Nothing Special   »   [go: up one dir, main page]

JPS58186612A - Pilling-resistant polyester fiber and its production - Google Patents

Pilling-resistant polyester fiber and its production

Info

Publication number
JPS58186612A
JPS58186612A JP7178682A JP7178682A JPS58186612A JP S58186612 A JPS58186612 A JP S58186612A JP 7178682 A JP7178682 A JP 7178682A JP 7178682 A JP7178682 A JP 7178682A JP S58186612 A JPS58186612 A JP S58186612A
Authority
JP
Japan
Prior art keywords
polyester
fiber
polyaryl
spinning
pilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7178682A
Other languages
Japanese (ja)
Other versions
JPH0329884B2 (en
Inventor
Hirofumi Sano
洋文 佐野
Toshio Onuma
大沼 敏夫
Yoshinuki Maeda
前田 佳貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP7178682A priority Critical patent/JPS58186612A/en
Publication of JPS58186612A publication Critical patent/JPS58186612A/en
Publication of JPH0329884B2 publication Critical patent/JPH0329884B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:A specific polyaryl phosphonate or the like is mixed with polyester during the period from the polymerization completion to immediately before the spinning, then they are subjected to melt spinning to produce the titled pilling- resistant fiber with its strength reduced by ester chain breakage caused by hydrolysis on dyeing. CONSTITUTION:A polyaryl phosphonate and/or polyaryl phosphate of the formula (a is 0, 1; n is polymerization degree when the relative viscosity in a mixed solvent of 1:1 tetrachloroethylene and phenol satisfies the equation: 0.05<=etaSP<= 0.35) is mixed with a polyester polymer such as polyethylene terephthalate during the period from after the completion of polymerization to just before the spinning so that the intrinsic viscosity of the drawn polyester yarn [eta] and the content of the phosphorus in wt% satisfy the equation: W=[eta]<2.1>+ or -0.05 and 0.40<=[eta]<=0.58. Then, the resultant polymer is subjected to customary melt spinning to give the objective fiber.

Description

【発明の詳細な説明】 本発明はポリアリ=!ホスホネート又は/及びボリアリ
ールホスヘートヲボリエステルボリマーに均一に分散さ
せた繊維及びその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on polyarid=! The present invention relates to fibers in which phosphonates and/or polyarylphosphates are uniformly dispersed in polyester polymers, and a method for producing the same.

本発明の目的はポリエステルの紡糸卆ら編織物までの工
程通過性及び繊維物性に何ら問題がなく染色時の加水分
解により容易にポリエステル繊維のエステル結合を切断
し、ひいては強伸度の低下を起させ衣服着用時のピ/L
/(毛玉)を防止させようとするものである。
The purpose of the present invention is to easily break the ester bonds of polyester fibers by hydrolysis during dyeing without causing any problems in the process from spinning polyester to knitting fabrics and fiber properties, thereby causing a decrease in strength and elongation. Pi/L when wearing clothes
/ This is intended to prevent pilling.

従来ポリエステルやポリアミドなどの合成繊維はすぐれ
た物理的特性及び化学的特性を有しているため多くの用
途に用いられ、綿や羊毛などの天然繊維の分野へも大き
くとって代夛っつぁる。しかしこのような合成繊維にお
いてもいくつかの欠点が見られ、その1つとして衣服を
着用している間に発生するピlL/(毛玉)があり、外
観や風合いの点でビルのない抗ピル繊維が長い間望まれ
て来 ゛た。
Traditionally, synthetic fibers such as polyester and polyamide have excellent physical and chemical properties and have been used for many purposes, and have also greatly expanded into the field of natural fibers such as cotton and wool. Ru. However, even such synthetic fibers have some drawbacks, one of which is the pilling that occurs while wearing clothes, and in terms of appearance and texture, there are no buildup and resistance. Pill fibers have long been desired.

現在のところビlvを発生させない方法としては次の2
つに大別される。即ち、その第1は繊維の低強伸度化を
計る方法であり1例えば低〔η〕織繊維易加水分解性繊
維、あるいはクツツクなどの欠陥構造繊維としたり、又
溶剤や機械的損傷などの彼処Niを加えて低強伸度比す
る方法であり、又その第2は例えば繊維を異型断面繊維
としたり、樹脂や毛焼きなどの後処理をしてビル抑制を
計る方法である。しかし後者のビル抑制法については長
時間着用時に満足される抗ピル効果は得られず、又後処
理法は布帛の物性変化と耐洗たく性などの問題がある。
Currently, the following two methods are available to prevent bill lv from occurring.
It is broadly divided into The first method is to reduce the strength and elongation of fibers.1 For example, use low [η] woven fibers, easily hydrolyzable fibers, fibers with defective structures such as kutsutsuku, or fibers with low strength and elongation due to solvents or mechanical damage. One method is to add Ni here to achieve a low strength and elongation ratio, and the second method is to make the fibers into irregular cross-section fibers, or to post-process them with resin, burning, etc. to suppress the buildup. However, the latter anti-pilling method does not provide a satisfactory anti-pilling effect when worn for a long time, and the post-treatment method has problems such as changes in the physical properties of the fabric and wash resistance.

また前者の繊維の低強伸度化法の中での低〔η〕繊維化
及び欠陥構造繊維化は紡糸延伸時の毛羽断糸が発生し易
くさらに紡績製編織工程でのトップlvを起し易く操業
性に乏しい。又溶剤や機械損傷などの後処理により繊維
の低強伸度化を行う場合は特別な工程が必要であり、布
帛の収縮や引裂強度のコン−トロ−−一μが難しいなど
の欠点を有する。
In addition, in the former method of lowering the strength and elongation of fibers, the formation of low [η] fibers and defect structure fibers tend to cause fluff breakage during spinning and drawing, and furthermore, cause top lv during the spinning, knitting, and weaving process. Easy to operate and poor operability. In addition, special processes are required to reduce the strength and elongation of fibers through post-treatments such as solvents and mechanical damage, which has disadvantages such as difficulty in controlling fabric shrinkage and tear strength. .

