Nothing Special   »   [go: up one dir, main page]

JPS58206059A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS58206059A
JPS58206059A JP57089139A JP8913982A JPS58206059A JP S58206059 A JPS58206059 A JP S58206059A JP 57089139 A JP57089139 A JP 57089139A JP 8913982 A JP8913982 A JP 8913982A JP S58206059 A JPS58206059 A JP S58206059A
Authority
JP
Japan
Prior art keywords
carbon
positive electrode
graphite
battery
graphite fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57089139A
Other languages
Japanese (ja)
Inventor
Teruyoshi Morita
守田 彰克
Ryoji Okazaki
良二 岡崎
Hirofumi Oishi
大石 裕文
Hisaaki Otsuka
大塚 央陽
Kenichi Morigaki
健一 森垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57089139A priority Critical patent/JPS58206059A/en
Publication of JPS58206059A publication Critical patent/JPS58206059A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To decrease conductive mass and increase an active mass and improve flatness of discharge voltage by fluorinating carbon used as a conductive mass, and mixing it with a graphite fluoride active mass. CONSTITUTION:In a battery comprising a positive electrode consisting of graphite fluoride active mass, carbon conductive mass, and a binder, and a negative electrode consisting of a light metal or its alloy, and an organic electrolyte, at least one part of graphite fluoride is consisted of fluoride of carbon which is same material as the conductive mass of the positive electrode. When graphite fluoride produced from carbon which has so good conductivity as to be used as conductive mass is mixed to graphite fluoride having large density and good discharge performance, conductive mass can be decreased and graphite fluoride can be increased. Therefore, good discharge performance is obtained.

Description

【発明の詳細な説明】 本発明は、リチウム、マグネシウムあるいはそれらの合
金など軽金属を負極活物質、フッ化黒鉛を正極活物質、
炭酸プロピレン、γ−ブチロラクトン、1,2−ジメト
キシエタン、テトラヒドロフラン、1,3−ジオキソラ
ンなどの有機溶媒あるい(叶それらの混合溶媒中に過塩
1酸リチウム。
Detailed Description of the Invention The present invention uses light metals such as lithium, magnesium, or their alloys as a negative electrode active material, and fluorinated graphite as a positive electrode active material.
Lithium persalt monate in an organic solvent such as propylene carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane or a mixed solvent thereof.

ホウフッ化リチウム、塩化アルミニウム、リンフッ化リ
チウムなどの無機塩を溶解した有機電解質を用いる、い
わゆる有機電解質電池の正極の改良に関する。
This invention relates to improvements in the positive electrode of so-called organic electrolyte batteries that use organic electrolytes in which inorganic salts such as lithium borofluoride, aluminum chloride, and lithium phosphofluoride are dissolved.

有機電解質電池の正極物質として、これまでフッ化黒鉛
、二酸化マンガン、酸化銅、クロム酸銀などの固体状活
物質、及び塩化チオニル、塩化スルフリル、二酸化イオ
ウなどの液体活物質が用いられてきた。中でもフッ化黒
鉛は、エネルギー密度的にも大きく、電解液中でも化学
的に安定で保存特性にすぐれるのみならず、電気的には
非常に活性であり、有機電解質電池の正極活物質のうち
では最もすぐれたものの一つであると云える。
Solid active materials such as fluorinated graphite, manganese dioxide, copper oxide, and silver chromate, and liquid active materials such as thionyl chloride, sulfuryl chloride, and sulfur dioxide have been used as positive electrode materials for organic electrolyte batteries. Among them, fluorinated graphite has a high energy density, is chemically stable even in electrolyte solution, has excellent storage properties, and is also very electrically active, making it one of the positive electrode active materials for organic electrolyte batteries. It can be said that it is one of the best.

