JP2937353B2 - Zinc chloride dry cell - Google Patents
Zinc chloride dry cellInfo
- Publication number
- JP2937353B2 JP2937353B2 JP1219525A JP21952589A JP2937353B2 JP 2937353 B2 JP2937353 B2 JP 2937353B2 JP 1219525 A JP1219525 A JP 1219525A JP 21952589 A JP21952589 A JP 21952589A JP 2937353 B2 JP2937353 B2 JP 2937353B2
- Authority
- JP
- Japan
- Prior art keywords
- manganese dioxide
- weight
- discharge
- mno
- zinc chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 title claims description 104
- 235000005074 zinc chloride Nutrition 0.000 title claims description 52
- 239000011592 zinc chloride Substances 0.000 title claims description 52
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 218
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 72
- 239000006230 acetylene black Substances 0.000 claims description 69
- 239000003792 electrolyte Substances 0.000 claims description 28
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 18
- 229910052740 iodine Inorganic materials 0.000 claims description 18
- 239000011630 iodine Substances 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 18
- 238000001179 sorption measurement Methods 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 14
- 239000011701 zinc Substances 0.000 claims description 12
- 239000007774 positive electrode material Substances 0.000 claims description 10
- 239000002482 conductive additive Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 30
- 239000008151 electrolyte solution Substances 0.000 description 25
- 230000007423 decrease Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 101100311458 Lytechinus variegatus SUM-1 gene Proteins 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910018663 Mn O Inorganic materials 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- GOPYZMJAIPBUGX-UHFFFAOYSA-N [O-2].[O-2].[Mn+4] Chemical group [O-2].[O-2].[Mn+4] GOPYZMJAIPBUGX-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
Classifications
-
- Y02E60/12—
Landscapes
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は塩化亜鉛形乾電池に係わり、さらに詳しく
は、放電容量が大きく、かつ貯蔵に伴う放電性能の低下
が少ない塩化亜鉛形乾電池に関する。Description: TECHNICAL FIELD The present invention relates to a zinc chloride type dry battery, and more particularly, to a zinc chloride type dry battery having a large discharge capacity and a small decrease in discharge performance during storage.
塩化亜鉛形乾電池は、二酸化マンガンを正極活物質と
し、アセチレンブラックを導電助剤とし、塩化亜鉛を主
電解質とする電解液(いわゆる、塩化亜鉛形の電解液)
を用いたものである。A zinc chloride type dry battery is an electrolyte using manganese dioxide as a positive electrode active material, acetylene black as a conductive additive, and zinc chloride as a main electrolyte (so-called zinc chloride type electrolyte).
Is used.
この塩化亜鉛形乾電池は、塩化アンモニウムを主電解
質とする乾電池に比べて、大電流放電での放電容量が大
きく、かつ漏液が少ないなどの長所を有している。This zinc chloride type dry battery has advantages such as a larger discharge capacity at a large current discharge and less liquid leakage than a dry battery using ammonium chloride as a main electrolyte.
しかし、この塩化亜鉛形乾電池においても、電池使用
機器の小型化や高性能化に対する要請から、より放電性
能を高めることが要求されている。However, in this zinc chloride type dry battery as well, demands for downsizing and higher performance of the battery-using equipment require higher discharge performance.
そこで、まず、本出願人が製造する塩化亜鉛形乾電池
の現状について述べると、正極合剤中の二酸化マンガン
(MnO2)に対するアセチレンブラック(AB)の使用比率
(AB/MnO2)は重量比でAB/MnO2=16.13/100である。Therefore, first, the current state of the zinc chloride type dry battery manufactured by the present applicant is described. The use ratio of acetylene black (AB) to manganese dioxide (MnO 2 ) in the positive electrode mixture (AB / MnO 2 ) is expressed by weight. AB / MnO 2 = 16.13 / 100.
そして、この二酸化マンガンに対するアセチレンブラ
ックの使用割合において最も良好な性能を示す電解液組
成、つまり電解液中の塩化亜鉛(ZnCl2)に二酸化マン
ガン(MnO2)に対する量比(ZnCl2/MnO2)は重量比でZn
Cl2/MnO2=0.203であり、この場合の電解液中の水(H
2O)の二酸化マンガン(MnO2)に対する量比(H2O/Mn
O2)は重量比でH2O/MnO2=0.529であって、SUM−1形電
池では、二酸化マンガンの電池内への充填量は30.8g
で、2Ω連続放電での放電持続時間は370分で、2Ω間
欠放電での放電持続時間は560分である。The composition of the electrolytic solution showing the best performance in the use ratio of acetylene black to the manganese dioxide, that is, the ratio of zinc chloride (ZnCl 2 ) to the amount of manganese dioxide (MnO 2 ) in the electrolytic solution (ZnCl 2 / MnO 2 ) Is Zn in weight ratio
Cl 2 / MnO 2 = 0.203, and the water (H
2 O) to manganese dioxide (MnO 2 ) (H 2 O / Mn
O 2 ) is H 2 O / MnO 2 = 0.529 in weight ratio, and in the SUM-1 type battery, the filling amount of manganese dioxide in the battery is 30.8 g.
The discharge duration in 2Ω continuous discharge is 370 minutes, and the discharge duration in 2Ω intermittent discharge is 560 minutes.
そこで、この塩化亜鉛形乾電池において、前述の電池
使用機器側からの要求に応えるため、放電容量を高める
ようとすると、二酸化マンガンの放電利用率は負荷によ
ってほぼ決まっているので、現在以上に放電利用率を高
めることはむつかしく、正極活物質の二酸化マンガン量
を増加せざるを得ないのが実状である。Therefore, in order to meet the above-mentioned demands from the equipment using the battery, if the discharge capacity of this zinc chloride type dry battery is increased, the discharge utilization rate of manganese dioxide is almost determined by the load. It is difficult to increase the rate, and the actual situation is that the amount of manganese dioxide in the positive electrode active material must be increased.
しかしながら、電池内に充電できる正極合剤はほぼ一
定であるため、二酸化マンガンを増量すると、それに応
じてアセチレンブラックの量を減少しければならず、そ
のアセチレンブラックの減少に伴って正極合剤の保液力
が低下して、放電に必要な量の電解液を保持することが
できなくなり、そのため、二酸化マンガンの放電利用率
が低下して充分な放電容量が得られなくなり、かつ貯蔵
による放電性能の低下が大きく、また漏液が生じやすく
なるという問題が発生する。However, since the positive electrode mixture that can be charged in the battery is almost constant, when the amount of manganese dioxide is increased, the amount of acetylene black must be reduced accordingly, and with the decrease of acetylene black, the positive electrode mixture is maintained. The hydraulic power decreases, and it is not possible to hold an amount of electrolyte required for discharge, and therefore, the discharge utilization rate of manganese dioxide decreases, and a sufficient discharge capacity cannot be obtained, and the discharge performance due to storage is reduced. There is a problem that the drop is large and liquid leakage is likely to occur.