従って現状で抗ピル性ポリエステル繊維を得る最適な方
法は布帛形成後の染色時に容易に且つ適正範囲で加水分
解を起させ強伸度を低下させることであると考えられる
。そのためにあらかじめ易加水分解物質を適量ポリエス
テル繊維に添加させる事が必要で、このような易加水分
解物質としては特開昭50−135551号公報や特開
昭5o−125515号公報に見られるリン化合物を共
重合したもの、特開昭51−155551号公報や特開
昭53−124562号公報のシフノール化合物を共重
合したものあるいは特開昭54−46695号公報のス
ルホン基含有化合物を共重合したものなどが提案されて
いる。ところでこれらは、いずれもポリエステA/に共
重合するためにエステル交換反応前から重合前までの間
で易加水分解物質を添加し、ポリエステルの重合を行う
のが通常であった。しかしこの方法ではジエチレングリ
コールのl[よる耐熱性の低下あるいはつや消し剤であ
るT r02の凝集による工程通過性の不良などを起し
易く、またポリマーの切替によるロスや汚染の問題を含
んでいる。一方特公昭47−32297号公報及び特公
昭47−52299号公報に見られる如くポリアリール
ホズホネートtPとして0.4〜4.0重量哄ボリエス
デA/に配合し難燃繊維を得る方法は公知であるが、本
発明の如く易加水分解物質であるリン化合物の比粘度(
重合度)及びポリエステ/I/延伸糸の〔り〕とリン含
有量の関係を規制する事により染色の如き熱水処理で繊
維の加水分解が起り且つ150℃の熱水処理時間が60
分以上では加水分解性が減少してエステル結合切断率が
ほぼ一定値に近づき、その結果ポリマーから製編織まで
の工程通過性が良好で染色以降抗ビμ繊維としての最適
強伸度が容易に維持出来るポリエステル繊維繊維及びそ
の製造法については皆無であった。
Therefore, it is considered that the optimal method for obtaining pill-resistant polyester fibers at present is to cause hydrolysis to occur easily and within an appropriate range during dyeing after fabric formation to reduce strength and elongation. For this purpose, it is necessary to add an appropriate amount of easily hydrolyzable substances to the polyester fibers in advance, and examples of such easily hydrolyzable substances include phosphorus compounds found in JP-A-50-135551 and JP-A-5O-125515. Copolymerization of Schifnol compounds disclosed in JP-A-51-155551 and JP-A-53-124562, or copolymerization of sulfone group-containing compounds disclosed in JP-A-54-46695. etc. have been proposed. By the way, in order to copolymerize these into polyester A/, it has been usual to add easily hydrolyzable substances between before the transesterification reaction and before the polymerization to polymerize the polyester. However, this method tends to cause problems such as a decrease in heat resistance due to diethylene glycol and poor processability due to agglomeration of the matting agent Tr02, and problems such as loss and contamination due to switching of polymers. On the other hand, as seen in Japanese Patent Publication No. 47-32297 and Japanese Patent Publication No. 47-52299, a method for obtaining flame-retardant fibers by blending polyaryl phosphonate tP with 0.4 to 4.0 weight percent of Boriesde A/ is known. However, as in the present invention, the specific viscosity (
By regulating the relationship between the degree of polymerization) and the phosphorus content of the polyester/I/drawn yarn, hydrolysis of the fiber occurs in hot water treatment such as dyeing, and the hot water treatment time at 150°C is 60
When the temperature exceeds 10 minutes, the hydrolyzability decreases and the ester bond cleavage rate approaches a constant value, and as a result, the process from polymer to knitting and weaving is good, and after dyeing, the optimum strength and elongation as anti-bi-μ fibers can be easily achieved. There were no sustainable polyester fibers or methods for producing them.

かかる背景により本発明者らは工程通過性が良好であシ
、従来の繊維物性を活かしたまま染色時に容易に強伸度
を低下させビル脱落による杭ピル性ポリjステル繊維を
得ようと鋭意研究を重ねた結果本発明に到達したもので
ある。
Against this background, the present inventors have made efforts to obtain a polyj stellate fiber that has good process passability and is easy to reduce strength and elongation during dyeing while taking advantage of conventional fiber physical properties and has a pile-pilling property that does not prevent building from falling off. The present invention was arrived at as a result of repeated research.

すなわち本発明は、下記一般式(1) で示されるボリアリールホスホネート又は/及びポリア
リ−pホスヘートがポリエステル繊維中K。
That is, in the present invention, a polyaryl phosphonate or/and a polyaryl-p phosphate represented by the following general formula (1) is used in a polyester fiber.

該ポリエステル延伸糸の固有粘度〔η〕とリン含有量W
(重量%)との間k(2)式 %式%(2) が成立するように分散されており、130℃×60分及
び130°CX120分熱水処理によるエステル結合切
断率をそれぞれBCl及びBe2とする時(Be2−B
e1)/BC1≦0.3となシ、且つ熱水処理後の単繊
線化強度D T (Q/dr )と乾伸度DB($)の
積DTxDEが20〜80となる特性を有する事を特徴
とする抗ビル性ポリエステル繊維及びその製造法に関す
るものである。
Intrinsic viscosity [η] and phosphorus content W of the polyester drawn yarn
(% by weight), the ester bond cleavage rate by hot water treatment at 130°C x 60 minutes and at 130°C x 120 minutes is calculated as follows: When Be2 (Be2-B
e1)/BC1≦0.3, and the product DTxDE of single fiber strength DT (Q/dr) and dry elongation DB ($) after hot water treatment is 20 to 80. The present invention relates to an anti-build polyester fiber characterized by the following properties and a method for producing the same.

本発明に言うポリエステル繊維とは、例えばテレフター
ル酸、イソフタール酸、ナフタリン2.6ジカルポン酸
、フタール酸−などの芳香族ジカルボン酸及びアジピン
酸、セバシン酸などの脂肪族ジカルボン酸又ハこれらの
エステル類とエチレングリコール、ジエチレングリコ−
#、1.4slブタンジオール、ネオペンチルグリコー
ルなどのジオール化合物とから合成されるポリエステル
であり、特に反復構造単位の85哄以上がポリエチレン
テレフタレートであるポリエステルが好ましい。
The polyester fibers referred to in the present invention are, for example, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, and phthalic acid; aliphatic dicarboxylic acids such as adipic acid and sebacic acid; or esters thereof. and ethylene glycol, diethylene glycol
#, 1.4 sl butanediol, neopentyl glycol, and other diol compounds. Particularly preferred are polyesters in which 85 or more of the repeating structural units are polyethylene terephthalate.

また上記ポリエステル成分に/リアルキレングリコール
、グリセリン、ペンタエリスリトール。
In addition, the above polyester components include/realkylene glycol, glycerin, and pentaerythritol.

メトキシダリアルキレングリコール、ビスフェノ−A/
ム、スルホイソ7タール酸やケイ素化合物などを共重合
したものあるいは5重量哄以下の添加物、例えばつや消
削、熱安定剤、紫外線吸収剤。
Methoxydarylkylene glycol, bispheno-A/
A copolymer of sulfoisoheptalic acid, a silicon compound, etc., or an additive of 5 kg or less by weight, such as a matte remover, a heat stabilizer, and an ultraviolet absorber.

顔料、あるいは制電性向上剤などを含有させて吃よい。It can be stuttered by containing pigments or antistatic property improvers.

また本発明ではポリエステルポリマーの〔η〕差(重合
度差)や改質差のあるものから成る複合繊維や円型、中
空、多角形9表面凹凸、扁平型、U字型などの断面繊維
としてもよく、繊維形態としては紡績糸、延伸糸、仮撚
糸、インターレース糸。
In addition, in the present invention, composite fibers made of polyester polymers with a difference in [η] (difference in degree of polymerization) or a difference in modification, or cross-sectional fibers with circular, hollow, polygonal 9 surface irregularities, flat shapes, U-shapes, etc. Fiber forms include spun yarn, drawn yarn, false twisted yarn, and interlaced yarn.

タスフン糸、m糸9節糸、カバリング糸などすべての形
態を用いても何ら支障がない。
There is no problem in using all types of yarn such as Tasfun yarn, M yarn with 9 knots, and covering yarn.

易加水分解物質としては一般式 で表わされるボリアリールホスホネート又は/及びボリ
アリールホスヘートが次の(4〜に)の点で有利であり
、末端をエステル形成能を有さないもの、Njtfフェ
ノキシ基、アルコキシ基などで封鎖したものでも構わな
い。
As easily hydrolyzable substances, polyaryl phosphonates and/or polyaryl phosphates represented by the general formula are advantageous in the following points (4 to 4); , one blocked with an alkoxy group or the like may also be used.

(45oo℃×10分N2中での加熱減量が5wt%以
下、好ましくは5wt%以下でポリマー重合後紡糸まで
の間に着色1分解の少ないもの。
(The weight loss on heating in N2 at 450°C for 10 minutes is 5 wt% or less, preferably 5 wt% or less, and there is little discoloration or decomposition during the period from polymerization to spinning.