しかし、フッ化黒鉛は他の固体状活物質と比較して微粉
末であり、しかも固体状活物質の止爪が例えば、二酸化
マンガンの5.0.酸化銅の6.3゜クロム酸銀の5.
6にくらべ、原材料カーボンにより差はあるものの、は
ソ2.0〜3.0と小さく、従って他の固体状活物質は
導電性をもたすためには少量のカーボン粉末を混合する
だけで十分であるのに対し、比較的多量のカーボン粉末
の混入が必要となる3、一方フッ化黒鉛と導電材のカー
ボン粉末の比重がはソ等しいということから、フッ化黒
鉛とカーボン粉末は比較的容易に均一に混合するため、
電極ひいては電池特性のバラツキが少ないという特徴を
有する。
However, fluorinated graphite is a fine powder compared to other solid active materials, and moreover, the solid active material has a 5.0. 6.3° for copper oxide; 5. for silver chromate.
Compared to No. 6, although there are differences depending on the raw material carbon, the So is smaller at 2.0 to 3.0, so other solid active materials only need to be mixed with a small amount of carbon powder in order to have conductivity. However, it is necessary to mix a relatively large amount of carbon powder.3 On the other hand, since the specific gravity of graphite fluoride and the carbon powder of the conductive material are equal to For easy and uniform mixing,
It has the characteristic that there is little variation in electrode and battery characteristics.

これ・らのことより、フッ化黒鉛を正極活物質とする電
池の一つの大きな課題は、如何に少ない導電材量で単位
体積当り、の活物質の充填量を多くするとともに、有用
な特性が得られるかということにある。
Based on these facts, one of the major challenges for batteries using fluorinated graphite as the positive electrode active material is how to increase the amount of active material filled per unit volume with a small amount of conductive material, and how to maintain useful properties. It's all about whether you can get it.

電池の活物質としては、充填密度の関係から、一般的に
比重の大きなものが望ましく、フッ化黒鉛活物質として
も、比重が2.6〜3.0程度のものが用いられるのが
好ましい。
In view of the packing density, it is generally desirable for the active material of the battery to have a high specific gravity, and for the fluorinated graphite active material, it is preferable to use one having a specific gravity of about 2.6 to 3.0.

この要求を満足するものとして、天然黒鉛9人造黒鉛を
原材料とするもの、石油コークス、石炭l! コークスなどコークス系カーボンを原材料とするもの、
及び活性炭を原材料とするものなどが挙げられる。
Products that satisfy this requirement include natural graphite,9 artificial graphite as raw materials, petroleum coke, and coal l! Products made from coke-based carbon such as coke,
and those using activated carbon as a raw material.

但し、これらのうち黒鉛を原材料とするフッ化黒鉛は、
それ自体非常に結晶性であるため、フッ化黒鉛の層藺内
へのリチウムイオンの拡散かしにくく、コークス系カー
ボン、活性炭などを原材料とした7ノ化黒鉛とくらべて
わずかに電池とじての放電電圧が低いという傾向を有す
る。
However, among these, fluorinated graphite, which is made from graphite,
Since fluorinated graphite itself is very crystalline, it is difficult for lithium ions to diffuse into the layer of fluorinated graphite, making it slightly more difficult to assemble a battery than with heptad graphite made from coke-based carbon, activated carbon, etc. The discharge voltage tends to be low.

一方導電材として使用されるカーボン粉末に9求される
条件として必要なことは、できるだけ微粉末で、表面積
が大きく、電解液を吸い易く、しかも有効な導電性を与
えるものなどが挙げられる。
On the other hand, carbon powder used as a conductive material must be as fine as possible, have a large surface area, absorb electrolyte easily, and provide effective conductivity.

通常これらの条件を満足するものとして、カーボンブラ
ンク、例えばアセチレンプラック、あるいはファーネス
ブラックなどが挙げられる。又、黒鉛粉末も時に使用さ
れる。但し黒鉛粉末は、カーボンブラックにくらべ、粒
子が大きく、表面積が小さいなどの欠点を有するため、
通常は使用されないが、それ自体かなりの結着性を有す
るため、□、、。
Carbon blanks, such as acetylene plaque or furnace black, are commonly used as materials that satisfy these conditions. Graphite powder is also sometimes used. However, graphite powder has disadvantages such as larger particles and smaller surface area than carbon black.
Although not normally used, it has considerable binding properties, so □,,.

結着剤量を減少することができるなどの理由から電極充
填密度をあげる目的、更に低電流放電の目的に限定して
用いられることもある。
Because it can reduce the amount of binder, it is sometimes used only for the purpose of increasing the electrode packing density, and further for the purpose of low current discharge.

