JPS58199775A - Semipermeable ceramics and manufacture - Google Patents
Semipermeable ceramics and manufactureInfo
- Publication number
- JPS58199775A JPS58199775A JP57083649A JP8364982A JPS58199775A JP S58199775 A JPS58199775 A JP S58199775A JP 57083649 A JP57083649 A JP 57083649A JP 8364982 A JP8364982 A JP 8364982A JP S58199775 A JPS58199775 A JP S58199775A
- Authority
- JP
- Japan
- Prior art keywords
- mole percent
- ceramics
- percent
- heat treatment
- semipermeable membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は半透膜セラミクスおよびその製造方法に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semipermeable membrane ceramics and a method for producing the same.
現在、粒径によってコントロールされる半透膜粒子径を
自由にコント日−ルできる材質、あるいは陰イオンと陽
イオンを選択する半透膜に良いものは得られていない。At present, a semipermeable membrane that is controlled by particle size has not been found to have a material that allows the particle size to be freely controlled, or a semipermeable membrane that selects between anions and cations.
また、一部にはポリマーによる半透膜があるが、非常に
高価なものになる。Some semipermeable membranes are made of polymers, but they are very expensive.
本発明の目的は、透過させる粒子径を高範囲にコントロ
ールできしかも安価になる半透膜セラミクスおよびその
製造方法を提供することにある。An object of the present invention is to provide semipermeable membrane ceramics that can control the diameter of permeable particles within a wide range and are inexpensive, as well as a method for producing the same.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
原料としては、粉末状のZnOy−0,5〜20モルパ
ーセントのBi、 O,と、0.05〜2. Q モル
パーセントのsb、o、と、O,OS〜0.3モルパー
セントのCr1OBと、0.005 〜0.3−Fニル
パーセントのwo。The raw materials include powdered ZnOy-0.5 to 20 mole percent Bi, O, and 0.05 to 2.0 mole percent. Q mole percent sb,o, O,OS ~ 0.3 mole percent CrOB, and 0.005 ~ 0.3-F nyl percent wo.
を添加し、良く混合した後成形する。この成形体は90
0℃〜120Gで焼結した後、0.2〜ll!l厚に研
磨する。次いで、焼結体を1時間当り150〜300℃
の昇温速賓で1300”C〜1450℃まで加温して0
.5〜3時間保持し、この後150〜b温度からは10
0℃以下まで徐冷する。are added, mixed well, and then molded. This molded body is 90
After sintering at 0℃~120G, 0.2~ll! Polish to l thickness. Next, the sintered body is heated at 150 to 300°C per hour.
Heat up to 1300"C to 1450℃ with a heating speed of 0.
.. Hold for 5-3 hours, then reduce from 150-b temperature to 10
Cool slowly to below 0°C.
この焼成後の熱処理により Bl、O,が揮散し、熱歪
が除去されたマイクロポーラスな焼結体になる。By this heat treatment after firing, Bl and O are volatilized, resulting in a microporous sintered body with thermal distortion removed.
即ち、ZnO−B1101−8blO1−Cr10g系
によりZnO系素子に一般的な焼結が行なわれ、微量添
加されたWO,によってBi、O,層が安定化される。That is, general sintering of the ZnO-based element is performed using the ZnO-B1101-8blO1-Cr10g system, and the Bi, O, and O layers are stabilized by the trace amount of WO added.