(ロ) ポリエステルと溶解度バフメーターが類似しポ
リエステルと相溶性が良く且つ融点が250℃以下でポ
リエステルと溶液状で混合するもの、(ハ) 添加混合
時又は紡糸後のポリエステルの粘度変化が少ないもので
水分又は不純分をほとんど含まないもの、 に) 繊維表面へのブリードアウトの点で分子量は大き
いほど良いがポリエステルへの分散性及び加水分解性の
点で最適分子量が必要であり、本発明のボリアリールホ
スホネート又はボリアリールホスヘートの場合比粘度η
畠、が0.05≦り、。
(b) Those that have a similar solubility buff meter to polyester, have good compatibility with polyester, have a melting point of 250°C or lower, and can be mixed with polyester in solution form, (c) Those that exhibit little change in the viscosity of polyester during addition and mixing or after spinning. The higher the molecular weight, the better in terms of bleed-out to the fiber surface, but an optimum molecular weight is required in terms of dispersibility and hydrolyzability in polyester. Specific viscosity η for polyaryl phosphonates or polyaryl phosphates
Hatake is 0.05≦.

≦0.55t−示す時の重合度が好ましい、(ホ) 工
程通過性、繊維物性及びコストなどの点より出来る限シ
添加量が少なくて加水分解効果の大きいもので且つ添加
量によシ加水分解度合(繊維の低強伸度化)がコントロ
ーμ出来るもの、 本発明のボリアリールホスホネート及ヒポリア!J−N
*y、ヘートの製造法としてはジヒドロキシジフェニル
スルホンとフェニルホスホニックジクロリド又はフェニ
ールホスヘートジクロリドのほぼ等七ル混合物を不活性
ガそ下常圧ついで減圧下で150〜280℃、触媒とし
て塩化マグネシウム又は塩化カルシウムを添加して重合
する溶融重合法、あるいはジヒドロキシジフェニルスル
ホンをアルカリ金属塩として水に溶解し攪拌下にフェニ
ルホスホニックジクロリド又はフェニルホスヘートジク
ロリドの塩化メチレン溶液と反応させる界面重合法、あ
るいは1.L2.2テトフクロルエタン中でピリジン又
は゛塩化カルシウムを触媒として重合を行い非溶剤のメ
タノール中で凝固せしめる溶液重合法など公知の方法を
用いることが出来る。
It is preferable that the degree of polymerization is ≦0.55t. The polyaryl phosphonate and Hyporia of the present invention can control the degree of decomposition (lower strength and elongation of fibers). J-N
*Y, Hate is produced by adding a nearly equal mixture of dihydroxydiphenylsulfone and phenylphosphonic dichloride or phenylphosphonic dichloride under an inert gas at normal pressure and then under reduced pressure at 150 to 280°C, using magnesium chloride or as a catalyst. A melt polymerization method in which calcium chloride is added and polymerized, or an interfacial polymerization method in which dihydroxydiphenyl sulfone is dissolved in water as an alkali metal salt and reacted with a methylene chloride solution of phenylphosphonic dichloride or phenylphosphonate dichloride under stirring, or 1 .. L2.2 Known methods can be used, such as a solution polymerization method in which polymerization is carried out in tetofuchloroethane using pyridine or calcium chloride as a catalyst and coagulated in methanol as a non-solvent.

また末端を封鎖するためにボリアリールホスホネート又
はボリアリールホスヘートの重合中又は中X:CI又は
Br、 R1−R5:アルキル基又はアリール基又はア
ルコキシ基、R4:アルキル基又はアリール基)を用い
溶媒溶液中で反応させる事も何ら支障ない。
Also, in order to block the terminals, during or during the polymerization of polyarylphosphonate or polyarylphosphate There is no problem in carrying out the reaction in a solution.

また本発明者らは該リン化合物の重合度を表わす比粘度
η8.が異なると熱水処理でのエステル結合切断率がそ
れぞれ異なったカーブの丑にのってくることを見い出し
た。即ち第1図は、ポリアリ−/l/ yh スホネー
ト又は/及びポリアリールホスヘートを練込んだ場合の
130℃熱水処坦の処理とエステル結合切断率の関係を
示したモデル図で1図中曲線(A)は該リン化合物の比
粘度’7spが0.05≦り、、≦0.55の場合、曲
線(B)はり、、が0.35より高い場合の代表的な傾
向を示しており、この曲線(A)、  (B)の差は以
下で理解されるようにリン化合物の重合度を選定する上
で重要な意味をもつ。
The present inventors also found that the phosphorus compound had a specific viscosity of η8 representing the degree of polymerization. It was found that the ester bond cleavage rate during hydrothermal treatment follows different curves when the ester bond is different. That is, Figure 1 is a model diagram showing the relationship between 130℃ hot water treatment and ester bond cleavage rate when polyaryl/l/yh sulfonate or/and polyaryl phosphate is kneaded. Curve (A) shows a typical tendency when the specific viscosity '7sp of the phosphorus compound is 0.05≦, ≦0.55, and curve (B) shows a typical tendency when , is higher than 0.35. The difference between these curves (A) and (B) has an important meaning in selecting the degree of polymerization of the phosphorus compound, as will be understood below.

η8.が0.05未満の場合にはポリエステルポリマー
へ添加した時の粘度変化が大きく紡糸延伸性が不調にな
り易く、また繊維表面へのブリードアウトが大きくなり
好ましくない。り6.が0,35t−超える場合は第1
図の曲線(B)に示した如く150℃×60分熱水処理
でのエステ亡結合切断率が−0,05≦η、、≦0.5
5の場合の曲線(ム)より小さく加水分解性が低下する
事及び染色1回の場合と染め直しなど染色2回以上の場
合で繊維の強伸度低下が一定にならず抗ビル効果に大き
な差を生じる事などの欠点が現われる。この理由として
、リン化合物はポリエステルポリマー中でほとんど変質
されずに均一分散され、熱水によりリン化合物が分解し
同時にポリエステル主Mを切断するが、リン化合物の重
合度(比粘度)が低い#よど分解され易く重合度が高い
ほど徐々に分解され、その結果第1図の曲m(A)、(
B)のパターンを示すと考えられる。
η8. If it is less than 0.05, the viscosity changes greatly when added to the polyester polymer, which tends to impair spinning and drawing properties, and bleed-out to the fiber surface becomes large, which is undesirable. 6. If exceeds 0.35t-, the first
As shown in the curve (B) in the figure, the esthetic bond cleavage rate in hot water treatment at 150°C for 60 minutes is -0.05≦η, ≦0.5
The hydrolyzability decreases to be smaller than the curve (mu) in case 5, and the decrease in fiber strength and elongation is not constant between the case of one dyeing and the case of two or more dyeings such as re-dying, and there is a large difference in anti-building effect. There are disadvantages such as the occurrence of The reason for this is that the phosphorus compound is uniformly dispersed in the polyester polymer with almost no alteration, and hot water decomposes the phosphorus compound and simultaneously cuts the polyester main M, but the degree of polymerization (specific viscosity) of the phosphorus compound is low. The easier it is to decompose, and the higher the degree of polymerization, the more gradually it decomposes, and as a result, the songs m(A) and (
It is thought that this pattern shows pattern B).