しかし、この場合は多量に用いない限り導電性に若干問
題を残すため、放電電圧の低い、黒鉛を原材料としたフ
ッ化黒鉛とくみ合せて用いることはない− 一般的にフッ化黒鉛を正極活物質とし、軽金属例えばリ
チウムを負極とし、有機電解質を用いるフッ化黒鉛リチ
ウム電池は、正極活物質のフッ化黒鉛が放電に伴い、カ
ーボン粉末となるため、正極自体の導電性が向上し、良
好な放電特性を示すとされている。
However, in this case, unless a large amount is used, there will be some problems with conductivity, so it is not used in combination with fluorinated graphite, which has a low discharge voltage and is made from graphite. Fluorinated graphite lithium batteries use a light metal such as lithium as the negative electrode and an organic electrolyte.The positive electrode active material, fluorinated graphite, turns into carbon powder during discharge, which improves the conductivity of the positive electrode itself and provides good performance. It is said to exhibit discharge characteristics.

但し、原材料に活性炭、あるいはコークス系のカーボン
を用いたフッ化黒鉛の場合、原材料自体大きな導電性を
示すことがないため、これらを原材料としたフッ化黒鉛
が放電し、カーボンとなっても、正極の導電性の飛躍的
な向上は望めない。
However, in the case of fluorinated graphite that uses activated carbon or coke-based carbon as a raw material, the raw material itself does not exhibit large electrical conductivity, so even if the fluorinated graphite made from these raw materials discharges and becomes carbon, A dramatic improvement in the conductivity of the positive electrode cannot be expected.

これに対し、カーボンブラックはそれ自体大きな導電性
を有するだめ、これを原材料としたフッ化黒鉛を正極活
物質とした電池は放電に伴い高い導電性をもつカーボン
を生成するため良好な放電特性を示す反面、このフッ化
黒鉛は比重がはソ2前段と小さいため、電極として高容
量の充填か望めないという欠点を併せ持つ。
On the other hand, carbon black itself has high conductivity, and batteries that use carbon black as a raw material and use fluorinated graphite as the positive electrode active material produce carbon with high conductivity during discharge, resulting in good discharge characteristics. On the other hand, this fluorinated graphite has a low specific gravity, which is lower than that of SO2, so it also has the disadvantage that it cannot be filled with a high capacity as an electrode.

本発明はこれらの欠点を改良するものとして、活物質の
導電材として用いられるような、導電性の大なるカーボ
ンから生成したフッ化黒鉛を、比重が大きく良好な放電
特性を示すフッ化黒鉛に一部混入することにより、本来
の導電材量を減少させてフッ化黒鉛の充填量を増大させ
ると共に、更に良好な放電特性を発揮することを見い出
したものである。
The present invention aims to improve these drawbacks by replacing fluorinated graphite produced from highly conductive carbon, which is used as a conductive material for active materials, with fluorinated graphite that has a large specific gravity and exhibits good discharge characteristics. It has been discovered that by partially mixing in the fluorinated graphite, the original amount of the conductive material can be reduced and the amount of fluorinated graphite can be increased, and even better discharge characteristics can be exhibited.

以下本発明を実施例により説明する。The present invention will be explained below with reference to Examples.

石油コークスをフン素化して得られたフッ化黒鉛と、ア
セチレンブラックをフッ素化して得られたフッ化黒鉛と
を重量比で100:20の割合で混合する。この混合物
とアセチレンプラックとスチレン・ブタジェンゴムの水
性ダイスバージョン(樹脂分50 %−’を以下SBR
ディスパージョンと呼ぶ)を重量比で10o:5:’1
0の割合で混合し、水分を揮発させた後、0.65II
をとり、大きさ20×20m1のチタンネット集電体を
間にはさみ、1 ト’y/cxn  の圧力で加圧成型
し、厚さ1訪の11−極を得る4、 負極は大きさ20×20閣のニッケルネットの集電体に
金属リチウムシート0.1gを圧着して構成する。この
(It極を2枚ポリプロピレンの不繊布からなるセパレ
ータで包んだ上記正極の両側に重ね合せ、電解液ととも
にポリプロピレン製容器に封入し、試験用電池とする。
Fluorinated graphite obtained by fluorinating petroleum coke and fluorinated graphite obtained by fluorinating acetylene black are mixed at a weight ratio of 100:20. This mixture, acetylene plaque, and a water-based dice version of styrene-butadiene rubber (resin content 50%) are hereinafter referred to as SBR.
dispersion) in a weight ratio of 10o:5:'1
After mixing at a ratio of 0.0 and evaporating water, 0.65 II
A titanium net current collector with a size of 20 x 20 m1 is sandwiched between them, and the electrode is press-molded at a pressure of 1 to'y/cxn to obtain an 11-electrode with a thickness of 1. It is constructed by pressing 0.1 g of metallic lithium sheet onto a current collector of nickel net of ×20. Two It electrodes were stacked on both sides of the above positive electrode wrapped with a separator made of nonwoven polypropylene fabric, and sealed together with an electrolyte in a polypropylene container to prepare a test battery.