したがって、本発明は、放電容量が大きく、かつ貯蔵
に伴う放電性能の低下が少ない塩化亜鉛形乾電池を提供
することを目的とする。Accordingly, an object of the present invention is to provide a zinc chloride type dry battery having a large discharge capacity and a small decrease in discharge performance due to storage.
本発明は、90重量%以上が粒径1〜10μmの範囲内に
ある微粉末二酸化マンガンを20〜40重量%含む二酸化マ
ンガンを正極活物質とし、ヨード吸着量が250〜319mg/g
の微粉末アセチレンブラックを5重量%以上含むアセチ
レンブラックを導電助剤とし、二酸化マンガンに対する
電解液中の塩化亜鉛の量比(ZnCl2/MnO2)が重量比でZn
Cl2/MnO2=0.210〜0.273である高濃度の塩化亜鉛形電解
液を用いることによって、上記目的を達成したものであ
る。The present invention uses a manganese dioxide containing 20 to 40% by weight of fine manganese dioxide having a particle size of 1 to 10 μm in a range of 90% by weight or more as a positive electrode active material, and has an iodine adsorption amount of 250 to 319 mg / g.
Acetylene black containing 5% by weight or more of fine powder of acetylene black is used as a conductive assistant, and the amount ratio of zinc chloride in the electrolyte to manganese dioxide (ZnCl 2 / MnO 2 ) is Zn in weight ratio.
By using Cl 2 / MnO 2 = 0.210~0.273 high concentration of zinc chloride type electrolyte is one in which has achieved the above objects.
すなわち、従来使用のアセチレンブラックは、ヨード
吸着量が80〜100mg/g程度であるが、本発明では、この
ような従来使用のアセチレンブラックより粒径が小さ
く、ヨード吸着量が250〜310mg/gという表面積の大きい
微粉末アセチレンブラックを用いる。この微粉末アセチ
レンブラックは、表面積が大きく、吸液量が大きいの
で、この微粉末アセチレンブラックの使用によって、正
極合剤の電解液保持力が向上する。その結果、正極合剤
中の二酸化マンガン量を多くしアセチレンブラック量が
減少した場合でも、正極合剤が必要な電解液量を保持で
きるようになり、二酸化マンガンの放電利用率が向上
し、かつ貯蔵による放電性能の低下も少なくなる。ま
た、この微粉末アセチレンブラックの使用によって、ア
セチレンブラックと二酸化マンガンとの接触点が多くな
り、集電能力が高まることによって、二酸化マンガンの
反応性も高くなり、この面からも、二酸化マンガンの放
電利用率が向上する。That is, the conventionally used acetylene black has an iodine adsorption amount of about 80 to 100 mg / g.In the present invention, however, the particle diameter is smaller than such a conventionally used acetylene black, and the iodine adsorption amount is 250 to 310 mg / g. Acetylene black having a large surface area. Since the fine powder acetylene black has a large surface area and a large liquid absorption, the use of the fine powder acetylene black improves the electrolytic solution holding power of the positive electrode mixture. As a result, even when the amount of manganese dioxide in the positive electrode mixture is increased and the amount of acetylene black is reduced, the required amount of electrolyte solution for the positive electrode mixture can be maintained, the discharge utilization rate of manganese dioxide is improved, and The decrease in discharge performance due to storage is also reduced. In addition, the use of this fine powder of acetylene black increases the number of contact points between acetylene black and manganese dioxide, and increases the current collecting ability, thereby increasing the reactivity of manganese dioxide. The utilization rate improves.
しかも、本発明においては、正極活物質の二酸化マン
ガンの一部に90重量%以上が1〜10μmの範囲内にある
微粉末二酸化マンガンを用い、正極活物質自身の電解液
保持力を高めることによって、正極活物質の反応性を高
め、重負荷放電時の二酸化マンガンの放電利用率を高め
ている。In addition, in the present invention, 90% by weight or more of manganese dioxide of the positive electrode active material uses fine powdered manganese dioxide in the range of 1 to 10 μm to increase the electrolytic solution holding power of the positive electrode active material itself. In addition, the reactivity of the positive electrode active material is increased, and the discharge utilization rate of manganese dioxide during heavy load discharge is increased.
すなわち、従来使用の二酸化マンガンは、粒径が20〜
80μm程度のものであるが、これに比べ、上記微粉末二
酸化マンガンは、粒径が小さく、表面積が大きいので、
電解液の保持力が大きい。That is, the conventionally used manganese dioxide has a particle size of 20 to
Although it is about 80 μm, in comparison with this, the fine powdered manganese dioxide has a small particle size and a large surface area,
High retention of electrolyte.
従来において、微粉末二酸化マンガンを用いずに、粒
径20〜80μm程度の二酸化マンガンを用いていたのは、
二酸化マンガンを微粉末化すると、嵩密度が小さくなっ
て電池内に充填できる二酸化マンガン量が低下して放電
容量が低下するおそれがあるためである。In the past, instead of using fine powdered manganese dioxide, manganese dioxide with a particle size of about 20 to 80 μm was used,
This is because, when manganese dioxide is finely powdered, the bulk density is reduced, the amount of manganese dioxide that can be filled in the battery is reduced, and the discharge capacity may be reduced.
そこで、本発明は、この90重量%以上が粒径1〜10μ
mの範囲内にある微粉末二酸化マンガンを正極活物質と
しての全二酸化マンガン中20〜40重量%という特定割合
で用いることによって、微粉末二酸化マンガンの使用に
よる欠点を生起させずに、その電解液保持力が大きいと
いう特性を生かして、特に重負荷放電時の正極活物質の
放電利用率を向上させて、放電容量の大きい電池を得る
のに役立たせているのである。Therefore, in the present invention, 90% by weight or more has a particle size of 1 to 10 μm.
The use of fine powdered manganese dioxide in the range of 20 to 40% by weight of the total manganese dioxide as the positive electrode active material without causing any drawbacks caused by the use of the fine powdered manganese dioxide allows the electrolyte solution to be used. Taking advantage of the characteristic that the coercive force is large, the discharge utilization rate of the positive electrode active material particularly at the time of heavy load discharge is improved, which is useful for obtaining a battery having a large discharge capacity.
また、本発明においては、正極合剤中の二酸化マンガ
ンの使用引率を高める結果、従来において好適に使用さ
れていた組成の電解液では、二酸化マンガンに対する塩
化亜鉛の量が不足気味になるので、高濃度の電解液を用
いる。Further, in the present invention, as a result of increasing the use rate of manganese dioxide in the positive electrode mixture, the amount of zinc chloride with respect to manganese dioxide tends to be insufficient in the electrolyte solution having a composition conventionally used favorably. Use a concentrated electrolyte solution.