従って加水分解の安定性の点で0.05≦17s、≦0
.35で見られる曲線(ム)のパターンが[1(B)よ
シ良い。このことを数値的に言えば150 ℃X60分
及び130 ”CX 12 G分熱水fl&増のエステ
ル結合切断率をそれぞれBC,及びBe2とすると(B
e2−Be1)/BC1≦0.5カ好I L (、CB
O2BOl)/BC,≦0.2がよシ好ましい。ここで
言う比粘度ダ5ptfテトフクロルエタン/フェノ−/
’ = ’A (1量比)の混合溶媒を用L/% s 
o ’(Hでクッペローデ粘度計にて溶媒だけの落下時
間ダ0及び試料0.1fを溶媒10 ee K溶解した
溶液の落下時η1を測定し、り、、=(η1−り0)/
η0より求められる。尚本発明のリン化合物の場合、 
’7sp ” 0.05〜0.35は重合度で約5〜約
25の範囲を示す。
Therefore, in terms of hydrolytic stability, 0.05≦17s, ≦0
.. The pattern of the curve (mu) seen in 35 is better than [1(B)]. To put this numerically, if the ester bond cleavage rates of 150 ℃ x 60 minutes and 130 '' CX 12 G hot water fl&amp;
e2-Be1)/BC1≦0.5 power I L (, CB
O2BOl)/BC, ≦0.2 is more preferred. The specific viscosity here is 5 ptf tetofuclolethane/pheno-/
' = 'A (1 quantitative ratio) mixed solvent L/% s
o' (H) Using a Kuppelohde viscometer, the falling time of the solvent alone is 0, and the falling time η1 of a solution in which 0.1 f of the sample is dissolved in 10 ee K of the solvent is measured, ri, = (η1 - ri 0)/
It is determined from η0. In the case of the phosphorus compound of the present invention,
'7sp'' 0.05 to 0.35 indicates a degree of polymerization ranging from about 5 to about 25.

エステル結合切断率Beは熱水処理前後の〔η〕より以
下の順により算出され切断率0.5噂は平杓してすべて
の分子鎖が半分に切断された事を意味する。
The ester bond cleavage rate Be is calculated from [η] before and after the hot water treatment in the following order, and a cleavage rate of 0.5 means that all molecular chains have been cleaved in half.

■GrjeJの式 (W) = 1.27×10″Mn
’°86より分子量Mn を求める。
■GrjeJ formula (W) = 1.27×10″Mn
Calculate the molecular weight Mn from '°86.

■平均分子切断数/1分子鎖をmとするとm = (M
no−Mn1) / MntMno :熱水処理前の分
子量 Mn1:熱水処理後の分子量 本発明では前記により得られるポリアリ−〃ホスホネー
ト又は/及びボリアリールホスヘートをポリエステルポ
リマーの重合完了後紡糸直前の間で融液状又は粉末状で
添加し混合する必要がある。
■If the average number of molecular breaks/one molecular chain is m, then m = (M
no-Mn1) / MntMno: Molecular weight before hot water treatment Mn1: Molecular weight after hot water treatment In the present invention, the polyarylphosphonate or/and polyarylphosphate obtained as described above is used after the completion of polymerization of the polyester polymer and immediately before spinning. It is necessary to add it in melt or powder form and mix it.

ポリエステルの重合以前に添加する事社ポリマーの粘度
変化や添加剤の分解副反応が起り易く好ましくない。t
+該添加剤がポリエステルポリマーに均一に分散され、
トップμを少なくするためには添加剤を溶融し紡糸直前
のポリエステルポリマーに注入しスタチックミキサーな
どにて杓−に混合分散させる方法がより好ましい。
Adding the additives before polymerization of the polyester is undesirable because it tends to cause changes in the viscosity of the polymer and decomposition side reactions of the additives. t
+ the additive is uniformly dispersed in the polyester polymer;
In order to reduce the top μ, it is more preferable to melt the additive, inject it into the polyester polymer just before spinning, and mix and disperse it in a ladle using a static mixer or the like.

さらに添加剤の溶融粘度が高すぎる場合、紡糸直前の練
込み方式ではポリエステルポリマーとの混合が不十分に
な夛易いため、該リン化合物に500℃×10分窒素ガ
ス下での加熱減量が20%以下の耐熱性の良い減粘剤(
例えば低粘度のリン化合物やポリエチレングリコール系
化合物など)t−添加混合し200℃における混合添加
剤の溶融粘度を50ボイズ以下にする事は望ましい。但
し減粘剤はポリエステルと相溶性があ夛1着色9分解。
Furthermore, if the melt viscosity of the additive is too high, mixing with the polyester polymer is likely to be insufficient in the kneading method immediately before spinning, so the phosphorus compound has a heating loss of 20% when heated at 500°C for 10 minutes under nitrogen gas. % or less heat resistant thinner (
For example, it is desirable that the melt viscosity of the mixed additive at 200° C. be 50 voids or less by t-addition (for example, low-viscosity phosphorus compounds, polyethylene glycol compounds, etc.). However, the viscosity reducing agent is compatible with polyester and has 1 coloring and 9 decomposition.

反応を起さないものであり添加量は少な−はど良い。i
友添加剤を溶融する場合、分解性、省エネルギー、ポリ
エステA/添加時の温度変化などより200℃前後が好
ましい。
Since it does not cause any reaction, the amount added is small. i
When melting the companion additive, the temperature is preferably around 200° C. in view of decomposability, energy saving, temperature change during addition of polyester A, etc.

本発明の要件の1つとしてポリエステル延伸糸の固有粘
度〔η〕と該延伸糸に対するリン含有量W(重量哄)と
の間に(2)式 %式%(2) が成立している事が必要である。ここで言う〔り〕トハ
テトフクロルエタンとフェノールの等量混合溶媒を用い
50°C恒温槽中でウツベローデ型粘度計を用い測定し
た極限粘度を意味し、リン含有量は元素分析の比色法に
より求めたポリエステル延伸糸中のリンの重量外を示す
。但しリン含有量はボリアリールホヌホネート又はポリ
アリ−μホスヘート単独あるいは両者が混合されたもの
を含み減粘剤として用いた低粘度リン化合物は含まない
One of the requirements of the present invention is that the formula (2) (%) holds true between the intrinsic viscosity [η] of the drawn polyester yarn and the phosphorus content W (by weight) of the drawn yarn. is necessary. Here, [ri] means the intrinsic viscosity measured using a mixed solvent of equal amounts of tohatetofchloroethane and phenol in a constant temperature bath at 50°C using an Utsuberohde viscometer, and the phosphorus content is determined by the colorimetric method of elemental analysis. The figure shows the weight of phosphorus in the drawn polyester yarn. However, the phosphorus content includes polyarylhonufonate or polyaryl-μ phosphate alone or a mixture of both, and does not include the low-viscosity phosphorus compound used as a viscosity reducing agent.

なお延伸糸とは、高速紡糸で延伸工程を省略した糸や部
分嫌伸糸、嫌伸仮撚糸あるいは紡績糸などをも包含意味
するものである。
Note that the term "drawn yarn" includes yarns obtained by omitting the drawing step during high-speed spinning, partially drawn yarns, false-twisted yarns that do not like stretching, spun yarns, and the like.

第2図は本発明で得られるポリエステル延伸糸の固有粘
度〔η〕とリン含有量W(重量%)との関係を表わし、
斜線部がW=(η〕21±0.05かつ0.40≦〔η
〕≦0.58を満足する範囲を示す。延伸糸の〔η〕が
0.40未満の場合は紡糸延伸時に毛羽断糸が起り易く
紡績時に繊維損傷を受けて白粉を生じるなどの問題があ
りひいてはコストアップを招く。また〔η〕が0.58
を超える場合は易加水分解を起す友めのリン化合物を多
量に必要とし、紡糸から加  ′工までの工程通過性、
加水分解による低強伸度化のコントロールなどが難しく
、コストアップや汚染が発生して好ましくない。
FIG. 2 shows the relationship between the intrinsic viscosity [η] and the phosphorus content W (wt%) of the polyester drawn yarn obtained by the present invention,
The shaded area is W=(η)21±0.05 and 0.40≦[η
]≦0.58. When [η] of the drawn yarn is less than 0.40, there are problems such as fuzz and breakage during spinning and drawing, fiber damage during spinning and production of white powder, and an increase in cost. Also, [η] is 0.58
If it exceeds 100%, a large amount of phosphorus compound that easily hydrolyzes is required, and it is difficult to pass through the process from spinning to processing.
It is difficult to control low strength and elongation due to hydrolysis, which is undesirable because it increases costs and causes pollution.