電解液としては、炭酸プロピレンと1,2−ジメトキシ
エタンとを体積比で1:1に混合した液にホウフッ化リ
チウムを1モル/Ilの割合で溶解したものを用いた。
The electrolytic solution used was a mixture of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1:1, in which lithium borofluoride was dissolved at a ratio of 1 mol/Il.

この電池をAとする。This battery is called A.

又石油コークスをフッ素化して得られたフッ化黒鉛乙ア
セチレンブラックをフッ素化して得られたフッ素化黒鉛
を重量比で100:5の割合で混合して得られた混合物
とアセチレンプラックとSBRディスパージョンとを重
量比で1oO:8:10の割合で混合し、水分を揮発さ
せた後、その0.63#をとり、上記と同様にチタンネ
ットに圧着したものを正極とし、以下同様に電池を構成
し、これをBとする。
Also, a mixture obtained by mixing fluorinated graphite obtained by fluorinating petroleum coke (B) with fluorinated graphite obtained by fluorinating acetylene black in a weight ratio of 100:5, acetylene plaque, and SBR dispersion. After the water was evaporated, 0.63# of the mixture was mixed in a weight ratio of 1oO:8:10, and 0.63# of the mixture was taken and crimped onto a titanium net in the same manner as above to serve as the positive electrode. This is called B.

次に石油コークスをフッ素化して得られたフッ化黒鉛と
アセチレンブラックとSBRディスパージョンとを重量
比で1oO:10:10の割合て混合し、そのo、eg
をとり、チタンネットに1F−着して正極とし、以下同
様に電池を構成したものをCとする。
Next, fluorinated graphite obtained by fluorinating petroleum coke, acetylene black, and SBR dispersion were mixed at a weight ratio of 1oO:10:10, and the o, eg,
was taken and attached to a titanium net at 1F to serve as a positive electrode, and a battery was constructed in the same manner as C.

これらはいずれも正極の厚みを一定(1「)、即ち体積
を一定(0,4CC)としたものであるー。
In all of these, the thickness of the positive electrode is constant (1''), that is, the volume is constant (0.4 CC).

電池A、B、Cの正極姑物質の理論充填部゛はそれぞれ
、61omAh、 4som4h、 4somAhであ
った。これからも、導電材のカーボンが正極内で大きな
体積を占めていることが判る。
The theoretical filling parts of the positive electrode material for batteries A, B, and C were 61 ohm, 4 som 4 h, and 4 som Ah, respectively. From this, it can be seen that carbon, which is a conductive material, occupies a large volume within the positive electrode.

これらの電池A、B、Cを20°Cで16mA(4mA
/cm2)で放電した時の特性を第1図に示す。
These batteries A, B, and C are connected to 16 mA (4 mA) at 20°C.
Figure 1 shows the characteristics when discharging at a speed of /cm2).

第1図からも明らかなように従来電池Cは導電材として
のアセチレンプラックが最も多く含まれているため、放
電初期の電圧は高い。しかし放電に伴い生成する石油コ
ークスは、それ自体大きな導電性が期待できないこと、
又反応生成物であるフッ化リチウム(LiF)が電極内
に蓄積することから、それ以上の反応が阻害され、放電
電圧が徐々に低下していく。
As is clear from FIG. 1, the conventional battery C contains the largest amount of acetylene plaque as a conductive material, so the voltage at the initial stage of discharge is high. However, the petroleum coke produced during discharge cannot be expected to have great conductivity in itself;
Further, since lithium fluoride (LiF), which is a reaction product, accumulates in the electrode, further reaction is inhibited, and the discharge voltage gradually decreases.

