is taken from the aluminum arrangement 138 connecting the P+ field region 36 and the N+ field region 32. Further, the p+■ region 35 is grounded by the aluminum arrangement 11m9, and the N'' layer region 33 is grounded by the aluminum arrangement 140.
The power supply (Vcc) is connected.

次に、第3図に示したデバイスの製造方法を第4mで説
−する。
Next, a method for manufacturing the device shown in FIG. 3 will be explained in Section 4m.

まず謔4A図のよ5に、N″″型基板26の一主面に、
公知の拡散技術9選択酸化技術等によってPlilミラ
エルフィールドsio、膜27、ゲート酸化膜28を夫
々形成する。なお、図示省略したが、上記論理素子部3
のデプレッシ曹ンモードのMO8111には予め砒素等
を浅くイオン打込みしておき、そこに形成される負荷M
OBの■thを下げ【お(。
First, as shown in Figure 4A, on one main surface of the N'''' type substrate 26,
A Plil field, a film 27, and a gate oxide film 28 are formed using a known diffusion technique 9, selective oxidation technique, or the like. Although not shown, the logic element section 3
MO8111 in depressing mode is shallowly implanted with arsenic, etc. in advance, and the load M formed there is
Lower the ■th of OB [oh(.

次に公知の化学的気相成長技術(OVD)Kよって全I
iKポリシリコンを成長させ、これを公知のリン処理後
にフォトエツチングでバターニングし、各ゲート電極形
状のポリシリコン膜16,21゜34.37を夫々形成
する。
Next, the entire I
iK polysilicon is grown and subjected to a known phosphorus treatment and patterned by photoetching to form polysilicon films 16, 21.degree. 34.37 in the shape of each gate electrode, respectively.

次に第40図のように、熱酸化性雰囲気中で軽く処理し
て各ポリシリコン膜の表EIにatO,膜29を形成し
た後、ウェル8以外の領域上をマスク41で被覆する。
Next, as shown in FIG. 40, after a light treatment is performed in a thermal oxidizing atmosphere to form an atO film 29 on the surface EI of each polysilicon film, the area other than the well 8 is covered with a mask 41.

このマスク41としては、公知の露光、現儂処理でバタ
ーニングされたフォトレジストを用いてよい。そして全
面にリン又は砒素のイオンデーム42を照射し、マスク
41で覆われていないクエルSKゲート酸化膜28を通
して選択的にイオン打込みを行なう。この際、フィール
ド840、膜2フ及びポリシリコン膜16,21.34
もマスク作用を有しているから、各N”jll領域9゜
1G、11,12,32.33が夫々自己整合的K(セ
ルファライン方式で)形成される。
As this mask 41, a photoresist patterned by known exposure and in-situ processing may be used. Then, the entire surface is irradiated with a phosphorus or arsenic ion beam 42, and ions are selectively implanted through the Quell SK gate oxide film 28 not covered with the mask 41. At this time, field 840, film 2F and polysilicon film 16, 21.34
Since also has a masking effect, each of the N''jll regions 9°1G, 11, 12, 32, and 33 are formed in a self-aligned manner (by self-line method).

次に第4D図のように、今度はウェル8上のみを上記と
同様のマスク43で覆い、ボロンのイオンビーム44を
照射し、ポリシリコンl[370両側のゲート酸化I[
28を通してボロンを選択的に打込む、これによって、
P+履領領域3536をセルファライン方式で基[26
に夫々形成する。
Next, as shown in FIG. 4D, this time only the top of the well 8 is covered with a mask 43 similar to the above, and a boron ion beam 44 is irradiated to gate oxidize I[ on both sides of the polysilicon L[370].
selectively implanting boron through 28, thereby
The P+ territory area 3536 is based on the self-line method [26
Form each.

次に第48@のよ5に、全面にリンシリケートガラス膜
46をOVDで析出せしめ、このガラス膜4s及び下地
のゲート酸化膜28を順次エツチングし【、各コンタク
トホール46,47.48゜4G、50,51.52.
53を夫々形成する。
Next, in step 48@5, a phosphosilicate glass film 46 is deposited on the entire surface by OVD, and this glass film 4s and the underlying gate oxide film 28 are sequentially etched [, and each contact hole 46, 47.48° 4G , 50, 51.52.
53 are formed respectively.

更に、全知の真空蒸着技術でアルミニクムを全面に付着
1せ、全知のフォトエツチングによって嬉3図の各アル
オニりム配8113.15.1g。
Furthermore, aluminum was deposited on the entire surface using Omichi's vacuum evaporation technology, and each aluminum layer of 8113.15.1g as shown in Figure 3 was made using Omichi's photo etching.

19.318,39.40#にパターニングする。Pattern to 19.318, 39.40#.

この製造方法によれば、通常の製造工程を実質的に変更
することなく、配線チャネル領域下の半導体基板に追加
の論理ゲートを容易に形成することができる。
According to this manufacturing method, an additional logic gate can be easily formed in the semiconductor substrate under the wiring channel region without substantially changing the normal manufacturing process.

以上、本発明を例示したが、上述の実施例は本発明の技
術的思@IIc基込て更に大形が可能である。
Although the present invention has been exemplified above, the above-described embodiments can be made even larger based on the technical concept of the present invention.