第1図に示した如くリン化合物の含有量が多いほど加水
分解され易いが、含有量は(2)式の如く最適間N(第
2図の斜線部)が存在する。(2)式より少ない含有量
の場合は染色などによる熱水処理後で〔η)の低下が少
なく、その結果単繊線化強度DT(IF/dr)と乾伸
度D I (%) cy)積DTxDE カa Oを超
え繊維が強すぎて満足すべき抗ビル効果を示さない。(
2)式より多い含有量の場合は熱水処理後の〔η〕が低
くすぎてDTxDEで2o未満となり、ピ〃は発生しな
いが繊維毛羽がすぐにちぎれて布帛の外観を損うと同時
に編織物を構成するに必要な強伸度が維持出来ず、引裂
、摩耗、屈曲などに対し非常に弱い布帛になる。
As shown in FIG. 1, the higher the content of the phosphorus compound, the easier it is to be hydrolyzed, but there is an optimum content N (shaded area in FIG. 2) as shown in equation (2). When the content is lower than the formula (2), there is less decrease in [η) after hot water treatment such as dyeing, and as a result, the single fiber strength DT (IF/dr) and dry elongation DI (%) cy ) Product DTxDE Kaa O The fibers are too strong and do not exhibit a satisfactory anti-building effect. (
2) If the content is higher than the formula, [η] after hot water treatment is too low and becomes less than 2o in DTxDE, and although pi is not generated, the fiber fuzz is easily torn off, spoiling the appearance of the fabric and at the same time reducing the quality of the knitted fabric. It cannot maintain the strength and elongation required to form a fabric, making it extremely vulnerable to tearing, abrasion, bending, etc.

本発明者らが鋭意検討した結果、ビル脱落と布帛強伸度
から見て単繊維強伸度の積DTxDF−が20〜80の
時好ましく、より好ましくは50〜5゜である事を見出
した。
As a result of intensive studies, the present inventors have found that, in terms of building shedding and fabric strength and elongation, the product of single fiber strength and elongation, DTxDF-, is preferably 20 to 80, more preferably 50 to 5°. .

さらに製編織工程までは問題のない強伸度(例えばDT
xDEが100以上)であり染色などの加工時に本発明
の言う所定の強伸度にすることを目的にポリエステル繊
維に種々の化合物を練込んで検討した結果、耐熱性1分
散性、加水分解、性−などに満足するポリアリ−μホス
ホネート又は/及びボリアリールホスヘートがポリエス
テル延伸糸の〔η〕に対し、最適範囲で練込まれる事に
より容易に杭ビル繊維を得る事を発見したのである。
Furthermore, the strength and elongation (for example, DT
xDE is 100 or more), and as a result of studying various compounds kneaded into polyester fiber for the purpose of achieving the specified strength and elongation referred to in the present invention during processing such as dyeing, it was found that heat resistance, 1 dispersibility, hydrolysis, The inventors have discovered that pile building fibers can be easily obtained by kneading polyaryl μ phosphonate or/and polyaryl phosphate, which satisfies properties such as properties, into [η] of the drawn polyester yarn in an optimum range.

また加水分解性は染色などの熱水処理温度及び時間によ
って変化するが本発明は熱水処理後1例えば代表的には
130℃X60分での処理でDTxDEが20〜80の
範囲にある事が必要である。但し最終製品でDTxDE
が20〜80であればよく、熱水処理条件を130℃×
60分に限定するものではなく染色などの加工条件を変
廻しても何ら支障ない。
In addition, hydrolyzability changes depending on the temperature and time of hot water treatment such as dyeing, but in the present invention, after hot water treatment, for example, typically at 130°C for 60 minutes, DTxDE can be in the range of 20 to 80. is necessary. However, the final product is DTxDE.
It is sufficient if the temperature is 20 to 80, and the hot water treatment conditions are 130℃×
The time is not limited to 60 minutes, and there will be no problem in changing the processing conditions such as dyeing.

以下5M!施例により本発明を具体的に説明する。5M below! The present invention will be specifically explained by examples.

実施例1 ’rio2− o、o a % 含有のポリエチレンテ
レフタレートチップを40φ押出機にて押出し該ポリマ
ーの原液管中にあらかじめ200°Cに加熱溶融した1
0ポイズの粘度を有する次の混合添加剤をボリエステル
ホリマーにポリビスフェノールスルホンフェニールホス
ホネートが5.0重量襲(リンで0o25重量襲)にな
るように注入し、スタチックミキサーで混合しノズルよ
り紡糸した。
Example 1 'rio2- Polyethylene terephthalate chips containing o, o a % were extruded using a 40φ extruder and placed in a stock solution tube of the polymer.
The following mixed additives having a viscosity of 0 poise are injected into the polyester polymer so that the polybisphenol sulfone phenyl phosphonate is 5.0% by weight (phosphorus is 0x25% by weight), mixed with a static mixer, and then mixed with a nozzle. spun.

該ボリアリールホスホネートは溶融重合法により作成し
クロロホルム及びメタノールを用いて精製した亀ので重
合物の両末端は封鎖されず塩素が残っている事が元素分
析とNMRの結果より判明した。次いで該紡糸原糸を5
0万drのトウに集束して水浴2段延伸方・、、式で3
.8倍嫌伸し、機械捲縮及び切断を行って5drX76
MIMのステープ/L’を作成した。なお延伸糸の〔η
〕は0.491 dl、/9 、比色法により求めたリ
ン含有量はo、2b%であり、減粘剤のリン含有量を差
引いたポリビスフェノールスルホンフェニールホスホネ
ートによるリン含有量は0.23%であり、(2)式の
関係(第2図の斜線部)を満足している。
The results of elemental analysis and NMR revealed that since the polyaryl phosphonate was prepared by melt polymerization and purified using chloroform and methanol, both ends of the polymer were not blocked and chlorine remained. Then, the spun yarn was
Focusing on a tow of 00,000 dr and drawing in two stages in a water bath... Formula 3
.. Stretched 8 times, mechanically crimped and cut to 5drX76
MIM tape/L' was created. In addition, [η
] is 0.491 dl, /9, the phosphorus content determined by colorimetric method is o, 2b%, and the phosphorus content of polybisphenolsulfone phenylphosphonate after subtracting the phosphorus content of the thinner is 0.23 %, which satisfies the relationship of equation (2) (the shaded area in FIG. 2).

得られた紡糸原糸及び延伸糸を電顕写真で観察り、 タ
ーt)Eポリアリールホスホネートの凝集は見られず均
一に分散されていた。また紡糸延伸での毛羽断糸もなく
、発煙1着色、粘度変化のいずれも特に問題点は見られ
なかった。更に示差熱分析やNMRjリジエチレングリ
コールの生成は少なく、融点は261°Cと通常のポリ
エステル繊維と変わらないものであった。
The obtained spun yarn and drawn yarn were observed using an electron microscope, and it was found that no aggregation of the E polyarylphosphonate was observed and it was uniformly dispersed. Further, there was no fluff breakage during spinning and drawing, and no particular problems were observed in either smoke generation, coloring, or viscosity change. Further, the production of differential thermal analysis and NMRj lydiethylene glycol was small, and the melting point was 261°C, which was the same as that of ordinary polyester fibers.

得られたステー7”/l/を綿40番手の紡績糸にしタ
テ糸及びヨコ糸に用いて2/2ツイ〃の織物を作成した
が、紡績工程及び製織工程で何らトフプルは発生しなか
った。該織物をリラックス、ヒートセット後に軽度の起
毛を施し高圧ウィンスを用いて分散染料により130℃
X60分染色し、シャーリングを施して秋冬用のウール
フイクなポリニス?/L’m物を得た3該ポリエステル
織物のピリング。
The obtained stay 7"/l/ was made into a 40-count cotton spun yarn and used for the warp and weft yarns to create a 2/2 twill fabric, but no tofu pull occurred during the spinning and weaving processes. After relaxing and heat-setting the fabric, it is lightly raised and treated with disperse dye using a high-pressure winch at 130°C.
A woolly polyvarnish for fall and winter, dyed for 60 minutes and shirred? /3 Pilling of the polyester fabric obtained from L'm product.

繊維物性などの評価結果を表1に示した。Table 1 shows the evaluation results of fiber physical properties, etc.

比較例1として該ボリアリールホスホネートの比粘度η
8pを0.40(重合度3 (3前後)Kしたもの、及
び比較例2として該ボリアリールホスホネートの添加量
を1.5電量−にしたものについて実施例1と同様にポ
リエステル織物を作成し、その評価結果も表1に併記し
た。
As Comparative Example 1, the specific viscosity η of the polyarylphosphonate
Polyester fabrics were prepared in the same manner as in Example 1 using 8p with 0.40 K (degree of polymerization 3 (around 3)) and with Comparative Example 2 where the amount of polyarylphosphonate added was 1.5 coul. The evaluation results are also listed in Table 1.

\ / 実施例1で得られた紡績糸はDTxDE=144.3と
製織工程まで問題ない強伸度を有し、130℃×60分
染色で加水分解により織物解舒糸のDTXDEが57.
2と強伸度低下を起している事が判明した。なお180
°Cヒートセット及び軽度起毛による強伸度低下はわず
かなものであった3ま念エステル結合切断率は150℃
×60分熱水処理後で0.17慢、120分処理後で0
.20哄であり、60分と120分処理での切断率変化
(BC2BCl) /B(31は0.18と1回染色と
2回染色で繊維物性に大きな差は見られなかっ九。織物
のピリング評価ではICI法10時間で4−5級、20
時間で5級と合格であり、引裂強力2毛羽脱落など特に
問題は表かつ友。
\ / The spun yarn obtained in Example 1 has a DTxDE of 144.3, which is sufficient strength and elongation up to the weaving process, and when dyed at 130°C for 60 minutes, the DTXDE of the unraveled yarn becomes 57.
2, it was found that the strength and elongation decreased. Furthermore, 180
There was only a slight decrease in strength and elongation due to °C heat setting and light brushing.The ester bond cleavage rate was 150 °C.
×0.17 after 60 minutes of hot water treatment, 0 after 120 minutes of treatment
.. The cutting rate change between 60 minutes and 120 minutes treatment (BC2BCl) /B (31 is 0.18, and there is no significant difference in fiber properties between once dyed and twice dyed. 9. Pilling of textiles In the evaluation, ICI method 10 hours grade 4-5, 20
It passed grade 5 in time, and there were no particular problems such as tearing strength 2 fluff falling off.

比較例1はポリアリ−〃ホスホネートの比粘度(重合度
)の高いものを用いた場合であるが第1図の曲線(B)
のパターンを示し、130’CX60分熱水処環でBC
,がo、11−のため*施例1の場合より強伸度低下が
少なくピリングが3−4級とやや悪い結果を示した。ま
た2回染色により大きな強伸度低下を起した。
Comparative Example 1 is a case where a polyary-phosphonate with a high specific viscosity (degree of polymerization) is used, but the curve (B) in Figure 1
BC with 130'C x 60 min hydrothermal treatment ring.
, was o and 11-, so the decrease in strength and elongation was smaller than in Example 1, and the pilling was 3-4 grade, which was a slightly poor result. Further, double dyeing caused a large decrease in strength and elongation.

比較例2はリン含有量がり、12wt−と少ないため染
色による強伸度低下が少なく、DTxDE= 122で
ピリングは10時間で2−3級、20時間で1−2級と
不合格になった。
Comparative Example 2 had a low phosphorus content of 12 wt-, so there was little decrease in strength and elongation due to dyeing, and with DTxDE = 122, pilling was grade 2-3 after 10 hours and grade 1-2 after 20 hours, which was a failure. .

実施例2 Tie2=0.45 % 含有のセミダルポリエチレン
テレ7タレートボリマ〜にη、p==Q、Q y (1
&& a〜7)で末端の封鎖されていないボリピスフェ
ノールスルホンフェニールホスヘートヲホリエステルボ
リマーに対し4,0wt%(リンで051vt%)にな
るように溶液状で注入し、スタチックミキサーで混合し
ノズyよ)紡糸した。
Example 2 Semidal polyethylene tere-7 tallate bolamer containing Tie2=0.45% η, p==Q, Q y (1
&& In a~7), polypisphenol sulfone phenyl phosphate, which is not end-blocked, was injected in a solution form to the polyester polymer at a concentration of 4.0 wt% (0.51 vt% for phosphorus) and mixed with a static mixer. Shinozuyyo) I spun it.

得られた紡糸原糸t−10万drに集束し、常法により
水浴延伸、捲縮及び切断を行ってt5drX38麿のス
テーブ/I/を20#作シ、締30i1手の紡績糸で2
4ゲージの天竺丸編を作成した。その後り’)ツ97.
,170℃ヒート−1!’/)後130’cX60分熱
水処理してピリングテストの試料に供し、物性if!価
結果を表2に示した。
The obtained spun yarn was collected into t-100,000 dr, and subjected to water bath drawing, crimping and cutting according to a conventional method, and a stave /I/ of t5 dr x 38 mm was made with 20 # of spun yarn and tightened with 30 i of 1 hand spun yarn.
I created a 4 gauge Tenjikumaru version. 97.
, 170℃ heat -1! '/) After that, it was treated with hot water for 130'c x 60 minutes and used as a pilling test sample, and the physical properties if! The results are shown in Table 2.

表   2 紡糸延伸工程での毛羽断糸はわずかであシ、紡糸時の発
煙1着色、粘度変化及びT i 02の凝集によるフィ
ルター詰りなどについても特に問題はなかった。延伸糸
は〔η) = o、s 5dl/yでリン含有量=0.
3ft−であシ(2)式を満足していた。紡績糸の単繊
維強伸度は5.8 f/dr−41%で紡績及び製編工
程は問題なく熱水処理により強伸度低下が大きく起って
いる。130℃X60分熱水処理前後の〔η〕よシ算出
したエステル結合切断率BC1は0.27%トK < 
、熱水mfll後テ(η) = 0.59 DTXDE
=72.5でピリングも5時間で4級、10時間で4−
5級と満足されるものであった。なお熱水処理前の編地
のピリングは5時間−2級、10時間−1級と悪く加水
分解による低強伸度化ではじめて抗ピル効果を示す事が
判明した。
Table 2 There was only slight fuzz breakage in the spinning and drawing process, and there were no particular problems with smoke generation during spinning, coloration, viscosity change, and filter clogging due to agglomeration of T i 02. The drawn yarn has [η) = o, s 5 dl/y and phosphorus content = 0.
3 ft- and satisfied formula (2). The single fiber strength and elongation of the spun yarn was 5.8 f/dr-41%, and there was no problem in the spinning and knitting processes, although the strength and elongation decreased significantly due to the hot water treatment. The ester bond cleavage rate BC1 calculated from [η] before and after hot water treatment at 130°C for 60 minutes is 0.27%K<
, after hydrothermal mfll (η) = 0.59 DTXDE
= 72.5, pilling was grade 4 in 5 hours, 4- in 10 hours
It was a satisfactory grade 5. It was found that the pilling of the knitted fabric before hot water treatment was poor, being 2nd grade for 5 hours and 1st grade for 10 hours, and that the anti-pilling effect was only exhibited when the strength and elongation were reduced by hydrolysis.

実施例3 セミダルのポリエチレンテレフタレートの葺合後にη、
、=0.28(重合度15〜2G)の片末端がフェノキ
シ基で封鎖されたポリビスフェノ−μスルホンフェニー
ルホスホネートを添加し、該りン化合物が均一に分散さ
れたポリエステルチップヲ作成した。次いで、該チップ
を50φの押出機で押出し、紡速1000m/sitで
得られた紡糸原糸(A)とリン化合物を含まない通常の
ポリエステyで紡速2400*/mにより得られた紡糸
原糸(B)の2種類を引揃えて同時に延伸仮撚した。
Example 3 After lamination of semi-dull polyethylene terephthalate, η,
, = 0.28 (polymerization degree 15-2G) polybispheno-μ sulfone phenylphosphonate, one end of which was blocked with a phenoxy group, was added to prepare a polyester chip in which the phosphorus compound was uniformly dispersed. Next, the chips were extruded using a 50φ extruder to obtain a spinning yarn (A) obtained at a spinning speed of 1000 m/sit, and a spinning yarn (A) obtained at a spinning speed of 2400*/m using ordinary polyester y containing no phosphorus compound. Two types of yarns (B) were aligned and drawn and false twisted at the same time.

得られた仮撚糸砿紡速度(伸度差)によfiloodr
−2Ofの(B) Ji!維が芯糸に、?0dr−72
fの(ム)繊維が外周糸となり、糸長差2o−の2層構
造加工糸であった。なおリン化合物練込みの(ム)繊維
は〔グ)=0.46.  リン含有量= 0.21 v
t%で単繊維強伸度は2,6 #/dr−45−であっ
た。
The filoadr is determined by the spinning speed (difference in elongation) of the obtained false twisted yarn.
-2Of(B) Ji! Is fiber the core thread? 0dr-72
The (mu) fiber of f was the outer peripheral yarn, and the yarn was a two-layer textured yarn with a yarn length difference of 2o-. In addition, the (mu) fiber kneaded with a phosphorus compound has a [g]=0.46. Phosphorus content = 0.21 v
The single fiber strength and elongation at t% was 2.6 #/dr-45-.

該仮撚糸に250回/mの撚をかけタテ糸及び4′コ糸
に供し、115のフィル織物を作成した後リフツクス、
ヒートセット、軽度起毛を施し135°C×40分の染
色を行った。なお織物表面の毛羽はほとんどがリン化合
物を含有した(ム)繊維であった。
The false twisted yarn was twisted at a rate of 250 times/m to form warp yarns and 4' yarns to create 115 fill fabrics.
Heat setting and slight napping were performed, and dyeing was carried out at 135°C for 40 minutes. Note that most of the fuzz on the surface of the fabric was (mu) fibers containing phosphorus compounds.

該織物のヨコ糸を解舒しくム)繊維の単繊維強伸度を測
定したところ1,8 f/dr −27%でピリングは
IC110時間で4−5級となり、本発明により従来の
ポリエステ!加工糸織物にない抗ピル性9ウールフイク
な織物が得られた。
When the weft of the woven fabric was unwound and the single fiber strength and elongation of the fibers was measured, it was 1.8 f/dr -27% and pilling was grade 4-5 at IC 110 hours. A woven fabric with anti-pilling property 9 wool, which is not found in processed yarn woven fabrics, was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるリン化合物を練込んだ場合の1
30℃熱水処理の時間とエステル結合切断率の関係を示
したモデル図、第2図はポリエステ〃延伸糸の固有粘度
〔η〕とリン含有量W(重量%)との関係を示す図で、
斜線部分が文中(2)式を満足する範囲である。 手続補正書(自発) 、斗事件の表示 昭和57年特許願第−ff1786号 2、発明の名称 抗ビル性ポリエステル繊維及びその製造法倉敷市酒津1
621番地 (108)株式会社り ラ し 代表取暢役岡林次男 4、代理 人 會敷市酒津青江山2045の1 (1)  明細書の特許請求の範囲の欄を別紙のとおり
訂正をする。 (2)明細書第8頁、9行目 「且つ熱水処理後の単」なる記載を「且つ熱水処理後の
最終製品!−9単」に訂正する。 以  上 明   細   書 l2発明の名称 抗ビル性ポリエステル繊維及びその製造法2、特許請求
の範囲 〔1〕  下記一般式(1) で示されるボリアリールホスホネート又Fi/及びボリ
アリールホスヘートがポリエステル繊維中に、該ポリエ
ステル延伸糸の固有粘度〔η〕とリン含有量W(重量%
)との間に(2)式%式%(2) が成立するように分散されており、130℃×60分及
び130℃×120分熱水処理によるエステル結合切断
率をそれぞれBCl及びBClとする時(BO2−BC
I )/BCI≦0.3となり且つ熱水処理後の最終製
品での単繊線化強度DT(f/dr )と乾伸度DE(
%)(2)積DTXDE−ttL20〜80となる特性
を有することを特徴とする抗ピル性ポリエステル繊細。 (2) ポリエステルポリマーの重合完了後紡糸直前の
間で下記一般式(1) で示されるボリアリールホスホネート又#i/及びポリ
アリールホスヘートを、紡糸後のポリエステル延伸糸の
固有粘度〔η〕及びリンη有量W(直1チ)が(2)式 %式% を満足するように混合し、該混合物を常法により浴融紡
糸することを特徴とする抗ピル性ポリエステル繊維の製
造法。 〔3」リン化合物を予め#!融し紡糸直前のポリエステ
ルポリマーに注入しスタチックばキサ−にて混合するこ
とを特徴とする特許請求の範囲第2項記載の抗ピル性ポ
リエステル繊維の製造法。 r41 300℃×10分N2下での加熱減量が20−
以下の減粘剤をリン化合物に添加混合し、200℃にお
ける混合添加剤の溶融粘度を50ボイズ以下にすること
を特徴とする特許請求の範1Q13項記載の杭ビル性ポ
リエステル繊維の製造法。
Figure 1 shows a case where the phosphorus compound of the present invention is kneaded.
A model diagram showing the relationship between the time of hot water treatment at 30°C and the ester bond cleavage rate. Figure 2 is a diagram showing the relationship between the intrinsic viscosity [η] and phosphorus content W (wt%) of polyester drawn yarn. ,
The shaded area is the range that satisfies equation (2). Procedural amendment (spontaneous), Indication of the Do case, Patent Application No. FF1786 No. 2, 1982, Name of the invention: Anti-build polyester fiber and its manufacturing method 1, Sakuzu, Kurashiki City
621 (108) RiRa Co., Ltd. Representative Director Tsuguo Okabayashi 4, Agent 2045-1 Aoeyama, Sakazu, Aichikai-shi (1) The scope of claims column of the specification will be corrected as shown in the attached sheet. (2) On page 8, line 9 of the specification, the statement ``And the unit after hot water treatment'' is corrected to ``And the final product after hot water treatment!--9 units.'' Above Description Book 12 Name of the invention Anti-build polyester fiber and method for producing the same 2, Claims [1] A polyester fiber containing a polyaryl phosphonate or Fi/and a polyaryl phosphonate represented by the following general formula (1) Intrinsic viscosity [η] and phosphorus content W (wt%) of the polyester drawn yarn
), and the ester bond cleavage rate by hot water treatment at 130°C x 60 minutes and 130°C x 120 minutes is calculated as BCl and BCl, respectively. When to do (BO2-BC
I)/BCI≦0.3 and the single fiber strength DT (f/dr) and dry elongation DE (
%) (2) A pill-resistant polyester delicacy characterized by having a product DTXDE-ttL of 20 to 80. (2) After completion of polymerization of the polyester polymer and immediately before spinning, a polyaryl phosphonate or #i/ and a polyaryl phosphonate represented by the following general formula (1) are added to the polyester drawn yarn after spinning to obtain an intrinsic viscosity [η] and a polyaryl phosphonate. A method for producing anti-pilling polyester fibers, which comprises mixing so that the phosphorus η content W (direction 1 inch) satisfies the formula (2) (% formula %) and bath-melting the mixture by a conventional method. [3] Add phosphorus compound in advance! 3. The method for producing anti-pilling polyester fiber according to claim 2, which comprises injecting the fiber into the polyester polymer immediately before melting and spinning and mixing in a static mixer. r41 Heating loss at 300℃ x 10 minutes under N2 is 20-
A method for producing a pile-building polyester fiber according to claim 1Q13, characterized in that the following viscosity reducing agent is added to and mixed with a phosphorus compound so that the melt viscosity of the mixed additive at 200° C. is 50 voids or less.

Claims (1)

【特許請求の範囲】 〔1〕  下記一般式(1) %式%(1) で示されるポリアリ−〃ホスホネート又は/及びポリア
リ−〃ホスヘートがポリニスデル繊維中に、該ポリエス
テル延伸糸の固有粘度〔η〕とリン含有量W(重量哄)
との間に(2)式%式%(2) が成立するように分散されておシ、130℃×60分及
び150℃×120分熱水処理によるエステル結合切断
率をそれぞれBCl及びB(32とする時(Be2−B
e、 ) /BC1≦0.3となり且つ熱水処理後の単
繊維化強度D T (g/dr )と乾伸度DB(哄)
の積DTxDKが20〜80となる特性を有する仁とを
特徴とする杭ピル性ポリエステμ繊維。 〔2〕  ポリエステルポリマーの重合完了後紡糸直前
の間で下記一般式(1) %式%(1) で示されるポリアリールホスホネート又ハ/及びポリア
リ−μホスヘートを、紡糸後のポリエステル延伸糸の固
有粘度〔η〕及びリン含有量W(重量憾)が(2)式 %式%(2) を満足するように混合し、該混合物を常法により溶融紡
糸すること全特徴とする抗ピル性ポリエステル繊維の製
造法。 〔5〕ザリン合物を予め溶融し紡糸直前のポリエステル
ポリマーに注入しスタチックミキサーにて混合すること
を特徴とする特許請求の範囲第2項記載の抗ピル性ポリ
エステル繊維の製造法。 (4)joo℃X10分N2下での分熱2下が20−以
下の減粘剤をリン化合物に添加混合し、200℃におけ
る混合添加剤の溶融粘度を50ボイス以下にすることを
特徴とする特許請求の範囲第2項ないし第3項記載の抗
ピル性ポリエステル繊維の製造法。
[Scope of Claims] [1] Polyaryl phosphonate or/and polyaryl phosphate represented by the following general formula (1) % formula % (1) is contained in the polynisder fiber, and the intrinsic viscosity [η ] and phosphorus content W (weight)
The ester bond cleavage rates of BCl and B( 32 (Be2-B
e, ) /BC1≦0.3 and single fiber strength DT (g/dr) and dry elongation DB (哄) after hot water treatment
1. A pile-pillar polyester μ fiber having a property that the product DTxDK is 20 to 80. [2] After completion of polymerization of the polyester polymer and immediately before spinning, polyaryl phosphonate or polyaryl-μ phosphate represented by the following general formula (1) % formula % (1) is added to the polyester drawn yarn after spinning. An anti-pilling polyester characterized in that it is mixed so that the viscosity [η] and the phosphorus content W (weight) satisfy the formula (2) (% formula %), and the mixture is melt-spun by a conventional method. Fiber manufacturing method. [5] The method for producing anti-pilling polyester fiber according to claim 2, characterized in that the sarin compound is melted in advance, injected into the polyester polymer immediately before spinning, and mixed in a static mixer. (4) Adding and mixing a thinner with a viscosity reduction of 20 or less under N2 under N2 for 10 minutes at 200°C to make the melt viscosity of the mixed additive 50 voices or less at 200°C. A method for producing anti-pilling polyester fibers according to claims 2 and 3.
JP7178682A 1982-04-27 1982-04-27 Pilling-resistant polyester fiber and its production Granted JPS58186612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7178682A JPS58186612A (en) 1982-04-27 1982-04-27 Pilling-resistant polyester fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7178682A JPS58186612A (en) 1982-04-27 1982-04-27 Pilling-resistant polyester fiber and its production

Publications (2)

Publication Number Publication Date
JPS58186612A true JPS58186612A (en) 1983-10-31
JPH0329884B2 JPH0329884B2 (en) 1991-04-25

Family

ID=13470600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7178682A Granted JPS58186612A (en) 1982-04-27 1982-04-27 Pilling-resistant polyester fiber and its production

Country Status (1)

Country Link
JP (1) JPS58186612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040685A (en) * 2012-08-22 2014-03-06 Kuraray Co Ltd Polyester fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910242A (en) * 1972-05-26 1974-01-29
JPS5046A (en) * 1973-05-02 1975-01-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910242A (en) * 1972-05-26 1974-01-29
JPS5046A (en) * 1973-05-02 1975-01-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040685A (en) * 2012-08-22 2014-03-06 Kuraray Co Ltd Polyester fiber

Also Published As

Publication number Publication date
JPH0329884B2 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
JP2002212848A (en) Polyester bulky composite yarn and method for producing the same
JPS58186612A (en) Pilling-resistant polyester fiber and its production
JP3547842B2 (en) Method for producing anti-pilling irregular cross-section fiber
JP3973566B2 (en) Easy fibrillar polyester fiber
JP2013018802A (en) Polyester resin composition, method for producing the same, polyester fiber composed of the same, and fiber product of the polyester fiber
WO2004063436A1 (en) Polyester fibers having deformed section
JP4084260B2 (en) Polyester composite false twisted yarn
JPS6163717A (en) Latent crimping polyester composite fiber
JPH03241024A (en) Production of cation-dyeable superfine false twist yarn
JPS6163768A (en) Production of cloth having silk spun like feeling
JPH055212A (en) Production of polyester fiber
JP4108873B2 (en) Polyester fiber
JP3973539B2 (en) Easy fibrillar polyester yarn
JP3549630B2 (en) Composite fiber
JPH09302543A (en) Hollow spun yarn and woven or knitted fabric made of the same
JP3333831B2 (en) Polyester thick yarn
JP2882692B2 (en) Composite fiber aggregate and method for treating fabric using the fiber
JP4667632B2 (en) Fibrilized fiber and method for producing fibrillated fiber
JP3973575B2 (en) Easy fibrillar polyester fiber
JPH09302544A (en) Spun yarn
JPH03269115A (en) composite fiber
JPH11217729A (en) Production of pill-resistant polyester fiber
KR950000721B1 (en) Manufacturing method of uneven polyester fiber
KR960012822B1 (en) Process for mixed yarn having different shrinkage
JP2024002177A (en) Irregular shape cross-section polyester fiber