これを二酸化マンガン(MnO2)に対する電解液中の塩
化亜鉛(ZnCl2)の量比(ZnCl2/MnO2)で表すと、重量
比でZnCl2/MnO2=0.210〜0.273の範囲であり、これは従
来使用の電解液中の二酸化マンガンに対する塩化亜鉛の
量比ZnCl2/MnO2=0.203に比べて大きく、電解液中の塩
化亜鉛の濃度が高くなっている。そして、上記の電解液
中の二酸化マンガンに対する塩化亜鉛の量比ZnCl2/MnO2
=0.210〜0.273は、二酸化マンガン(MnO2)に対する電
解液中の水(H2O)の量比で示すと、H2O/MnO2=0.505〜
0.480に相当する。When this is represented by the weight ratio of zinc chloride (ZnCl 2 ) in the electrolytic solution to manganese dioxide (MnO 2 ) (ZnCl 2 / MnO 2 ), the weight ratio is ZnCl 2 / MnO 2 = 0.210 to 0.273, This is larger than the conventional ratio of zinc chloride to manganese dioxide in the electrolytic solution, ZnCl 2 / MnO 2 = 0.203, and the concentration of zinc chloride in the electrolytic solution is high. And, the amount ratio of zinc chloride to manganese dioxide in the electrolyte solution ZnCl 2 / MnO 2
= 0.210 to 0.273, when indicated by ratio of water (H 2 O) in the electrolytic solution to manganese dioxide (MnO 2), H 2 O / MnO 2 = 0.505~
It corresponds to 0.480.
本発明においては、上記の構成をとることにより、正
極合剤中のアセチレンブラックと二酸化マンガンとの使
用比率(AB/MnO2)を、たとえばAB/MnO2=13.25/100程
度にすることができる。つまり、正極合剤中のアセチレ
ンブラックの使用比率を減少させ、二酸化マンガンの使
用比率を高め、それによって放電容量を向上させてい
る。In the present invention, by employing the above configuration, the usage ratio (AB / MnO 2 ) of acetylene black and manganese dioxide in the positive electrode mixture can be reduced to, for example, about AB / MnO 2 = 13.25 / 100. . That is, the usage ratio of acetylene black in the positive electrode mixture is reduced, and the usage ratio of manganese dioxide is increased, thereby improving the discharge capacity.
本発明において、前記のヨード吸着量が250〜310mg/g
の微粉末アセチレンブラックの使用量は、導電助剤とし
て用いる全アセチレンブラック中の5重量%以上にすれ
ばよい。すなわち、上記ヨード吸着量が250〜310mg/gの
微粉末アセチレンブラックの全アセチレンブラック中で
占める割合が5重量%より少ない場合は、二酸化マンガ
ンを増量させたときの正極合剤の電解液保持力が低下し
て、二酸化マンガンの放電利用率が低下したり、貯蔵に
よる放電性能の低下が生じるからである。一方、ヨード
吸着量が250〜310mg/gの微粉末アセチレンブラックの使
用量の上限は特に限定されることなく、導電助剤として
の全アセチレンブラックが上記微粉末アセチレンブラッ
クであってもよい。In the present invention, the iodine adsorption amount is 250 to 310 mg / g
May be used in an amount of 5% by weight or more of the total acetylene black used as a conductive additive. That is, when the ratio of the fine powdered acetylene black having an iodine adsorption amount of 250 to 310 mg / g in the total acetylene black is less than 5% by weight, the electrolytic solution holding power of the positive electrode mixture when the amount of manganese dioxide is increased. , The discharge utilization rate of manganese dioxide is reduced, and the discharge performance due to storage is reduced. On the other hand, the upper limit of the amount of the fine powdered acetylene black having an iodine adsorption amount of 250 to 310 mg / g is not particularly limited, and all the acetylene blacks as the conductive assistant may be the finely powdered acetylene black.
また、本発明において、用いる微粉末アセチレンブラ
ックのヨード吸着量を250〜310mg/gに特定しているの
は、微粉末アセチレンブラックのヨード吸着量が250mg/
gより小さい場合は電解液の保持力が従来使用のアセチ
レンブラックと比べてそれほど大きな差をもたなくなる
からであり、また微粉末アセチレンブラックのヨード吸
着量が310mg/gより大きい場合は表面積が大きいために
二酸化マンガンに対して活性になり、二酸化マンガンに
よって酸化されることになって、電池性能の低下が大き
くなるからである。In the present invention, the iodine adsorption amount of the fine powder acetylene black used is specified to be 250 to 310 mg / g, because the iodine adsorption amount of the fine powder acetylene black is 250 mg / g.
This is because the holding power of the electrolytic solution does not have a great difference compared with the conventionally used acetylene black when it is smaller than g, and the surface area is large when the iodine adsorption amount of the fine powder acetylene black is larger than 310 mg / g. Therefore, it becomes active against manganese dioxide and is oxidized by manganese dioxide, so that the battery performance is greatly reduced.
なお、この微粉末アセチレンブラックは、従来使用の
アセチレンブラックに比べて、嵩高いので、従来使用の
アセチレンブラックと同重量で使用ると、嵩高くなりす
ぎて充填性に問題が生じるため、この微粉末アセチレン
ブラックを従来使用のアセチレンブラックに置き換えて
用いる際には、従来使用のアセチレンブラックの使用重
量の約6割の重量で使用することが好ましい。In addition, since this fine powder acetylene black is bulky as compared with the conventionally used acetylene black, if it is used in the same weight as the conventionally used acetylene black, it becomes too bulky and causes a problem in the filling property. When powder acetylene black is used in place of conventional acetylene black, it is preferable to use about 60% of the weight of conventionally used acetylene black.
本発明においては、90重量%以上が粒径1〜10μmの
範囲内にある微粉末二酸化マンガンを、全二酸化マンガ
ン中20〜40重量%にするが、これは上記微粉末二酸化マ
ンガンの全二酸化マンガン中で占める割合が20重量%よ
り少ない場合は、二酸化マンガン自身の電解液保持力が
低下して、特に重負荷放電時の二酸化マンガンの放電利
用率が低下することになり、また、上記微粉末二酸化マ
ンガンの全二酸化マンガン中で占める割合が40重量%よ
り多くなると嵩高くなって充填性に欠け、そのため電池
内に充填できる二酸化マンガン量が減少して、放電容量
が低下するからである。In the present invention, the fine manganese dioxide having 90% by weight or more in the range of the particle size of 1 to 10 μm is made into 20 to 40% by weight of the total manganese dioxide. If the proportion of the manganese dioxide is less than 20% by weight, the manganese dioxide's own electrolytic solution holding power is reduced, and particularly the discharge utilization rate of manganese dioxide during heavy load discharge is reduced. If the proportion of manganese dioxide in the total manganese dioxide is more than 40% by weight, the manganese dioxide becomes bulky and lacks filling properties, so that the amount of manganese dioxide that can be filled in the battery decreases and the discharge capacity decreases.