これに対し、本発明の電池A及びBは、導電材としての
アセチレンブラックが電池Cに比べて少ないだめ、放電
の初期はや\低い電圧を示すが、放電に伴い活物質の一
部として含まれているアセチレンプラックのフッ化黒鉛
が導電性の良いアセチレンブラックに変るため、それ以
降の反応が阻害されることなく、スムーズな放電をおこ
ない、放電末期に至るまで放電電圧の千多旦性を良好に
維持する。又当然のことながら、活物質の充填量の多い
分だけ、放電時間が長くなる。
On the other hand, batteries A and B of the present invention have less acetylene black as a conductive material than battery C, so they show a slightly lower voltage at the beginning of discharge, but as the electrically conductive material is contained as part of the active material. The fluorinated graphite in the acetylene plaque changes to acetylene black, which has good conductivity, so subsequent reactions are not inhibited, and smooth discharge occurs, ensuring that the discharge voltage remains constant until the final stage of discharge. Maintain well. Also, as a matter of course, the discharge time becomes longer as the filling amount of the active material increases.

同様の効果を導電材を人造黒鉛として検討した。Similar effects were investigated using artificial graphite as the conductive material.

石油コークスをフッ素化して得られたフッ化黒鉛と、人
造黒鉛をフッ素化しで得られたフッ化黒鉛とを重量比で
100:20の割合で混合した。この混合物と人造黒鉛
とSBRディスパージョンを重量比で100:5ニアの
割合で混合し、水分を揮発させた後、0.67gをとり
、上記のチタンネットへ加圧成型したものを正極とし、
他を上記電池と同様に構成したものを電池A′、石油コ
ークスをフッ素化して得られたフッ化黒鉛と人造黒鉛を
フッ素化して得られたフッ化黒鉛とを重量比で100:
5の割合で混合した混合物と、人造黒鉛と、SBRディ
スパージョンを重量比で100二8二8の割合で混合し
、水分を揮発後、その0.66gをとり、上記と同様に
チタンネットに圧着したものを正極とし、以下同様に構
成した電池をB′とし、石油コー・クスをフッ素化して
得られたフッ化黒鉛と人造黒鉛とSBRディスパージョ
ンを重量比で100:10:9の割合で混合し、水分を
揮発させた後、その0.669をとり、以下同様に正極
及び電池を構成した電池をC′とする。又石油コークス
をフッ素化したフッ化黒鉛と人造黒鉛とSBRディスパ
ージョンを重量比で100:5ニアの混合で混合し、水
分を揮発させ、その0.67gをとりチタン集電体に圧
着したものを正極となし、以下同様に電池を構成したも
のをDとする。
Fluorinated graphite obtained by fluorinating petroleum coke and fluorinated graphite obtained by fluorinating artificial graphite were mixed at a weight ratio of 100:20. This mixture, artificial graphite, and SBR dispersion were mixed at a weight ratio of 100:5, and after volatilizing the water, 0.67 g was taken and pressure-molded into the above titanium net, which was used as a positive electrode.
Battery A' was constructed in the same way as the above battery, and contained fluorinated graphite obtained by fluorinating petroleum coke and fluorinated graphite obtained by fluorinating artificial graphite in a weight ratio of 100:
5, artificial graphite, and SBR dispersion were mixed at a weight ratio of 1002828, and after volatilizing the water, 0.66g of the mixture was taken and poured into a titanium net in the same manner as above. The crimped material was used as a positive electrode, and a similarly configured battery was designated as B', and fluorinated graphite obtained by fluorinating petroleum coke, artificial graphite, and SBR dispersion were used in a weight ratio of 100:10:9. After mixing with water and volatilizing the water, 0.669 of the mixture was taken, and a battery in which a positive electrode and a battery were constructed in the same manner was referred to as C'. Also, fluorinated graphite obtained by fluorinating petroleum coke, artificial graphite, and SBR dispersion were mixed at a weight ratio of 100:5, the water was evaporated, and 0.67 g of the mixture was taken and crimped onto a titanium current collector. is used as a positive electrode, and a battery configured in the same manner is designated as D.