例えば、上述のセル列はマスタスライス方式で論理が組
まれるよう和してよいし、或いは非マスタスライス方式
で論理が組壕れ:るよ5にしくもよ込。
For example, the cell columns described above may be summed to form logic in a master slice manner, or may be summed to form logic in a non-master slice manner.

tft1本発明は種々の論11L8I、場合によっては
電車用、シンセサイず用等のL8IKも適用可能である
tft1 The present invention can be applied to various types of L8I, and in some cases L8IK for trains, non-synthesizers, etc.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すものであって、第1図は論
理L8Iのレイアウトを主J11部について示す平面図
、第2図は配線チャネル領域のゲートとセル列のゲート
との接続関係を示す拡大平面図、菖SSはそれら両ゲー
トの構造を示す断面図、第4A図〜第4E図は第3図の
構造の製造工程を順次示す各断面図である。 なお、図面に用いられている符号において、2〜5は論
理セル列、6は配線チャネル領域、8はPalウェル、
13〜15.17〜20及び22〜25はアルミニウム
配線、26はN−型基板、30及び31は論理素子部で
ある。 第  1  図 第  2  図
The drawings show an embodiment of the present invention, and FIG. 1 is a plan view showing the layout of the logic L8I for the main J11 section, and FIG. 2 shows the connection relationship between the gate of the wiring channel region and the gate of the cell column. 4A to 4E are sectional views sequentially showing the manufacturing process of the structure shown in FIG. 3. In addition, in the symbols used in the drawings, 2 to 5 are logic cell columns, 6 is a wiring channel region, 8 is a Pal well,
13 to 15, 17 to 20 and 22 to 25 are aluminum wirings, 26 is an N-type substrate, and 30 and 31 are logic element portions. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、論理セル列間に配線チャネル領域が設けられ【いる
大規模集積回路装置において、前記配線チャネル領域下
の半導体基体に論理素子が形成され、この論理素子が前
記配線チャネル領域の配5IKIi[+絖されると共に
この配線を介して前記論理セル列中の所定のセルに接続
されていることを41黴とする大規模集積回路装置。
[Claims] 1. In a large-scale integrated circuit device in which a wiring channel region is provided between logic cell columns, a logic element is formed on a semiconductor substrate under the wiring channel region, and this logic element is connected to the wiring channel region. A large-scale integrated circuit device in which a region is arranged 5IKIi[+] and is connected to a predetermined cell in the logic cell column via this wiring.
JP14946781A 1981-09-24 1981-09-24 Large scale integrated circuit device Pending JPS5851557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14946781A JPS5851557A (en) 1981-09-24 1981-09-24 Large scale integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14946781A JPS5851557A (en) 1981-09-24 1981-09-24 Large scale integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5851557A true JPS5851557A (en) 1983-03-26

Family

ID=15475769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14946781A Pending JPS5851557A (en) 1981-09-24 1981-09-24 Large scale integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5851557A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111192A (en) * 1977-03-07 1978-09-28 Toray Industries Fiber structure with improved deep color
JPS5980959A (en) * 1982-10-30 1984-05-10 Toshiba Corp Semiconductor integrated circuit device
JPS6064447A (en) * 1983-09-19 1985-04-13 Fujitsu Ltd Gate array type integrated circuit
FR2572851A1 (en) * 1984-11-08 1986-05-09 Matra Harris Semiconducteurs Semi-custom network with interconnectable basic cells
JPH0268951A (en) * 1988-09-03 1990-03-08 Nec Corp Master slice system semiconductor integrated circuit
JPH0314675A (en) * 1989-06-08 1991-01-23 Toray Ind Inc Preparation of water-repellent and deep colored web

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111192A (en) * 1977-03-07 1978-09-28 Toray Industries Fiber structure with improved deep color
JPS6135309B2 (en) * 1977-03-07 1986-08-12 Toray Industries
JPS5980959A (en) * 1982-10-30 1984-05-10 Toshiba Corp Semiconductor integrated circuit device
JPS6064447A (en) * 1983-09-19 1985-04-13 Fujitsu Ltd Gate array type integrated circuit
FR2572851A1 (en) * 1984-11-08 1986-05-09 Matra Harris Semiconducteurs Semi-custom network with interconnectable basic cells
JPH0268951A (en) * 1988-09-03 1990-03-08 Nec Corp Master slice system semiconductor integrated circuit
JPH0314675A (en) * 1989-06-08 1991-01-23 Toray Ind Inc Preparation of water-repellent and deep colored web

Similar Documents

Publication Publication Date Title
US3943551A (en) LSI array using field effect transistors of different conductivity type
US4525809A (en) Integrated circuit
US3747200A (en) Integrated circuit fabrication method
JPS5851557A (en) Large scale integrated circuit device
JPH0558582B2 (en)
EP0092176A2 (en) Basic cell for integrated-circuit gate arrays
JPH036667B2 (en)
US4745453A (en) Semiconductor device
JPS5951143B2 (en) MIS type semiconductor device
JPS6074647A (en) Semiconductor ic device
EP0113828B1 (en) Master slice semiconductor chip having a new multi-function fet cell
JPH0563944B2 (en)
JPS6271258A (en) Semiconductor integrated circuit device
JPS6135535A (en) Master slice ic device
JP2834179B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3065672B2 (en) Gate array type semiconductor integrated circuit device
KR920005798B1 (en) Borderless master slice semiconductor device
JPH03145762A (en) Master slice integrated circuit
JPH0456164A (en) Semiconductor integrated circuit device and its manufacture
JPS584456B2 (en) MOS air conditioner
JPH0251269A (en) Semiconductor integrated circuit device and its manufacture
JP2921266B2 (en) Complementary MOS integrated circuit device
JPS627148A (en) Complementary semiconductor device and manufacture thereof
JPH06196666A (en) Master-slice type semiconductor integrated circuit
JPH0575079A (en) Master-slice type integrated circuit device