また、本発明においては、二酸化マンガンに対する電
解液中の塩化亜鉛の量比(ZnCl2/MnO2)を重量比でZnCl
2/MnO2=0.210〜0.273にするが、これは、上記ZnCl2/Mn
O2が0.210より小くなると、二酸化マンガンに対する塩
化亜鉛量が不足して、二酸化マンガンが放電に有効に利
用されなくなって、二酸化マンガンの放電利用率が低下
し、また上記ZnCl2/MnO2が0.273より大きくなると、放
電に必要な水が確保されなくなって、放電が進行しにく
くなるからである。つまり、塩化亜鉛形乾電池の放電反
応は、下記の反応式 8MnO2+8H2O+ZnCl2+4Zn→8MnOOH+ZnCl2・4Zn(OH)
2 によって進行し、放電反応にあたっては水も必要であ
る。そのため、上記のようにZnCl2/MnO2が大きくなって
電解液中の塩化亜鉛濃度が高くなると、電解液〔通常、
電解液は水と塩化亜鉛と塩化アンモニウム(通常、塩化
亜鉛の約1割程度である)とで構成される〕中の水の量
が少なくなり、放電に必要な水が確保されなくなるから
である。In the present invention, the weight ratio of zinc chloride (ZnCl 2 / MnO 2 ) in the electrolytic solution to manganese dioxide is changed to ZnCl 2 by weight ratio.
2 / MnO 2 = 0.210 to 0.273, which is the above ZnCl 2 / Mn
When O 2 is smaller than 0.210, the amount of zinc chloride relative to manganese dioxide is insufficient, manganese dioxide is not effectively used for discharge, the discharge utilization rate of manganese dioxide is reduced, and the above ZnCl 2 / MnO 2 If it is larger than 0.273, water required for discharge cannot be secured, and the discharge does not easily proceed. That is, the discharge reaction of zinc chloride type batteries, the following reaction formula: 8MnO 2 + 8H 2 O + ZnCl 2 + 4Zn → 8MnOOH + ZnCl 2 · 4Zn (OH)
2 and water is required for the discharge reaction. Therefore, as described above, when ZnCl 2 / MnO 2 increases and the concentration of zinc chloride in the electrolyte increases, the electrolyte (usually,
The electrolyte solution is composed of water, zinc chloride and ammonium chloride (usually about 10% of zinc chloride)], the amount of water in the electrolyte decreases, and the water required for discharge cannot be secured. .
つぎに実施例をあげて本発明をさらに詳細に説明す
る。Next, the present invention will be described in more detail with reference to examples.
実施例1 90重量%以上が粒径0.1〜10μmの範囲内にある微粉
末二酸化マンガン120重量部と、粒径20〜80μmの範囲
内にある二酸化マンガン280重量部と、ヨード吸着量が2
80mg/gの微粉末アセチレンブラック3重量部と、ヨード
吸着量が90mg/gのアセチレンブラック50重量部と、塩化
亜鉛濃度が30重量%の電解液187重量部とを混合して正
極合剤を調製した。Example 1 120 parts by weight of finely powdered manganese dioxide having 90% by weight or more in the range of particle size of 0.1 to 10 μm, 280 parts by weight of manganese dioxide in the range of particle size of 20 to 80 μm, and iodine adsorption amount of 2 parts
A positive electrode mixture was prepared by mixing 3 parts by weight of fine powder of acetylene black of 80 mg / g, 50 parts by weight of acetylene black having 90 mg / g of iodine adsorption, and 187 parts by weight of an electrolytic solution having a zinc chloride concentration of 30% by weight. Prepared.
上記正極合剤を常法にしたがい押出成形基で円柱状に
成形し、それを亜鉛缶に挿入してSUM−1形で第1図に
示す構造の塩化亜鉛形乾電池を組み立てた。The positive electrode mixture was formed into a cylindrical shape using an extrusion molding base according to a conventional method, and inserted into a zinc can to assemble a zinc chloride dry battery having a structure shown in FIG. 1 in the form of SUM-1.
すなわち、亜鉛缶(1)にセパレータ(2)、底紙
(3)および上記の正極合剤(4)を挿入し、電解液を
注入したのち、正極合剤(4)上に上蓋紙(5)を載置
し、予備プレス後、炭素棒(6)を上蓋紙(5)の中央
に設けた貫通孔を通して正極合剤(4)中に挿入し、つ
いで亜鉛缶(1)の開口縁を内方へカールしたのち、中
央に透光を有する封口体(7)を炭素棒(6)に嵌合
し、亜鉛缶(1)の底部に負極端子板(8)を配設し、
該負極端子板(8)の周縁部に紙リング(9)を配置し
たのち、亜鉛缶(1)の側面に塩化ビニル樹脂製の熱収
縮性チューブ(10)を配置し、加熱して上記熱収縮性チ
ューブ(10)を熱収縮させ、亜鉛缶(1)の側面および
亜鉛缶(1)の底部に配置した紙リング(9)上および
亜鉛缶(1)の上部に位置する封口体(7)の周縁部を
被覆した。That is, the separator (2), the base paper (3) and the above-mentioned positive electrode mixture (4) are inserted into the zinc can (1), and after the electrolyte is injected, the top cover (5) is placed on the positive electrode mixture (4). ) Is placed, and after pre-pressing, the carbon rod (6) is inserted into the positive electrode mixture (4) through a through hole provided in the center of the top cover paper (5), and then the opening edge of the zinc can (1) is removed. After curling inward, a sealing body (7) having a light transmitting property at the center is fitted to a carbon rod (6), and a negative electrode terminal plate (8) is provided at the bottom of a zinc can (1).
After arranging a paper ring (9) on the periphery of the negative electrode terminal plate (8), a heat-shrinkable tube (10) made of vinyl chloride resin is arranged on the side surface of the zinc can (1), and heated to heat the heat-shrinkable tube. The shrinkable tube (10) is heat-shrinked, and the sealing body (7) located on the paper ring (9) arranged on the side of the zinc can (1) and the bottom of the zinc can (1) and on the top of the zinc can (1). ) Was covered.
つぎに、炭素棒(6)の頭部に正極端子板(11)を嵌
め込み、正極端子板(11)の外周縁部に樹脂リング(1
2)を配置したのち、金属外装缶(13)で各構成部材を
軸方向に締め付けるとともに外装して、第1図に示す構
造の塩化亜鉛形乾電池を組み立てた。Next, the positive electrode terminal plate (11) is fitted into the head of the carbon rod (6), and a resin ring (1) is attached to the outer peripheral edge of the positive electrode terminal plate (11).
After disposing 2), the components were tightened in the axial direction with a metal outer can (13), and the components were packaged to assemble a zinc chloride dry battery having the structure shown in FIG.
上記の塩化亜鉛形乾電池において、正極活物質として
の全二酸化マンガン中の微粉末二酸化マンガン(90重量
%以上が粒径1〜10μmの範囲内にある微粉末二酸化マ
ンガン)の占める割合は30重量%であり、また導電助剤
としての全アセチレンブラック中の微粉末アセチレンブ
ラック(ヨード吸着量が280mg/gの微粉末アセチレンブ
ラック)を占める割合は6重量%である。In the above zinc chloride type dry battery, the proportion of fine manganese dioxide (fine manganese dioxide in which 90% by weight or more is in the range of particle diameter of 1 to 10 μm) in the total manganese dioxide as the positive electrode active material accounts for 30% by weight. The proportion of fine acetylene black (fine acetylene black having an iodine adsorption amount of 280 mg / g) in all acetylene black as a conductive additive is 6% by weight.