これらはいずれも、正極の厚みを一定(111+I+)
即ち体積を一定(0,4cc)  としだものである。
In both of these cases, the thickness of the positive electrode is constant (111+I+)
That is, the volume is kept constant (0.4 cc).

これらの電池の正極活物質の理論充填量はそれぞれ53
0mAh、510mAh、490mAh 及び530m
Ah  である。
The theoretical filling amount of positive electrode active material in these batteries is 53
0mAh, 510mAh, 490mAh and 530m
Ah.

これらの電池A’ 、B’ 、C’ 、D  を、20
″Cで2mA(0,6mA/am )で放電した時の特
性を第2図に示す。
These batteries A', B', C', D are 20
Figure 2 shows the characteristics when discharging at 2 mA (0.6 mA/am) at 20°C.

第2図から明らかなように、従来電池C′は導電材とし
ての人造黒鉛が最も多く含まれているため、電池Cと同
様、放電初期はわずかに高い電圧を示すが、放電、が進
むにつれて、放電電圧が徐々に低下する。これに対し、
本発明の電池A′及びB′は放電初期は電池C′とくら
べ、わずかに低い電圧を示すが、放電電圧の平プ旦性に
すぐれ、又導電材量が少ない分だけ、大きい放電容量が
得られる。
As is clear from Figure 2, conventional battery C' contains the largest amount of artificial graphite as a conductive material, so like battery C, it shows a slightly high voltage at the beginning of discharge, but as discharge progresses, , the discharge voltage gradually decreases. On the other hand,
Batteries A' and B' of the present invention show a slightly lower voltage than battery C' at the beginning of discharge, but they have excellent discharge voltage flattening properties and have a large discharge capacity due to the small amount of conductive material. can get.

電池A′と同様に導電材量を少くした電池りは、1□1 放電容量的には電池A′と同程度得られるが、全体とし
ての導電材量が少いため、低い放電電圧を示す。同様な
試験を、導電材として天然黒鉛、フ一ネスプラソクなど
を用いておこなったか、−1−記と同様な結果が得られ
た。
A battery with a reduced amount of conductive material, similar to battery A', has the same 1□1 discharge capacity as battery A', but exhibits a low discharge voltage due to the small amount of conductive material as a whole. A similar test was conducted using natural graphite, finesse plastic, etc. as the conductive material, and results similar to those in -1- were obtained.

以上の如く本発明によれば、導電材に用いたカーボンを
フッ素化し、フッ化黒鉛活物質に混合することにより、
導電材量を減少させて活物質充填量を増加させ得るとと
もに、放電電圧の+1性を向上させるなど、その効果は
太きいと云える。
As described above, according to the present invention, by fluorinating carbon used as a conductive material and mixing it with a fluorinated graphite active material,
It can be said that the effects are significant, such as reducing the amount of conductive material and increasing the amount of active material filled, and improving the +1 property of the discharge voltage.

又本発明はこれら特定の実施例に限定されるものでなく
、本発明の精神を逸脱しない範囲で他にも適用されるも
のである。
Furthermore, the present invention is not limited to these specific embodiments, but may be applied to other embodiments without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明及び従来電池の2 o’c 、 16m
Aの定電流放電における、時間と放電電圧との関係を・
示す図、第2図は、同様に2.0”C,2mA  定電
流放電における時間と放電電圧との関係を示す図である
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1 手続補正書 特許庁長官殿 1事件の表示 昭和67年特許願第 89139号 2発明の名称 有機電解質電池 3補正をする者 事件との関係      特  許  出  願  人
住 所  大阪府門真市大字門真1006番地名 称 
(582)松下電器産業株式会社代表賃    111
   下  俊  彦4代理人 〒5’71 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会i!を内 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第1頁第16行の「フッ化黒鉛」の前に「
炭素粉末をフッ素化した」を加入します。 (2)同第6頁第1行の1前段」を「前後」と補正しま
す。
Figure 1 shows the battery of the present invention and the conventional battery at 2 o'c, 16 m.
The relationship between time and discharge voltage in constant current discharge of A is
The diagram shown in Figure 2 is a diagram similarly showing the relationship between time and discharge voltage in 2.0"C, 2mA constant current discharge. Name of agent: Patent attorney Toshio Nakao and 1 other person 1 Procedure amendment Mr. Commissioner of the Japan Patent Office 1 Display of the case 1986 Patent Application No. 89139 2 Name of the invention Organic electrolyte battery 3 Relationship with the person making the amendment Case Patent application Address 1006 Kadoma, Kadoma City, Osaka Prefecture Name Name
(582) Matsushita Electric Industrial Co., Ltd. representative fee 111
Toshihiko Shimo 4 Agent 5'71 Address 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. i! In Column 6 of the Detailed Description of the Invention in the Specification, Contents of Amendment (1) In front of "Fluorinated Graphite" on page 1, line 16 of the specification, "
Added "fluorinated carbon powder". (2) The first paragraph of the first line of page 6 will be corrected to read "before and after".