そして、サイズを整えた後の高速高温熱処理により、結
晶構造的に安定化されないBi、O,が揮散してマイク
ロポーラスになる。このと舎の保持温度及び時間によっ
て透過粒子径がコントロールできる。また、透過平均粒
子径及び微小孔密度は一次焼成温度、Bi、O,の添加
量と’wo、、sb、o、添加量によってコントロール
されるが、最も有効な手段は前二者であるO
なお、 Bi、O,が前記濃度よりも少ない己充分にポ
ーラスなセラミックスが得られないし、多過ぎるとセラ
ミックスとして脆弱となる。sb、o、 。Then, by high-speed, high-temperature heat treatment after adjusting the size, Bi and O, which are not stabilized in terms of crystal structure, volatilize and become microporous. The diameter of the permeated particles can be controlled by the holding temperature and time of the cage. In addition, the permeation average particle diameter and micropore density are controlled by the primary firing temperature, the amount of Bi, O, and the amount of 'wo, sb, o, added, but the most effective means are the former two, O. Note that if the Bi, O, concentration is lower than the above concentration, a sufficiently porous ceramic cannot be obtained, and if it is too high, the ceramic becomes brittle. sb, o, .
Cr1O1が前記濃度より少ないとZnO粒子1粒界層
の構造が充分に形成されず、逆に多過ぎるとZnO粒子
成長が押えらfする。WO,は少なすぎるとBi、Os
が揮散過多になるし、多過ぎると充分にポーラスなセラ
ミックスが得られない。さらに、−次焼成が900 ’
C〜1200℃の範囲を越えると焼結性が思わしくなく
、ポーラス処理が1300〜1450℃の範囲を越える
と有効な処理が不可となる・本発明に基づいた実験とし
て、ZnOを97.7モルパーセント、Bi、O,を1
.9モルパーセント、Sb、O,を1.0モルパーセン
ト、(!rlo1を0.2モルパーセ/)、WO,40
1モルパーセントにシタ材料比とし、第1図(A)に示
す焼成パターンにより焼結し、この焼結体を0.51E
I厚に研磨して前記と同じに第1図(B)に示す高温熱
処理を施したセラミクスは、平均透過粒径は水銀注入加
工法による測定で40Aになり、透過孔の平均個数は1
0’/cI/lのものが実現された。If Cr1O1 is less than the above concentration, the structure of the grain boundary layer of one ZnO particle will not be sufficiently formed, and conversely, if it is too much, the growth of ZnO particles will be suppressed. WO, is too small and Bi, Os
will volatilize too much, and if it is too much, a sufficiently porous ceramic will not be obtained. Furthermore, the -next firing is 900'
If the temperature exceeds the range of C to 1200°C, the sinterability will be unsatisfactory, and if the porous treatment exceeds the range of 1300 to 1450°C, effective treatment will not be possible.As an experiment based on the present invention, 97.7 mol of ZnO was used. Percent, Bi, O, 1
.. 9 mol percent, Sb, O, 1.0 mol percent, (!rlo1 0.2 mol percent/), WO, 40
The material ratio was set to 1 mole percent, and the sintered body was sintered according to the firing pattern shown in Figure 1 (A), and the sintered body was heated to 0.51E.
The ceramics polished to I thickness and subjected to the high-temperature heat treatment shown in Figure 1 (B) in the same manner as described above has an average permeation grain size of 40A as measured by the mercury injection processing method, and an average number of permeation holes of 1.
0'/cI/l was realized.
第2図は本発明における高温熱処理等の条件によって半
透膜セラミクスの平均透過粒径や平均個数がコントロー
ルできることの実験結果を示す。FIG. 2 shows experimental results showing that the average permeation particle size and average number of semipermeable membrane ceramics can be controlled by conditions such as high-temperature heat treatment in the present invention.
同図(A)は前記の実験において、焼成パターンは焼成
温度?、を1200℃とした第1図(Alのものにし、
高温熱処理パターンは第1図(B)において保持温度1
鵞を1300℃〜1450℃に変えた場合の平均粒径の
変化を示す。鶴2図(Blは同図(ARにおいて保持温
度丁、を1000℃とし、その保持時間を賢えた場合の
生物粒径変化を示す。The same figure (A) shows the firing pattern in the above experiment. , is 1200℃ (Al is used,
The high temperature heat treatment pattern is shown in Figure 1 (B) at a holding temperature of 1.