また、二酸化マンガンに対する電解液中の塩化亜鉛の
量比(ZnCl2/MnO2)は重量比でZnCl2/MnO2=0.255であ
り、二酸化マンガンに対する電解液中の紙の量比(H2O/
MnO2)は重量比でH2O/MnO2=0.500であって、電池内へ
の電解液の注入量は正極合剤の調製時に使用されたもの
も含めて25.0gである。The weight ratio of zinc chloride in the electrolyte to manganese dioxide (ZnCl 2 / MnO 2 ) is ZnCl 2 / MnO 2 = 0.255, and the weight ratio of paper in the electrolyte to manganese dioxide (H 2 O) /
MnO 2 ) is H 2 O / MnO 2 = 0.500 in weight ratio, and the amount of the electrolyte solution injected into the battery is 25.0 g including that used in the preparation of the positive electrode mixture.
そして、正極合中の全アセチレンブラックと全二酸化
マンガンとの使用比率(AB/MnO2)は、重量比でAB/MnO2
=13.25/100である。The use ratio of the total acetylene black and the total manganese dioxide in the positive electrode mixture (AB / MnO 2) is, AB / MnO 2 in a weight ratio of
= 13.25 / 100.
比較例1 粒径20〜80μmの範囲内にある二酸化マンガン280重
量部と、ヨード吸着量が90mg/gのアセチレンブラック45
重量部と、塩化亜鉛濃度が27重量%の電解液135重量部
とを混合して正極合剤を調製し、この正極合剤を用いた
ほかは実施例1と同様にしてSUM−1形で第1図に示す
ものと同様の構造の塩化亜鉛形乾電池を作製した。Comparative Example 1 280 parts by weight of manganese dioxide having a particle size in the range of 20 to 80 μm and acetylene black 45 having an iodine adsorption of 90 mg / g
Parts by weight and 135 parts by weight of an electrolytic solution having a zinc chloride concentration of 27% by weight to prepare a positive electrode mixture. A zinc chloride type dry battery having the same structure as that shown in FIG. 1 was produced.
この電池におけるアセチレンブラックと二酸化マンガ
ンとの使用比率(AB/MnO2)は重量比でAB/MnO2=16.13/
100であり、二酸化マンガンに対する電解液中の塩化亜
鉛の量比(ZnCl2/MnO2)は重量比でZnCl2/MnO2=0.203
で、二酸化マンガンに対する電解液中の水の量比(H2O/
MnO2)は重量比でH2O/MnO2=0.523である。The use ratio (AB / MnO 2 ) of acetylene black and manganese dioxide in this battery is AB / MnO 2 = 16.13 / by weight.
100 and the weight ratio of zinc chloride in the electrolyte to manganese dioxide (ZnCl 2 / MnO 2 ) is ZnCl 2 / MnO 2 = 0.203 by weight.
And the ratio of the amount of water in the electrolyte to manganese dioxide (H 2 O /
MnO 2 ) is H 2 O / MnO 2 = 0.523 in weight ratio.
比較例2 粒径20〜80μmの範囲にある二酸化マンガン400重量
部と、ヨード吸着量が90mg/gのアセチレンブラック53重
量部と、塩化亜鉛濃度が30重量%の電解液187重量部と
を混合して正極合剤を調製し、この正極合剤を用いたほ
かは実施例1と同様にしてSUM−1形で第1図に示すも
のと同様の構造の塩化亜鉛形乾電池を作製した。Comparative Example 2 400 parts by weight of manganese dioxide having a particle size of 20 to 80 μm, 53 parts by weight of acetylene black having an iodine adsorption of 90 mg / g, and 187 parts by weight of an electrolyte having a zinc chloride concentration of 30% by weight were mixed. A positive electrode mixture was prepared, and a zinc chloride type dry battery having the same structure as that shown in FIG. 1 was produced in the SUM-1 type in the same manner as in Example 1 except that this positive electrode mixture was used.
この電池におけるアセチレンブラックと二酸化マンガ
ンとの使用比率(AB/MnO2)は重量比でAB/MnO2=13.75
であり、二酸化マンガンに対する電解液中の塩化亜鉛の
量比(ZnCl2/MnO2)は重量比でZnCl2/MnO2=0.225であ
って、二酸化マンガンに対する電解液中の水の量比(H2
O/MnO2)は重量比でH2O/MnO2=0.500である。The use ratio (AB / MnO 2 ) of acetylene black and manganese dioxide in this battery was AB / MnO 2 = 13.75 in weight ratio.
And the weight ratio of zinc chloride in the electrolyte to manganese dioxide (ZnCl 2 / MnO 2 ) is ZnCl 2 / MnO 2 = 0.225 by weight, and the weight ratio of water in the electrolyte to manganese dioxide (H Two
O / MnO 2 ) is H 2 O / MnO 2 = 0.500 by weight.
比較例3 90重量%以上が粒径0.1〜10μmの範囲内にある微粉
末二酸化マンガン120重量部と、粒径20〜80μmの範囲
内にある二酸化マンガン280重量部と、ヨード吸着量が9
0mg/gのアセチレンブラック55重量部と、塩化亜鉛濃度
が30重量%の電解液187重量部とを混合して正極合剤を
調製し、この正極合剤を用いたほかは実施例1と同様に
してSUM−1形で第1図に示すものと同様の構造の塩化
亜鉛形乾電池を作製した。Comparative Example 3 120 parts by weight of finely powdered manganese dioxide containing 90% by weight or more of particles having a particle size of 0.1 to 10 μm, 280 parts by weight of manganese dioxide having a particle size of 20 to 80 μm, and an iodine adsorption amount of 9 parts
A positive electrode mixture was prepared by mixing 55 parts by weight of 0 mg / g acetylene black and 187 parts by weight of an electrolyte having a zinc chloride concentration of 30% by weight, and was the same as in Example 1 except that this positive electrode mixture was used. Thus, a zinc chloride type dry battery having the same structure as that shown in FIG.
この電池におけるアセチレンブラックと二酸化マンガ
ンとの使用比率(AB/MnO2)は重量比でAB/MnO2=13.75
であり、二酸化マンガンに対する電解液中の塩化亜鉛の
量比(ZnCl2/MnO2)は重量比でZnCl2/MnO2=0.225であ
って、二酸化マンガンに対する電解液中の水の量比(H2
O/MnO2)は重量比でH2O/MnO2=0.500である。The use ratio (AB / MnO 2 ) of acetylene black and manganese dioxide in this battery was AB / MnO 2 = 13.75 in weight ratio.
And the weight ratio of zinc chloride in the electrolyte to manganese dioxide (ZnCl 2 / MnO 2 ) is ZnCl 2 / MnO 2 = 0.225 by weight, and the weight ratio of water in the electrolyte to manganese dioxide (H Two
O / MnO 2 ) is H 2 O / MnO 2 = 0.500 by weight.