Claims (2)

【特許請求の範囲】[Claims] (1)  フッ化黒鉛よりなる活物質、カーボン導電材
及び結着剤からなる正極と、軽金属もしくはそれらの合
金からなる負極と、有機電解質とから構成され、前記正
極の活物質であるフッ化黒鉛は少なくともIその一部が
、正極導電材と同じカーボンをフッ素化したものである
有機電解質電池。
(1) The active material of the positive electrode is graphite fluoride, which is composed of an active material made of graphite fluoride, a positive electrode made of a carbon conductive material, and a binder, a negative electrode made of a light metal or an alloy thereof, and an organic electrolyte. is an organic electrolyte battery in which at least a portion thereof is made of fluorinated carbon, which is the same as the positive electrode conductive material.
(2)正極のカーボン導電材がカーボンブランクもしく
は黒鉛である特許請求の範囲第1項記載の有機電解質電
池。
(2) The organic electrolyte battery according to claim 1, wherein the carbon conductive material of the positive electrode is carbon blank or graphite.
JP57089139A 1982-05-26 1982-05-26 Organic electrolyte battery Pending JPS58206059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089139A JPS58206059A (en) 1982-05-26 1982-05-26 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089139A JPS58206059A (en) 1982-05-26 1982-05-26 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS58206059A true JPS58206059A (en) 1983-12-01

Family

ID=13962535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089139A Pending JPS58206059A (en) 1982-05-26 1982-05-26 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS58206059A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0215367A2 (en) * 1985-09-16 1987-03-25 Allied Corporation Method of inhibiting voltage suppression lithium/fluorinated carbon batteries
JP2012094504A (en) * 2010-09-28 2012-05-17 Daikin Ind Ltd Positive electrode active material for lithium primary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0215367A2 (en) * 1985-09-16 1987-03-25 Allied Corporation Method of inhibiting voltage suppression lithium/fluorinated carbon batteries
JP2012094504A (en) * 2010-09-28 2012-05-17 Daikin Ind Ltd Positive electrode active material for lithium primary battery

Similar Documents

Publication Publication Date Title
JP3450894B2 (en) Alkaline manganese battery
US4197366A (en) Non-aqueous electrolyte cells
JPH06325764A (en) Nonaqeous electrolytic secondary battery
JPH10308207A (en) Non-aqueous electrolyte secondary battery
JP3405418B2 (en) Non-aqueous electrolyte secondary battery
JPS6149790B2 (en)
JPS58206059A (en) Organic electrolyte battery
JP2000164220A (en) Electrode material for silver oxide battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JPH0770326B2 (en) Organic electrolyte battery
JPS6130383B2 (en)
JP3273569B2 (en) Lithium battery
JPH02227968A (en) Secondary battery
JP2937353B2 (en) Zinc chloride dry cell
JPS585967A (en) Battery
JPS62217567A (en) Nonaqueous electrolyte battery
JPH03225761A (en) Cylindrical lithium secondary battery
JPH08321302A (en) Hydrogen storage electrode
JPH02239572A (en) Polyaniline battery
JPS58140972A (en) Production method of positive electrode active material for organic electrolyte cell
JP2797528B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPH01132059A (en) Organic electrolyte battery
JP2003229135A (en) Aluminum battery
JPS62290068A (en) Organic electrolyte battery
JPS59160968A (en) Nonaqueous electrolyte battery