It shows the change in average particle size when the temperature of the grain is changed from 1300°C to 1450°C. Figure 2 (Bl is the same figure) shows the change in biological particle size when the holding temperature in AR is 1000°C and the holding time is carefully selected.
給2図(0)は前記の実@ておいて、熱処理は同じにし
て焼成m度T1を変えたときの平均粒径の変化を示す。Figure 2 (0) shows the change in average grain size when the heat treatment is the same and the firing degree T1 is changed.
また、同図中)は前記の実験における粒径分布を示す。Also, in the same figure) shows the particle size distribution in the above experiment.
第2図(ElはBi、O,431度を変えた場合の平均
粒径と平均個数の変化を示し、その条件として焼成温[
T sは1000℃で2時間、高温熱処理は135oC
で1時間とした場合である。図中、特性(イ)(+7(
ロ)はwo、を0.1モルパーセント、(ハ)と、に)
はwo、を(M)1モルパーセントにした場合である。Figure 2 (El is Bi, O, shows the change in average particle size and average number when changing 431 degrees, and the conditions are calcination temperature [
T s is 1000℃ for 2 hours, high temperature heat treatment is 135oC
This is the case where the time is 1 hour. In the figure, characteristic (a) (+7(
b) is wo, 0.1 mole percent, (c) and, to)
is the case where wo is set to (M) 1 mol percent.
これら実験例からも明らかなよ・)に、本発明に加#B
量及び焼成や熱処理温度によって実現され、比較的コン
トルールし易いし、素材がセラミクスで安価になる。な
お、粒径コントロール範囲としては、35ムから約10
0 oRまでの広範囲のポーラスセラさクスを実現でき
るものである。It is clear from these experimental examples that #B
This can be achieved by adjusting the amount and firing and heat treatment temperatures, and it is relatively easy to control, and the material is ceramic, which is inexpensive. The particle size control range is from 35mm to about 10mm.
It is possible to realize a wide range of porous ceramics up to 0 oR.
給1図は本発明における焼成と熱処理温度パターン図、
第2図は本発明における平均粒径等のコントロール特性
図である。
\、Figure 1 shows the firing and heat treatment temperature patterns in the present invention;
FIG. 2 is a control characteristic diagram of average particle diameter, etc. in the present invention. \、
Claims (1)
0、5〜20 モルパーセントのBi、Osと、O,O
S〜2.0−f−kパー−に7トの8b、O,と、O,
OS −0,3モルパーセントのOr鵞01と、o、o
os〜0,3モルパーセントのTo、、!:を含む原材
料で焼結したことを%徴とする半透膜セラミクス。 (2177,4〜994モルパーセントのZnOと、0
5〜20モルパーセントの阻鵞0.と、O,OS〜2.
0モルパーセントのSbl O,と、0.05〜0.3
モルパーセントの0r10Bと、0005〜0.3モル
パーセントのWO,とを含む原材料を混合成形し。 900℃〜1200℃で1〜6時間焼成した後に130
0〜1450℃の高温加熱処理を施すことを特徴とする
半透膜セラミクスの製造方法。 (3) 特許請求の範囲第2項にセいて、高l熱処理
は焼成体を1時間当り150〜300℃の昇温速度で1
300〜1450℃まで加熱し、この加熱状態を所定時
間保持した後に1時間当り150〜300℃の降温速度
で600℃まで冷却し、600℃からは1時間@910
0℃の降温速度で徐冷することを特徴とする半透膜セラ
ミクスの製造方法。[Claims] (1177,4 to 99.4 mol percent ZnO;
0,5-20 mole percent Bi, Os, and O,O
S~2.0-fk par-7t 8b, O, and O,
OS −0.3 mole percent Oro 01 and o, o
os ~ 0,3 mole percent To,,! : Semipermeable membrane ceramics characterized by being sintered with raw materials containing. (2177,4-994 mol percent ZnO and 0
0.5 to 20 mole percent inhibition. and O,OS~2.
0 mole percent Sbl O, and 0.05 to 0.3
A raw material containing mol percent of 0r10B and 0005 to 0.3 mol percent of WO is mixed and molded. After firing at 900℃~1200℃ for 1~6 hours, 130℃
A method for producing semipermeable membrane ceramics, which comprises performing a high-temperature heat treatment at 0 to 1450°C. (3) In accordance with claim 2, the high l heat treatment is performed by heating the fired body at a heating rate of 150 to 300°C per hour.
After heating to 300 to 1450℃ and maintaining this heating state for a predetermined time, cooling to 600℃ at a cooling rate of 150 to 300℃ per hour, and from 600℃ to 1 hour @ 910℃
A method for producing semipermeable membrane ceramics, characterized by slow cooling at a temperature decreasing rate of 0°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57083649A JPS58199775A (en) | 1982-05-18 | 1982-05-18 | Semipermeable ceramics and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57083649A JPS58199775A (en) | 1982-05-18 | 1982-05-18 | Semipermeable ceramics and manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58199775A true JPS58199775A (en) | 1983-11-21 |
Family
ID=13808293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57083649A Pending JPS58199775A (en) | 1982-05-18 | 1982-05-18 | Semipermeable ceramics and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58199775A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110652875A (en) * | 2019-09-20 | 2020-01-07 | 三达膜科技(厦门)有限公司 | Preparation method of wear-resistant ceramic microfiltration membrane |
CN111871228A (en) * | 2020-07-22 | 2020-11-03 | 浙江工业大学 | ZnO micro-nano composite structure ceramic membrane and preparation method and application thereof |
-
1982
- 1982-05-18 JP JP57083649A patent/JPS58199775A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110652875A (en) * | 2019-09-20 | 2020-01-07 | 三达膜科技(厦门)有限公司 | Preparation method of wear-resistant ceramic microfiltration membrane |
CN111871228A (en) * | 2020-07-22 | 2020-11-03 | 浙江工业大学 | ZnO micro-nano composite structure ceramic membrane and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Perevislov | Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives | |
US4039338A (en) | Accelerated sintering for a green ceramic sheet | |
US7604696B2 (en) | Method of making a solar grade silicon wafer | |
Kimura et al. | Origin of texture development in barium bismuth titanate prepared by the templated grain growth method | |
JP3507821B2 (en) | Method for growing single crystal of barium titanate and barium titanate solid solution | |
US4865739A (en) | Process for producing a porous mineral membrane on a mineral support | |
JPS61158863A (en) | Zircon-cordierite composite ceramic | |
JPS58199775A (en) | Semipermeable ceramics and manufacture | |
JPH0333066A (en) | Aluminum nitride structure and production thereof | |
JPS59102861A (en) | Silicon carbide composite oxide sintered ceramics | |
JPS63239154A (en) | Colored light-permeable polycrystal ceramics product and manufacture | |
JPS6328325B2 (en) | ||
TW593204B (en) | A method of producing lithium aluminosilicate ceramics | |
JPS63166765A (en) | Aluminum nitride base sintered body and manufacture | |
JP2997539B2 (en) | Method for producing porous alumina | |
CN106380081B (en) | A kind of interface enhancing processable ceramic and preparation method thereof | |
KR100331134B1 (en) | Electrolyte Matrix for Phosphorous Acid Type Fuel Cells and Method of Preparing the Same | |
JP3157184B2 (en) | Manufacturing method of high-density oxide superconductor | |
JPS6396902A (en) | Manufacture of oxide semiconductor device for thermistor | |
JP3284638B2 (en) | Manufacturing method of bonded ferrite | |
JPS63100060A (en) | Manufacture of piezoelectric ceramic material | |
JPH0283277A (en) | Production of porous ceramics | |
JPH04154007A (en) | Material of oxide superconductor tape and manufacture thereof | |
JPS61101484A (en) | Production of single crystal ferrite | |
JPS63100061A (en) | Manufacture of light permeable ceramics |