上記実施例1の電池および比較例1〜3の電池につい
て、初度および45℃で1カ合貯蔵後に、JIS C 8501にし
たがい、負荷2Ωで連続放電させたときの放電持続時間
および負荷2Ωで間欠放電させたときの放電持続時間を
測定した。その結果を第1表に示す。For the battery of Example 1 and the batteries of Comparative Examples 1 to 3, initially and after storage at 45 ° C. for one battery, according to JIS C 8501, the discharge duration time when the battery was continuously discharged at a load of 2Ω and the battery intermittently at a load of 2Ω. The discharge duration when discharging was measured. Table 1 shows the results.
第1表に示すように、実施例1の電池は、従来品に相
当する比較例1の電池に比べて、初度、貯蔵後とも、放
電持続時間が長く、重負荷放電においても放電容量が大
きいことを示していた。 As shown in Table 1, the battery of Example 1 has a longer discharge duration at first and after storage than the battery of Comparative Example 1 corresponding to a conventional product, and has a larger discharge capacity even under heavy load discharge. It was showing that.
また、比較例1の電池と同様の二酸化マンガンおよび
アセチレンブラックを用い、正極合剤中の二酸化マンガ
ンの使用比率を高めた比較例2の電池は、正極合剤の電
解液保持力が小さいために、二酸化マンガンの放電利用
率が低下して、放電持続時間が長くならず、また貯蔵に
よる放電持続時間の低下が著しく、貯蔵後においては比
較例1の電池より放電持続時間が短くなった。Also, the battery of Comparative Example 2 using the same manganese dioxide and acetylene black as the battery of Comparative Example 1 and increasing the use ratio of manganese dioxide in the positive electrode mixture has a low electrolyte solution holding power of the positive electrode mixture. In addition, the discharge utilization rate of manganese dioxide was reduced, the discharge duration was not increased, and the discharge duration was significantly reduced by storage. After storage, the discharge duration was shorter than that of the battery of Comparative Example 1.
また、実施例1の電池の同様の割合で微粉末二酸化マ
ンガンを用い、微粉末アセチレンブラックを用いなかっ
た比較例3の電池は、正極合剤の電解液保持力が小さい
ために、実施例1の電池ほどには放電持続時間が長くな
らず、また貯蔵による放電持続時間の低下が著しく、貯
蔵後においては比較例1の電池より放電持続時間が短か
くなった。Further, the battery of Comparative Example 3 in which fine manganese dioxide was used in the same ratio as the battery of Example 1 and acetylene black was not used was used, because the electrolyte holding power of the positive electrode mixture was small. The discharge duration was not as long as that of the battery of Example 1, and the discharge duration was significantly reduced by storage. After storage, the discharge duration was shorter than that of the battery of Comparative Example 1.
実施例2〜3および比較例4〜6 微粉末二酸化マンガン(90重量%以上が粒径1〜10μ
mの範囲内にある微粉末二酸化マンガン)の全二酸化マ
ンガン中で占める割合を10重量%(比較例4)、20重量
%(実施例2)、40重量%(実施例3)、50重量%(比
較例5)および100重量%(比較例6)に変えたほかは
実施例1と同様に正極合剤を調製し、これらの正極合剤
を用いたほかは実施例1と同様にしてSUM−1形で第1
図に示すものと同様の構造の塩化亜鉛形乾電池を作製し
た。Examples 2-3 and Comparative Examples 4-6 Fine powdered manganese dioxide (90% by weight or more has a particle size of 1-10 μm)
m in the range of 10% by weight (Comparative Example 4), 20% by weight (Example 2), 40% by weight (Example 3), 50% by weight in the total manganese dioxide. A positive electrode mixture was prepared in the same manner as in Example 1 except that (Comparative Example 5) and 100% by weight (Comparative Example 6) were changed, and SUM was prepared in the same manner as in Example 1 except that these positive electrode mixtures were used. First in -1 form
A zinc chloride type dry battery having the same structure as that shown in the figure was produced.
なお、正極合剤の充填量は実施例1の電池では53.7g
であるが、微粉末二酸化マンガンの増量に伴い、嵩密度
が小さくなって、容積が大きくなり、53.7g充填するこ
とができなくなったものについては、可能な量のみ充填
した。The filling amount of the positive electrode mixture was 53.7 g in the battery of Example 1.
However, with the increase in the amount of the fine powdered manganese dioxide, the bulk density was reduced, the volume was increased, and those which could not be filled with 53.7 g were filled only as much as possible.
これら実施例2〜3および比較例4〜6の電池につい
て、初度および45℃で1カ月間貯蔵後に、JIS C 8501に
したがい、負荷2Ωで連続放電させたときの放電持続時
間および負荷2Ωで間欠放電させたときの放電時刻時間
を測定した。The batteries of Examples 2 to 3 and Comparative Examples 4 to 6 were initially discharged and stored at 45 ° C. for one month, and then discharged continuously according to JIS C 8501 at a load of 2Ω and intermittently at a load of 2Ω. The discharge time at the time of discharge was measured.
上記連続放電時の放電持続時間を第2表に示し、間欠
放電時の放電持続時間を第3表に示す。なお、第2表お
よび第3表においては、微粉末二酸化マンガンの全二酸
化マンガン中で占める割合の変化に伴う放電持続時間の
変化が理解しやすいように、実施例1の電池および比較
例1の電池の測定結果についても示した。Table 2 shows the duration of the continuous discharge, and Table 3 shows the duration of the intermittent discharge. In Tables 2 and 3, the battery of Example 1 and the battery of Comparative Example 1 were prepared so that the change in the discharge duration due to the change in the ratio of the fine powdered manganese dioxide in the total manganese dioxide was easy to understand. The measurement results of the battery are also shown.
第2〜3表に示すように、微粉末二酸化マンガンの全
二酸化マンガン中で占める割合が20重量%に達すると、
実施2の電池に見られうように、連続放電、間欠放電と
も、比較例1の電池に比べて、放電持続時間が顕著に長
くなる。これは微粉末二酸化マンガンの使用に基づく正
極合剤中の二酸化マンガンの使用比率の増加と、二酸化
マンガン自身の保液力の増加による二酸化マンガンの放
電利用率の向上によるものと考えられる。一方、微粉末
二酸化マンガンの全二酸化マンガン中で占める割合を増
やしていくと、微粉末二酸化マンガンが40重量%まで
は、連続放電、間欠放電とも、放電持続時間が比較例1
の電池に対して顕著な差を有するが、微粉末二酸化マン
ガンを50重量%に増量した比較例5の電池では、特に連
続放電での放電時刻時間が短くなって比較例1の電池に
近づくようになり、また、微粉末二酸化マンガンを全量
使用した比較例6の電池では、放電持続時間が比較例1
の電池より短くなった。 As shown in Tables 2-3, when the proportion of the fine powdered manganese dioxide in the total manganese dioxide reaches 20% by weight,
As can be seen from the battery of Example 2, both the continuous discharge and the intermittent discharge have a significantly longer discharge duration than the battery of Comparative Example 1. This is thought to be due to an increase in the use ratio of manganese dioxide in the positive electrode mixture based on the use of the fine powdered manganese dioxide, and an improvement in the discharge utilization rate of manganese dioxide due to an increase in the liquid retention capacity of the manganese dioxide itself. On the other hand, when the proportion of the fine powdered manganese dioxide in the total manganese dioxide was increased, the discharge duration of both continuous discharge and intermittent discharge was reduced up to 40% by weight in Comparative Example 1.
Although the battery of Comparative Example 5 has a remarkable difference from the battery of Comparative Example 1, the battery of Comparative Example 5 in which the amount of fine powdered manganese dioxide was increased to 50% by weight seems to be particularly close to the battery of Comparative Example 1 due to a shorter discharge time in continuous discharge. In the battery of Comparative Example 6 using the whole amount of fine powdered manganese dioxide, the discharge duration was
Battery is shorter.
実施例4〜5 ヨード吸着量が280mg/gの微粉末アセチレンブラック
の全アセチレンブラック中で占める割合を50重量%(実
施例4)および100重量%(実施例5)を変えたほかは
実施例1と同様に正極合剤を調製し、それらの正極合剤
を用いたほかは実施例1と同様にしてSUM−1形で第1
図に示すものと同様の構造の塩化亜鉛形乾電池を作製し
た。Examples 4 to 5 Except that the ratio of the fine powdered acetylene black having an iodine adsorption amount of 280 mg / g in the total acetylene black was changed to 50% by weight (Example 4) and 100% by weight (Example 5), Examples were changed. 1 was prepared in the same manner as in Example 1 except that a positive electrode mixture was prepared and the positive electrode mixture was used.
A zinc chloride type dry battery having the same structure as that shown in the figure was produced.
これら実施例4〜5の電池について、初度および45℃
で1カ月間貯蔵後に、JIS C 8501にしたがって、負荷2
Ωで連続放電させたときの放電持続時間および負荷2Ω
で間欠放電させたときの放電時刻時間を測定した。For these batteries of Examples 4 to 5, initial and 45 ° C
After storage for 1 month, load 2 according to JIS C 8501
Discharge duration and load 2Ω when discharging continuously at Ω
The discharge time at the time of intermittent discharge was measured.
上記連続放電時の放電持続時間を第4表に示し、間欠
放電時の放電持続時間を第5表に示す。これら第4〜5
表においても、微粉末アセチレンブラックの全アセチレ
ンブラック中で占める割合の変化に伴う放電持続時間の
変化が理解しやすいように実施例1の電池および比較例
1の電池の測定結果についても示した。Table 4 shows the discharge duration during the continuous discharge, and Table 5 shows the discharge duration during the intermittent discharge. These fourth to fifth
In the table, the measurement results of the battery of Example 1 and the battery of Comparative Example 1 are also shown so that the change in the discharge duration with the change in the ratio of the fine powder acetylene black to the total acetylene black can be easily understood.
第4〜5表に示すように、微粉末アセチレンブラック
を50重量%に増量した実施例4の電池および微粉末アセ
チレンブラックを100重量%に増量した実施例5の電池
とも、放電持続時間が、連続放電、間欠放電のいずれに
おいても、比較例1の電池に比べて長く、重負荷放電時
における放電容量の大きいことを示していた。 As shown in Tables 4 and 5, both the battery of Example 4 in which the amount of fine powder acetylene black was increased to 50% by weight and the battery of Example 5 in which the amount of fine powder acetylene black was increased to 100% by weight had a discharge duration of: Both the continuous discharge and the intermittent discharge were longer than the battery of Comparative Example 1, indicating that the discharge capacity at the time of heavy load discharge was large.
実施例6〜8および比較例7〜8 二酸化マンガンの組成および量を実施例1と同様に
し、この二酸化マンガンに対する電解液中の塩化亜鉛の
量比(ZnCl2/MnO2)を、重量比でZnCl2/MnO2=0.180
(比較例7)、ZnCl2/MnO2=0.200(比較例8)、ZnCl2
/MnO2=0.210(実施例6)、ZnCl2/MnO2=0.230(実施
例7)およびZnCl2/MnO2=0.273(実施例8)に変えた
ほかは、実施例1と同様にしてSUM−1形で第1図に示
すものと同様の構造の塩化亜鉛形乾電池を作製した。Examples 6 to 8 and Comparative Examples 7 to 8 The composition and amount of manganese dioxide were the same as in Example 1, and the ratio of zinc chloride in the electrolytic solution to this manganese dioxide (ZnCl 2 / MnO 2 ) was determined by weight. ZnCl 2 / MnO 2 = 0.180
(Comparative Example 7), ZnCl 2 / MnO 2 = 0.200 (Comparative Example 8), ZnCl 2
SUM was carried out in the same manner as in Example 1 except that / MnO 2 = 0.210 (Example 6), ZnCl 2 / MnO 2 = 0.230 (Example 7) and ZnCl 2 / MnO 2 = 0.273 (Example 8). A -1 type zinc chloride dry cell having the same structure as that shown in FIG. 1 was produced.
これら実施例6〜8および比較例7〜8の電池につい
て、JIS C 8501にしたがい、負荷2Ωで間欠放電させて
放電持続時間を測定し、その結果より二酸化マンガン単
位量当たりの放電持続時間を求めた。二酸化マンガンに
対する電解液中の塩化亜鉛の量比(ZnCl2/MnO2)と二酸
化マンガンの単位量当たりの放電持続時間の関係を第6
表に示す。また、この第6表においてもZnCl2/MnO2と二
酸化マンガンの単位量当たりの放電持続時間との関係を
理解しやすくするために実施例1および比較例1の電池
の結果もあわせて示した。The batteries of Examples 6 to 8 and Comparative Examples 7 to 8 were subjected to intermittent discharge at a load of 2Ω according to JIS C 8501, and the discharge duration was measured. From the results, the discharge duration per manganese dioxide unit amount was determined. Was. The relationship between the ratio of zinc chloride in the electrolytic solution to manganese dioxide (ZnCl 2 / MnO 2 ) and the duration of discharge per unit amount of manganese dioxide is shown in FIG.
It is shown in the table. Table 6 also shows the results of the batteries of Example 1 and Comparative Example 1 in order to make it easier to understand the relationship between ZnCl 2 / MnO 2 and the discharge duration per unit amount of manganese dioxide. .
第6表に示すように、二酸化マンガンに対する電解液
中の塩化亜鉛の量比(ZnCl22/MnO2)が0.210〜0.273に
範囲にある実施例1および実施例6〜8の電池は、二酸
化マンガンの単位量当たりの放電持続時間が長く、二酸
化マンガンの放電利用量が高いことを示していた。ただ
し、ZnCl2/MnO2=0.273の実施例8の電池では、二酸化
マンガンの単位量当たりの放電持続時間の低下が認めら
れはじめた。これは二酸化マンガンの放電利用率そのも
のは、ZnCl2/MnO2の増加に伴って向上するものと思われ
るが、電解液中の水の量の減少により、放電反応が進行
しにくくなったためであると考えられる。 As shown in Table 6, the batteries of Examples 1 and 6-8 ratio of zinc chloride electrolyte for manganese dioxide (ZnCl 2 2 / MnO 2) is in the range of 0.210 to 0.273, dioxide The discharge duration time per unit amount of manganese was long, indicating that the discharge utilization amount of manganese dioxide was high. However, in the battery of Example 8 in which ZnCl 2 / MnO 2 = 0.273, a decrease in the discharge duration per unit amount of manganese dioxide began to be observed. This is because the discharge utilization rate of manganese dioxide itself seems to increase with an increase in ZnCl 2 / MnO 2 , but the decrease in the amount of water in the electrolytic solution makes it difficult for the discharge reaction to proceed. it is conceivable that.
以上説明したように、本発明では、90重量%以上が粒
径1〜10μmの範囲内にある微粉末二酸化マンガンを全
二酸化マンガン中20〜40重量%用い、ヨード吸着量が25
0〜310mg/gの微粉末アセチレンブラックを全アセチレン
ブラック中5重量%以上用い、かつ二酸化マンガンに対
する電解液中の塩化亜鉛の量比(ZnCl2/MnO2)が重量比
でZnCl2/MnO2=0.210〜0.273という高濃度の塩化亜鉛形
電解液を用いることによって、放電容量が大きく、かつ
貯蔵に伴う放電性能の低下が少ない塩化亜鉛形乾電池を
提供することができた。As described above, in the present invention, fine powdered manganese dioxide having 90% by weight or more in the range of particle diameter of 1 to 10 μm is used in 20 to 40% by weight of the total manganese dioxide, and the iodine adsorption amount is 25%.
A fine powdered acetylene black of 0 to 310 mg / g is used in an amount of 5% by weight or more of the total acetylene black, and the weight ratio of zinc chloride in the electrolyte to manganese dioxide (ZnCl 2 / MnO 2 ) is ZnCl 2 / MnO 2. By using a zinc chloride electrolyte having a high concentration of 0.210 to 0.273, it was possible to provide a zinc chloride dry battery having a large discharge capacity and a small decrease in discharge performance during storage.
第1図は本発明に係る塩化亜鉛形乾電池の一例を示す部
分断面図である。 (1)……亜鉛缶、(2)……セパレータ、 (4)……正極合剤FIG. 1 is a partial sectional view showing an example of a zinc chloride type dry battery according to the present invention. (1) ... zinc can, (2) ... separator, (4) ... positive electrode mixture
───────────────────────────────────────────────────── フロントページの続き (72)発明者 覚野 宏 大阪府茨木市丑寅1丁目1番88号 日立 マクセル株式会社内 (56)参考文献 特開 昭60−9060(JP,A) 特開 昭62−157676(JP,A) 特開 昭49−6416(JP,A) 特開 昭50−110034(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 6/06 H01M 4/50 H01M 4/62 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroshi Kakuno 1-88 Ushitora, Ibaraki-shi, Osaka Hitachi Maxell, Ltd. (56) References JP-A-60-9060 (JP, A) JP-A Sho 62-157676 (JP, A) JP-A-49-6416 (JP, A) JP-A-50-110034 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 6/06 H01M 4/50 H01M 4/62
Claims (1)
ある微粉末二酸化マンガンを20〜40重量%含む二酸化マ
ンガンを正極活物質とし、 ヨード吸着量が250〜310mg/gの微粉末アセチレンブラッ
クを5重量%以上含むアセチレンブラックを導電助剤と
し、 二酸化マンガンに対する電解液中の塩化亜鉛の量比(Zn
Cl2/MnO2)が重量比でZnCl2/MnO2=0.210〜0.273である
塩化亜鉛形の電解液を用いたことを特徴とする塩化亜鉛
形乾電池。1. A manganese dioxide containing 20 to 40% by weight of fine manganese dioxide having a particle diameter of 1 to 10 μm in a range of 90% by weight or more is used as a positive electrode active material, and a fine powder having an iodine adsorption amount of 250 to 310 mg / g is used. Acetylene black containing 5% by weight or more of powdered acetylene black is used as a conductive additive, and the amount ratio of zinc chloride in the electrolyte to manganese dioxide (Zn
A zinc chloride type dry battery characterized by using a zinc chloride type electrolyte in which Cl 2 / MnO 2 ) is ZnCl 2 / MnO 2 = 0.210 to 0.273 by weight ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1219525A JP2937353B2 (en) | 1989-08-25 | 1989-08-25 | Zinc chloride dry cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1219525A JP2937353B2 (en) | 1989-08-25 | 1989-08-25 | Zinc chloride dry cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0384864A JPH0384864A (en) | 1991-04-10 |
JP2937353B2 true JP2937353B2 (en) | 1999-08-23 |
Family
ID=16736848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1219525A Expired - Fee Related JP2937353B2 (en) | 1989-08-25 | 1989-08-25 | Zinc chloride dry cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2937353B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3590178B2 (en) * | 1996-01-08 | 2004-11-17 | 三井金属鉱業株式会社 | Electrolytic manganese dioxide, method for producing the same, and manganese dry battery |
-
1989
- 1989-08-25 JP JP1219525A patent/JP2937353B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0384864A (en) | 1991-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5541022A (en) | Composite anode for nonaqueous secondary battery and method for producing the same | |
US4197366A (en) | Non-aqueous electrolyte cells | |
JPH10308207A (en) | Non-aqueous electrolyte secondary battery | |
JP3399614B2 (en) | Positive electrode mixture and battery using the same | |
JP2937353B2 (en) | Zinc chloride dry cell | |
JPH0636798A (en) | Lithium secondary battery | |
JP2615854B2 (en) | Non-aqueous electrolyte secondary battery | |
JPS62290070A (en) | Organic electrolyte secondary battery | |
JP3101622B2 (en) | Nickel-hydrogen alkaline storage battery | |
JPH0737609A (en) | Alkaline storage battery | |
JP3012658B2 (en) | Nickel hydride rechargeable battery | |
JP2961745B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH02239572A (en) | Polyaniline battery | |
JP3211086B2 (en) | Lithium battery | |
JPH08321302A (en) | Hydrogen storage electrode | |
JPS58206059A (en) | Organic electrolyte battery | |
JPH03190060A (en) | Polyaniline battery | |
JPH01132059A (en) | Organic electrolyte battery | |
JPH03225761A (en) | Cylindrical lithium secondary battery | |
JPH0357170A (en) | coin-shaped polymer battery | |
JPS63126153A (en) | Organic electrolyte cell | |
JPH0644975A (en) | Secondary battery | |
JPH0119231B2 (en) | ||
JPS60246562A (en) | Organic electrolyte cell | |
JPH0261775B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |