Nothing Special   »   [go: up one dir, main page]

JPH11283624A - Lithium secondary battery and manufacture thereof - Google Patents

Lithium secondary battery and manufacture thereof

Info

Publication number
JPH11283624A
JPH11283624A JP10085727A JP8572798A JPH11283624A JP H11283624 A JPH11283624 A JP H11283624A JP 10085727 A JP10085727 A JP 10085727A JP 8572798 A JP8572798 A JP 8572798A JP H11283624 A JPH11283624 A JP H11283624A
Authority
JP
Japan
Prior art keywords
lithium
titanium oxide
secondary battery
crystal structure
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10085727A
Other languages
Japanese (ja)
Inventor
Nobuharu Koshiba
信晴 小柴
堅一 ▲高▼田
Kenichi Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10085727A priority Critical patent/JPH11283624A/en
Publication of JPH11283624A publication Critical patent/JPH11283624A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having a voltage gradient from the initial discharging to the completion in such a manner as to facilitate detection of a residual capacity by a discharging voltage. SOLUTION: A lithium compound such as lithium hydroxide is mixed with lithium oxide, followed by heat treatment, thus preparing a ramsdellite type crystal structure expressed by a general formula: Li2 Ti3 O7 . A material including mainly lithium titanium oxide having the resultant crystal structure is used as a negative electrode, thus constituting a lithium secondary battery capable of exhibiting variable voltage characteristics with progression of charging/ discharging without deteriorating excellent charging/discharging cycle characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動体通信端末等
の携帯用機器、メモリのバックアップ用電源に用いられ
る充放電可能なリチウム二次電池、詳しくは一般式Li
2Ti37にて表されるリチウムチタン酸化物を主成分
とした負極を用いるリチウム二次電池およびその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portable device such as a mobile communication terminal, a chargeable / dischargeable lithium secondary battery used as a backup power source for a memory, and more particularly to a general formula Li
The present invention relates to a lithium secondary battery using a negative electrode mainly composed of lithium titanium oxide represented by 2 Ti 3 O 7 and a method for producing the same.

【0002】[0002]

【従来の技術】近年のエレクトロニクス分野における技
術の急速な発展により、電子機器の小型化が進み、これ
ら機器の電源として、小型軽量で高エネルギー密度を有
する電池の需要が高まっている。このような背景のもと
で、負極にリチウムを用いたリチウム二次電池が特に注
目を集めており、盛んにその開発が進められている。
2. Description of the Related Art Due to the rapid development of technologies in the field of electronics in recent years, electronic devices have been reduced in size, and there has been an increasing demand for small and lightweight batteries having a high energy density as power supplies for these devices. Against this background, lithium secondary batteries using lithium for the negative electrode have attracted particular attention, and are being actively developed.

【0003】しかしながら、負極にリチウムを用いる二
次電池では、充放電の繰り返しにより、リチウムを用い
た負極の表面上にデンドライトと呼ばれる樹枝状結晶の
リチウムが成長し、これがセパレータを突き破り、内部
短絡を引き起こす現象が生じるために、充放電サイクル
寿命が著しく損なわれる。
However, in a secondary battery using lithium for the negative electrode, repetition of charging and discharging causes dendritic lithium called dendrites to grow on the surface of the negative electrode using lithium, which breaks through the separator and causes an internal short circuit. Due to the phenomena that occur, the charge / discharge cycle life is significantly impaired.

【0004】その解決手段として、負極にリチウムの吸
蔵、放出が可能な材料として、五酸化ニオブやスピネル
型結晶構造のリチウムチタン酸化物などの金属酸化物、
あるいは、天然黒鉛、人造黒鉛や炭素繊維などのカーボ
ン、さらには、リチウム−アルミニウムやリチウム−亜
鉛などのリチウム合金を用いたリチウム二次電池が提案
されている。
As a solution, metal oxides such as niobium pentoxide and lithium titanium oxide having a spinel type crystal structure can be used as a material capable of inserting and extracting lithium in the negative electrode.
Alternatively, a lithium secondary battery using carbon such as natural graphite, artificial graphite or carbon fiber, and a lithium alloy such as lithium-aluminum or lithium-zinc has been proposed.

【0005】このようなリチウムの吸蔵、放出が可能な
材料のなかで、特開平6−275263号公報において
示されたスピネル型結晶構造のリチウムチタン酸化物
は、Li/Li+に対して1.5V付近で非常に平坦な
充放電曲線を有している。さらに、スピネル型結晶構造
のリチウムチタン酸化物は、リチウムイオンの吸蔵、放
出がスムーズに行われ易く、且つ充放電の繰り返しによ
るデンドライトの発生もないため、長期にわたる充放電
サイクル特性に優れており、リチウムチタン酸化物を負
極に用いたリチウム二次電池が実用化されている。
[0005] Among such materials capable of occluding and releasing lithium, lithium titanium oxide having a spinel type crystal structure disclosed in JP-A-6-275263 has a ratio of Li / Li + to 1. It has a very flat charge / discharge curve near 5V. Furthermore, lithium titanium oxide having a spinel-type crystal structure is excellent in long-term charge-discharge cycle characteristics because lithium ions are easily absorbed and released, and there is no generation of dendrites due to repeated charge and discharge. A lithium secondary battery using lithium titanium oxide for a negative electrode has been put to practical use.

【0006】[0006]

【発明が解決しようとする課題】近年、小型二次電池を
電源として用いる電子機器では、電池の残存容量を検知
する機能は必要不可欠な構成となっている。さらに最近
では、機器側の使用電力の増加による電池の高容量化
と、機器重量の低減を目的とした軽量化という相反する
要求を満たすために、限られた電池の容量を有効に活用
する必要がある。電池の放電容量を検地する方法とし
て、充放電流及び電圧を測定し、電池容量を検出、表示
する方法が種々提案されている。しかしながらこの方法
では、電子機器の重量増加を招いてしまい、携帯性を重
視した機器には好適ではない。そこで、電池電圧と残存
容量の関係をあらかじめICにインプットし、電池電圧
のレベルにより、残存容量を表示する構成が採用されて
いる。
In recent years, in an electronic device using a small secondary battery as a power supply, a function of detecting the remaining capacity of the battery has become an indispensable configuration. More recently, limited battery capacity must be used effectively to meet the conflicting demands of higher battery capacity due to increased power usage on the device side and weight reduction for the purpose of reducing device weight. There is. As a method of detecting the discharge capacity of a battery, various methods have been proposed in which the charging / discharging current and voltage are measured, and the battery capacity is detected and displayed. However, this method causes an increase in the weight of the electronic device, and is not suitable for a device that emphasizes portability. Therefore, a configuration is adopted in which the relationship between the battery voltage and the remaining capacity is input to an IC in advance, and the remaining capacity is displayed based on the level of the battery voltage.

【0007】前述したスピネル型結晶構造のリチウムチ
タン酸化物は、充放電時に平坦な電位を示し、それぞれ
の末期においては急激な電位変化を示す特性がある。こ
のため、リチウムチタン酸化物を負極に用いたリチウム
二次電池では、電圧が平坦に変位する領域と、急激に変
位する領域が存在する電圧特性を示す。このため、電圧
のレベルに基づいて検出される残存容量の精度が低下し
てしまう問題点を有している。
The lithium titanium oxide having a spinel-type crystal structure described above has characteristics such that it shows a flat potential at the time of charge and discharge, and shows a sudden change in potential at the end of each phase. Therefore, a lithium secondary battery in which lithium titanium oxide is used for the negative electrode shows voltage characteristics in which a region where voltage is displaced flatly and a region where voltage is rapidly displaced are present. For this reason, there is a problem that the accuracy of the remaining capacity detected based on the voltage level is reduced.

【0008】本発明は、電圧による残存容量の検知が容
易となるよう放電初期より終了まで電圧勾配を有し、放
電電圧による残存容量の検出を容易にするリチウム二次
電池を提供するものである。
The present invention provides a lithium secondary battery that has a voltage gradient from the beginning to the end of discharge so that the remaining capacity can be easily detected by voltage, and makes it easy to detect the remaining capacity by the discharge voltage. .

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明のリチウム二次電池は、正極、リチウムのド
ープ・脱ドープが可能な負極およびリチウム塩を支持塩
とする電解質から構成されるリチウム二次電池におい
て、一般式Li2Ti37で表されるリチウムチタン酸
化物を負極の主成分とされるようにしたことを特徴とす
る。
In order to solve the above-mentioned problems, a lithium secondary battery of the present invention comprises a positive electrode, a negative electrode capable of doping / dedoping lithium, and an electrolyte using a lithium salt as a supporting salt. In the lithium secondary battery, a lithium titanium oxide represented by a general formula Li 2 Ti 3 O 7 is used as a main component of the negative electrode.

【0010】この構成によれば、優れた充放電サイクル
特性を損なう事なく、充放電が進むにつれ、電圧も変化
する、いわゆる電圧勾配を有するリチウム二次電池を提
供できる。この電池を使用した機器が使用上状態にある
とき、使用時間の経過に従って放電容量が低下すると共
に、電池の放電電圧も低下するため、あらかじめ設定さ
れる放電容量と電圧との関係から電圧チェックによる残
存容量の検知が容易となる。
According to this configuration, it is possible to provide a lithium secondary battery having a so-called voltage gradient in which the voltage changes as charging and discharging progress, without impairing excellent charge and discharge cycle characteristics. When the equipment using this battery is in use, the discharge capacity decreases as the use time elapses, and the discharge voltage of the battery also decreases.Therefore, a voltage check is performed based on a predetermined relationship between the discharge capacity and the voltage. The remaining capacity can be easily detected.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
Embodiments of the present invention will be described below.

【0012】請求項1に記載の発明は、正極、リチウム
のドープ・脱ドープが可能な負極およびリチウム塩を支
持塩とする電解質から構成されるリチウム二次電池にお
いて、一般式Li2Ti37で表されるリチウムチタン
酸化物を主成分とする負極を用いるものである。
The invention according to claim 1 provides a lithium secondary battery comprising a positive electrode, a negative electrode capable of doping / dedoping lithium, and an electrolyte using a lithium salt as a supporting salt, wherein the lithium secondary battery has a general formula of Li 2 Ti 3 O A negative electrode mainly composed of lithium titanium oxide represented by 7 is used.

【0013】一般式Li2Ti37で表されるリチウム
チタン酸化物は、ラムスデライト型の結晶構造を有して
いる。このリチウムチタン酸化物は、公知のスピネル型
結晶構造とは異なり、還元電位がLi/Li+に対し2
V付近より始まり、0.5V付近まで緩やかな電位勾配
をもって進み、酸化反応では、電位がわずかに上昇して
その逆方向に進行する。その理由として、スピネル型結
晶構造の場合には不均一反応(反応物と生成物が共存す
る反応)のため、一定の電位で酸化還元が進み、平坦な
電位を示すのに対し、ラムスデライト型結晶構造の場合
には、均一反応(生成物が均一に変化する反応)のた
め、緩やかなS字状の電位勾配を生ずることと推定され
る。
The lithium titanium oxide represented by the general formula Li 2 Ti 3 O 7 has a ramsdellite type crystal structure. Unlike the known spinel type crystal structure, this lithium titanium oxide has a reduction potential of 2 with respect to Li / Li +.
Starting from around V, the potential proceeds with a gentle potential gradient to around 0.5 V. In the oxidation reaction, the potential slightly increases and proceeds in the opposite direction. The reason is that in the case of the spinel type crystal structure, the oxidation-reduction proceeds at a certain potential due to the heterogeneous reaction (reaction in which the reactant and the product coexist), and the ramsdellite type In the case of a crystal structure, it is presumed that a gentle S-shaped potential gradient is generated due to a homogeneous reaction (a reaction in which a product changes uniformly).

【0014】従って、リチウムチタン酸化物を活物質と
して負極に用いた場合、正極に平坦な充放電電位を有す
る活物質と組み合わせた場合でも、構成された電池は緩
やかなS字状となる電圧勾配を有した充放電曲線を示す
こととなる。
Therefore, when the lithium titanium oxide is used as the active material for the negative electrode, even when the positive electrode is combined with an active material having a flat charge / discharge potential, the formed battery has a gentle S-shaped voltage gradient. Will be shown.

【0015】また、上記リチウムチタン酸化物は、Cu
をターゲットとしてX線回折を行った場合、面間隔が少
なくとも4.45Å,2.69Å,2.24Å,1.7
7Å(各±0.02Å)にあるものである。さらに、C
uをターゲットとしたX線回折法から得られたX線回折
パターンにおいて4.45Å(±0.02Å)における
ピーク値と、2.69Å(±0.02Å)におけるピー
ク値とのピーク強度比が、100:20〜100:60
の範囲にあるものである。このような物性を有するラム
スデライト型結晶構造のリチウムチタン酸化物を用いた
負極は、スピネル型結晶構造のものに比べて、エネルギ
ー密度を高くできるという特徴も有する。
The lithium titanium oxide is Cu
When the X-ray diffraction is performed using as a target, the plane spacing is at least 4.45 °, 2.69 °, 2.24 °, 1.7.
7 ° (each ± 0.02 °). Further, C
The peak intensity ratio between the peak value at 4.45 ° (± 0.02 °) and the peak value at 2.69 ° (± 0.02 °) in the X-ray diffraction pattern obtained from the X-ray diffraction method targeting u , 100: 20-100: 60
Is in the range. A negative electrode using a lithium titanium oxide having a ramsdellite-type crystal structure having such physical properties also has a feature that an energy density can be increased as compared with a spinel-type crystal structure.

【0016】また、請求項6に記載された発明は、正
極、リチウムのドープ・脱ドープが可能なリチウムチタ
ン酸化物を含む負極およびリチウム塩を支持塩とする電
解質から構成されるリチウム二次電池の製造法であっ
て、リチウム化合物と酸化チタンとの混合した後、これ
を熱処理する工程によりリチウムチタン酸化物を生成さ
せるものである。この製造法によって生成されるリチウ
ムチタン酸化物は、一般式Li2Ti37で表されるラ
ムスデライト型結晶構造を有しており、これを負極に用
いたリチウム二次電池は、充放電が進むにつれ、電圧も
変化する特性を示す。これにより電圧チェックによる残
存容量の検知を容易とする効果を奏するものである。
According to a sixth aspect of the present invention, there is provided a lithium secondary battery comprising a positive electrode, a negative electrode containing lithium titanium oxide capable of doping / dedoping lithium, and an electrolyte using a lithium salt as a supporting salt. Wherein a lithium compound and a titanium oxide are mixed and then heat-treated to produce a lithium titanium oxide. The lithium titanium oxide produced by this production method has a ramsdellite type crystal structure represented by the general formula Li 2 Ti 3 O 7 , and a lithium secondary battery using this as a negative electrode is charged and discharged. Shows a characteristic in which the voltage changes as the state progresses. This has the effect of facilitating detection of the remaining capacity by voltage check.

【0017】また、上記製造法においてリチウム化合物
は、水酸化リチウム、酸化リチウム、硝酸リチウム、炭
酸リチウムから選択される。選択された一つ、あるいは
複数のリチウム化合物と、酸化チタンとを混合した後、
熱処理が施される。この時、リチウム化合物と酸化チタ
ンの混合割合は、生成されるリチウムチタン酸化物の結
晶構造に影響を与える。
In the above production method, the lithium compound is selected from lithium hydroxide, lithium oxide, lithium nitrate and lithium carbonate. After mixing one or more selected lithium compounds and titanium oxide,
Heat treatment is performed. At this time, the mixing ratio of the lithium compound and titanium oxide affects the crystal structure of the generated lithium titanium oxide.

【0018】さらに、熱処理を行う工程において、熱処
理を行う温度条件によっても生成されるリチウムチタン
酸化物の結晶構造が異なる。一般式Li2Ti37で表
されるラムスデライト型結晶構造を有するリチウムチタ
ン酸化物は、950℃以上の温度にて熱処理することに
より得ることができる。
Further, in the step of performing the heat treatment, the crystal structure of the generated lithium titanium oxide also differs depending on the temperature conditions at which the heat treatment is performed. The lithium titanium oxide having a ramsdellite-type crystal structure represented by the general formula Li 2 Ti 3 O 7 can be obtained by performing a heat treatment at a temperature of 950 ° C. or higher.

【0019】熱処理の温度条件について詳細に説明する
と、800℃で熱処理した場合には、スピネル型結晶構
造のリチウムチタン酸化物が生成する。さらに950℃
で熱処理した場合には、ラムスデライト型結晶構造のリ
チウムチタン酸化物の生成が認められる。したがって、
この温度条件では、ラムスデライト型結晶構造のリチウ
ムチタン酸化物のX線回折ピークは弱い。1000℃以
上で熱処理した場合には、ラムスデライト型結晶構造の
X線回折ピークの強度が強くなり、スピネル型結晶構造
とラムスデライト型結晶構造のリチウムチタン酸化物が
共存する形態となる。
The temperature condition of the heat treatment will be described in detail. When the heat treatment is performed at 800 ° C., lithium titanium oxide having a spinel type crystal structure is generated. 950 ° C
In the case of heat treatment, formation of a lithium titanium oxide having a ramsdellite type crystal structure is observed. Therefore,
Under this temperature condition, the X-ray diffraction peak of lithium titanium oxide having a ramsdellite type crystal structure is weak. When the heat treatment is performed at 1000 ° C. or higher, the intensity of the X-ray diffraction peak of the ramsdellite type crystal structure is increased, and the spinel type crystal structure and the ramsdellite type crystal structure of lithium titanium oxide coexist.

【0020】熱処理温度の上限として、リチウムチタン
酸化物が溶融する温度に近い温度、すなわち1400℃
付近まで可能である。しかしながら、熱処理の効率の面
から考慮すると熱処理温度は低い方が好ましく、結晶体
のラムスデライト型結晶構造のリチウムチタン酸化物が
得られる1000℃から1300℃の熱処理温度が工業
的には好ましいと考えられる。このとき、熱処理温度を
高いほどスピネル型結晶構造のリチウムチタン酸化物の
ピークが弱まり、ラムスデライト型結晶構造のリチウム
チタン酸化物のピークが支配的となる。もちろん、本発
明のLi2Ti37の製造方法は他の方法であってもよ
い。
The upper limit of the heat treatment temperature is a temperature close to the temperature at which the lithium titanium oxide melts, that is, 1400 ° C.
It is possible to near. However, considering the efficiency of the heat treatment, the heat treatment temperature is preferably lower, and the heat treatment temperature of 1000 ° C. to 1300 ° C. at which a lithium titanate having a ramsdellite-type crystal structure is obtained is considered industrially preferable. Can be At this time, as the heat treatment temperature is higher, the peak of lithium titanium oxide having a spinel crystal structure is weakened, and the peak of lithium titanium oxide having a ramsdellite crystal structure is dominant. Of course, the method for producing Li 2 Ti 3 O 7 of the present invention may be another method.

【0021】[0021]

【実施例】以下、本発明の一実施例について、図面を用
いて説明する。尚、以下に示す実施例は本発明を具体化
した一例であって、本発明の技術的範囲を限定するもの
でない。
An embodiment of the present invention will be described below with reference to the drawings. It should be noted that the following embodiments are only examples embodying the present invention, and do not limit the technical scope of the present invention.

【0022】酸化チタン1モルに対して水酸化リチウム
を2/3モル混合し、酸素雰囲気中にて800℃、95
0℃、1000℃、1100℃、1300℃、1400
℃でそれぞれ8時間熱処理してリチウムチタン酸化物を
作成した。これらの試料に対してCuをターゲットとし
てX線回折を行い、X線回折パターンにおける主たるピ
ーク位置とピーク強度比を表1に示す。また、ラムスデ
ライト型結晶構造(JCPDS No.34−039
3)およびスピネル型結晶構造(JCPDS No.2
6−1198)のリチウムチタン酸化物のX線回折のピ
ーク位置とピーク強度比を表2に示す。
One mole of titanium oxide is mixed with 2/3 mole of lithium hydroxide, and is mixed at 800 ° C. and 95 ° C. in an oxygen atmosphere.
0 ° C, 1000 ° C, 1100 ° C, 1300 ° C, 1400
Each was heat-treated at 8 ° C. for 8 hours to prepare lithium titanium oxide. X-ray diffraction was performed on these samples using Cu as a target. Table 1 shows the main peak positions and peak intensity ratios in the X-ray diffraction pattern. Further, a ramsdellite type crystal structure (JCPDS No. 34-039)
3) and a spinel type crystal structure (JCPDS No. 2)
Table 2 shows the peak positions and peak intensity ratios of the X-ray diffraction of the lithium titanium oxide of 6-1198).

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1と表2を比較してわかるように、80
0℃ではリチウムチタン酸化物はスピネル型結晶構造で
あり、950℃以上ではラムスデライト型結晶構造のリ
チウムチタン酸化物が生成し、主成分となっている。そ
して、熱処理温度を1000℃以上としてもほぼ同様の
ピークが見られ、リチウムチタン酸化物が安定して得ら
れた。これらのことから、本発明のリチウムチタン酸化
物を特徴づけるX線回折図としては、ピーク位置が少な
くとも4.45Å,2.69Å,2.24Å,1.77
Å(各±0.02Å)にあり、4.45Åにおけるピー
ク値と、2.69Åにおけるピーク値とのピーク強度比
が、100:20〜100:60の範囲にあることが、
確認することができる。
As can be seen by comparing Tables 1 and 2, 80
At 0 ° C., lithium titanium oxide has a spinel-type crystal structure, and at 950 ° C. or higher, lithium titanium oxide having a ramsdellite-type crystal structure is formed and is a main component. Almost the same peak was observed even when the heat treatment temperature was set at 1000 ° C. or higher, and lithium titanium oxide was obtained stably. From these facts, the X-ray diffraction pattern characterizing the lithium titanium oxide of the present invention has peak positions of at least 4.45 °, 2.69 °, 2.24 °, and 1.77.
(Each ± 0.02 °), and the peak intensity ratio between the peak value at 4.45 ° and the peak value at 2.69 ° is in the range of 100: 20 to 100: 60,
You can check.

【0026】これらの試料を90wt%、導電材である
アセチレンブラック5wt%および結着剤であるフッ素
樹脂を5wt%の重量比になるように混練し、直径15
mm、厚み0.6mmの大きさになるようペレット成形
し、250℃で真空乾燥によって、脱水処理したあと、
電解液中でリチウをドープさせたものを負極として用い
た。ここで、リチウムチタン酸化物の充填量は100m
gとした。また、正極としてLi/Li+に対して3.
0Vの電位を有するリチウムマンガン酸化物を用いた。
These samples were kneaded with 90 wt%, 5 wt% of acetylene black as a conductive material and 5 wt% of a fluororesin as a binder so as to have a weight ratio of 5 wt%.
mm, formed into a pellet having a thickness of 0.6 mm, and then dehydrated by vacuum drying at 250 ° C.
Lithium doped in an electrolytic solution was used as a negative electrode. Here, the filling amount of the lithium titanium oxide is 100 m
g. Further, 3 against Li / Li + as a positive electrode.
A lithium manganese oxide having a potential of 0 V was used.

【0027】図1に本発明のコイン形リチウム二次電池
の構成を示す。1は正極端子を兼ねたケース、2は負極
端子を兼ねた封口板、3はケース1と封口板2を絶縁す
るポリプロピレン製ガスケット、4は正極でリチウムマ
ンガン酸化物90wt%、導電材であるアセチレンブラ
ック5wt%および結着剤であるフッ素樹脂を5wt%
の重量比になるように混練し、直径15mm、厚み0.
6mmの大きさになるようペレット成形し、250℃で
真空乾燥によって、脱水したものである。5は負極で本
発明のリチウムチタン酸化物である。6はセパレータで
厚み0.3mmのポリプロピレン製不織布である。ま
た、電解液はプロピレンカーボネート(PC)、エチレ
ンカーボネート(EC)、1,2−ジメトキシエタン
(DME)の等容積混合溶媒にLiPF6を1モル/l
の割合で溶解させたものである。電池の大きさは外径2
0mm、高さ2.0mmである。そして、これらの電池
をリチウムチタン酸化物の熱処理温度950℃、100
0℃、1100℃、1300℃、1400℃のそれぞれ
に対し、電池A−1、電池A−2、電池A−3、電池A
−4、電池A−5とした。これらの電池A−1からA−
5は本発明の負極活物質にラムスデライト型結晶構造の
リチウムチタン酸化物を主成分として用いたものであ
る。また、リチウムチタン酸化物の熱処理温度800℃
を比較電池Bとした。比較電池Bは負極活物質にスピネ
ル型結晶構造のリチウムチタン酸化物を主成分として用
いたものである。
FIG. 1 shows the configuration of a coin-type lithium secondary battery of the present invention. 1 is a case that also serves as a positive electrode terminal, 2 is a sealing plate that also serves as a negative electrode terminal, 3 is a polypropylene gasket that insulates the case 1 from the sealing plate 2, 4 is a positive electrode, 90% by weight of lithium manganese oxide, and acetylene is a conductive material. 5 wt% black and 5 wt% fluororesin as binder
Kneaded so as to have a weight ratio of 15 mm and a thickness of 0.1 mm.
The pellets were formed into a size of 6 mm and dehydrated by vacuum drying at 250 ° C. Reference numeral 5 denotes a negative electrode, which is the lithium titanium oxide of the present invention. Reference numeral 6 denotes a polypropylene nonwoven fabric having a thickness of 0.3 mm. The electrolytic solution is a mixture of propylene carbonate (PC), ethylene carbonate (EC) and 1,2-dimethoxyethane (DME) in an equal volume of 1 mol / l of LiPF 6.
Is dissolved in the ratio of Battery size is outer diameter 2
0 mm and height 2.0 mm. These batteries were heated at a heat treatment temperature of 950 ° C. for lithium titanium oxide at 100 ° C.
For each of 0 ° C, 1100 ° C, 1300 ° C, and 1400 ° C, battery A-1, battery A-2, battery A-3, and battery A
-4 and battery A-5. These batteries A-1 to A-
Reference numeral 5 denotes a negative electrode active material of the present invention in which lithium titanium oxide having a ramsdellite type crystal structure is used as a main component. The heat treatment temperature of lithium titanium oxide is 800 ° C.
Was designated as Comparative Battery B. Comparative battery B uses lithium titanium oxide having a spinel crystal structure as a main component as a negative electrode active material.

【0028】放電試験は、室温で定電流1mAで放電
し、0.5Vに至るまでの放電維持電圧を図2に、エネ
ルギー密度を図3に示した。
In the discharge test, the battery was discharged at a constant current of 1 mA at room temperature, and the discharge sustaining voltage up to 0.5 V was shown in FIG. 2, and the energy density was shown in FIG.

【0029】図2、図3から明らかなように、950℃
以上熱処理することにより、つまりラムスデライト型結
晶構造のリチウムチタン酸化物を主成分として用いるこ
とにより、放電平均放電電圧は約0.15V高く、エネ
ルギー密度も約3%と若干ではあるが、高くなる。さら
に、放電の電圧勾配は放電容量の10%当たり、比較電
池Bでは約2mVであるのに対して、本発明の電池A−
1からA−5は約60mVと大きく、電圧チェックによ
る残存容量の検知が容易になった。
As apparent from FIGS. 2 and 3, 950 ° C.
By performing the above heat treatment, that is, by using lithium titanium oxide having a ramsdellite type crystal structure as a main component, the discharge average discharge voltage is increased by about 0.15 V, and the energy density is increased slightly but to about 3%. . Further, the voltage gradient of the discharge was about 2 mV for the comparative battery B per 10% of the discharge capacity, whereas the battery A-
1 to A-5 are as large as about 60 mV, which makes it easy to detect the remaining capacity by voltage check.

【0030】次に、図3には1mAの定電流で2.5V
から0.5Vの間で充放電をくり返したことときに得ら
れる各電池の放電容量の変化を示したものである。いず
れの電池も100サイクルまで安定に推移しており、ス
ピネル型結晶構造から、ラムスデライト型結晶構造のリ
チウムチタン酸化物に変えても可逆性が失われることは
ない。これは、スピネル型結晶構造のリチウムチタン酸
化物結晶への充放電中のリチウムイオンのリチウムイオ
ンのドープ、アンドープの反応は、結晶格子をほとんど
ゆがめることないためであるが、スピネル型からラムス
デライト型構造に結晶形態が変わっても同様の理由と考
えられる。
FIG. 3 shows a constant current of 1 mA and 2.5 V
5 shows the change in the discharge capacity of each battery obtained when charging and discharging are repeated between 0.5 and 0.5 V. All of the batteries are stable up to 100 cycles, and the reversibility is not lost even if the spinel crystal structure is changed to a lithium titanium oxide having a ramsdellite crystal structure. This is because the lithium ion doping and undoping reactions of lithium ions during charge / discharge of the lithium titanium oxide crystal having a spinel crystal structure hardly distort the crystal lattice, but from a spinel type to a ramsdellite type. It is considered that the same reason is obtained even if the crystal morphology changes in the structure.

【0031】なお、実施例では、リチウム化合物として
水酸化リチウムを用いたが、それに変えて、酸化リチウ
ム、硝酸リチウム、炭酸リチウムでもよい。また、正極
としてリチウムマンガン酸化物を用いたが、それに代え
て、Li/Li+に対して3.5Vを有する五酸化バナ
ジウム、4.0Vを有するリチウムコバルト酸化物、リ
チウムニッケル酸化物、スピネル型結晶形態のリチウム
マンガン酸化物を用いてもよい。さらに、電解液にも、
実施例で用いたもの以外に、例えば、LiN(CF3
22、LiN(C25SO22、LiClO4,Li
CF3SO3,のリチウム塩の1種または2種を、1,2
−ジエトキシエタン、エトキシメトキシエタン、エチル
メチルカーボネイト、ジメチルカーボネイト、γ−ブチ
ロラクトン、テトラヒドロフランなどの単独または2種
以上の混合溶媒に溶解した有機電解液を用いてもよい。
Although lithium hydroxide is used as the lithium compound in the embodiment, lithium oxide, lithium nitrate, and lithium carbonate may be used instead. Further, lithium manganese oxide was used as the positive electrode, but instead of vanadium pentoxide having 3.5 V with respect to Li / Li + , lithium cobalt oxide having 4.0 V, lithium nickel oxide, spinel type Crystalline lithium manganese oxide may be used. Furthermore, in the electrolyte,
In addition to those used in the examples, for example, LiN (CF 3 S
O 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiClO 4 , Li
One or two lithium salts of CF 3 SO 3 are
An organic electrolyte dissolved in a single solvent such as diethoxyethane, ethoxymethoxyethane, ethylmethyl carbonate, dimethyl carbonate, γ-butyrolactone, tetrahydrofuran, or a mixture of two or more solvents may be used.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
によれば、ラムスデライト型結晶構造のリチウムチタン
酸化物を負極に用いることにより、充放電サイクル特性
に優れ、電圧チェックによる残存容量の検知が容易とな
るよう電圧勾配の大きいリチウム二次電池を提供するも
のである。
As is apparent from the above description, according to the present invention, by using a lithium titanium oxide having a ramsdellite type crystal structure for the negative electrode, the charge-discharge cycle characteristics are excellent and the remaining capacity by the voltage check is reduced. An object of the present invention is to provide a lithium secondary battery having a large voltage gradient so that detection is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリチウム二次電池の断面図FIG. 1 is a sectional view of a lithium secondary battery of the present invention.

【図2】本発明と比較電池の放電特性図FIG. 2 is a discharge characteristic diagram of the present invention and a comparative battery.

【図3】本発明と比較電池のエネルギー密度を示す図FIG. 3 is a diagram showing energy densities of the present invention and a comparative battery.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 ガスケット 4 正極 5 負極 6 セパレータ DESCRIPTION OF SYMBOLS 1 Case 2 Sealing plate 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 正極、リチウムのドープ・脱ドープが可
能な負極、およびリチウム塩を支持塩とする電解質から
構成されるリチウム二次電池において、該負極が、一般
式Li2Ti37で表されるリチウムチタン酸化物を主
成分とするを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode, a negative electrode capable of doping / dedoping lithium, and an electrolyte using a lithium salt as a supporting salt, wherein the negative electrode has a general formula of Li 2 Ti 3 O 7 . A lithium secondary battery comprising a lithium titanium oxide as a main component.
【請求項2】 該リチウムチタン酸化物の結晶構造がラ
ムスデライト型結晶構造である請求項1記載のリチウム
二次電池。
2. The lithium secondary battery according to claim 1, wherein the crystal structure of the lithium titanium oxide is a ramsdellite type crystal structure.
【請求項3】 該リチウムチタン酸化物は、Cuをター
ゲットとしたX線回折法による面間隔が、4.45Å,
2.69Å,2.24Å,1.77Å(各±0.02
Å)にある請求項1または2記載のリチウム二次電池。
3. The lithium titanium oxide has a plane spacing of 4.45 ° by an X-ray diffraction method using Cu as a target.
2.69Å, 2.24Å, 1.77Å (± 0.02 each)
3. The lithium secondary battery according to claim 1 or 2, wherein
【請求項4】 CuをターゲットとしたX線回折法から
得られた4.45Å(±0.02Å)におけるピーク値
と、2.69Å(±0.02Å)におけるピーク値との
ピーク強度比が、100:20〜100:60の範囲に
あるリチウムチタン酸化物を用いた請求項1〜3の何れ
か1項に記載のリチウム二次電池。
4. A peak intensity ratio between a peak value at 4.45 ° (± 0.02 °) and a peak value at 2.69 ° (± 0.02 °) obtained by an X-ray diffraction method using Cu as a target. The lithium secondary battery according to any one of claims 1 to 3, wherein a lithium titanium oxide in a range of 100: 20 to 100: 60 is used.
【請求項5】 ラムスデライト型結晶構造のリチウムチ
タン酸化物と、スピネル型結晶構造のリチウムチタン酸
化物とが共存する負極を用いた請求項1〜4の何れか1
項に記載のリチウム二次電池。
5. The negative electrode according to claim 1, wherein a lithium titanium oxide having a ramsdellite type crystal structure and a lithium titanium oxide having a spinel type crystal structure coexist.
Item 7. The lithium secondary battery according to Item 1.
【請求項6】 正極、リチウムのドープ・脱ドープが可
能な一般式Li2Ti37で表されるリチウムチタン酸
化物を含む負極、およびリチウム塩を支持塩とする電解
質から構成されるリチウム二次電池の製造法であって、
該リチウムチタン酸化物がリチウム化合物と酸化チタン
との混合物を熱処理する工程により生成されるリチウム
二次電池の製造方法。
6. A positive electrode, a negative electrode containing lithium titanium oxide represented by the general formula Li 2 Ti 3 O 7 capable of doping / dedoping lithium, and a lithium composed of an electrolyte using a lithium salt as a supporting salt. A method of manufacturing a secondary battery,
A method for producing a lithium secondary battery, wherein the lithium titanium oxide is generated by a step of heat-treating a mixture of a lithium compound and titanium oxide.
【請求項7】 水酸化リチウム、酸化リチウム、硝酸リ
チウム、炭酸リチウムから選択される少なくとも一つの
リチウム化合物を用いる請求項6記載のリチウム二次電
池の製造方法。
7. The method for producing a lithium secondary battery according to claim 6, wherein at least one lithium compound selected from lithium hydroxide, lithium oxide, lithium nitrate, and lithium carbonate is used.
【請求項8】 該熱処理工程における熱処理温度が95
0℃から1400℃の範囲内にある請求項6記載のリチ
ウム二次電池の製造方法。
8. A heat treatment temperature in the heat treatment step is 95.
The method for producing a lithium secondary battery according to claim 6, wherein the temperature is in a range of 0 ° C to 1400 ° C.
JP10085727A 1998-03-31 1998-03-31 Lithium secondary battery and manufacture thereof Pending JPH11283624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10085727A JPH11283624A (en) 1998-03-31 1998-03-31 Lithium secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10085727A JPH11283624A (en) 1998-03-31 1998-03-31 Lithium secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11283624A true JPH11283624A (en) 1999-10-15

Family

ID=13866891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10085727A Pending JPH11283624A (en) 1998-03-31 1998-03-31 Lithium secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11283624A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036847A (en) * 2001-07-25 2003-02-07 National Institute For Materials Science Lithium-chromium-titanium oxide having ramsdellite type crystal structure, its production method and lithium secondary battery using its oxide
JP2006526255A (en) * 2003-05-09 2006-11-16 ユミコア Negative electrode for lithium battery
JP2008123787A (en) * 2006-11-10 2008-05-29 Toshiba Corp Nonaqueous electrolyte battery, lithium titanium composite oxide, and battery pack
JP2009081049A (en) * 2007-09-26 2009-04-16 Toshiba Corp Nonaqueous electrolyte battery and packed battery
US7740982B2 (en) 2004-06-16 2010-06-22 Panasonic Corporation Active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery including the active material
JP2010277958A (en) * 2009-06-01 2010-12-09 Hitachi Chem Co Ltd Lithium ion secondary battery
WO2011136258A1 (en) 2010-04-28 2011-11-03 石原産業株式会社 Novel lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP2011246342A (en) * 2010-04-28 2011-12-08 Ishihara Sangyo Kaisha Ltd Lithium titanate, method for producing the same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
WO2012023501A1 (en) * 2010-08-20 2012-02-23 株式会社 村田製作所 Non-aqueous electrolyte secondary battery
WO2012029697A1 (en) 2010-08-31 2012-03-08 戸田工業株式会社 Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US8137843B2 (en) 2006-09-29 2012-03-20 Kabushiki Kaisha Toshiba Negative electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, battery pack, and vehicle
JP2012151121A (en) * 2012-03-29 2012-08-09 Toshiba Corp Nonaqueous electrolyte battery, lithium titanium composite oxide, and battery pack
JP2012182077A (en) * 2011-03-02 2012-09-20 Toshiba Corp Nonaqueous electrolyte battery and battery pack
JP2012522339A (en) * 2009-03-30 2012-09-20 ユミコア ソシエテ アノニム High voltage negative active material for rechargeable lithium batteries
JP2013093188A (en) * 2011-10-25 2013-05-16 Kyocera Corp Secondary battery
KR101439586B1 (en) * 2007-12-10 2014-09-11 유미코르 Negative electrode material for li-ion batteries
CN108975389A (en) * 2018-08-22 2018-12-11 安徽科达铂锐能源科技有限公司 A kind of lithium titanium oxide material Li2Ti3O7Preparation method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036847A (en) * 2001-07-25 2003-02-07 National Institute For Materials Science Lithium-chromium-titanium oxide having ramsdellite type crystal structure, its production method and lithium secondary battery using its oxide
JP2006526255A (en) * 2003-05-09 2006-11-16 ユミコア Negative electrode for lithium battery
JP4844892B2 (en) * 2003-05-09 2011-12-28 ユミコア Negative electrode active material for lithium secondary battery and lithium secondary battery using the same
US7740982B2 (en) 2004-06-16 2010-06-22 Panasonic Corporation Active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery including the active material
US8137843B2 (en) 2006-09-29 2012-03-20 Kabushiki Kaisha Toshiba Negative electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, battery pack, and vehicle
US8338029B2 (en) 2006-09-29 2012-12-25 Kabushiki Kaisha Toshiba Negative electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, battery pack, and vehicle
JP2008123787A (en) * 2006-11-10 2008-05-29 Toshiba Corp Nonaqueous electrolyte battery, lithium titanium composite oxide, and battery pack
JP2009081049A (en) * 2007-09-26 2009-04-16 Toshiba Corp Nonaqueous electrolyte battery and packed battery
US8178244B2 (en) 2007-09-26 2012-05-15 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery and battery pack
KR101439586B1 (en) * 2007-12-10 2014-09-11 유미코르 Negative electrode material for li-ion batteries
JP2012522339A (en) * 2009-03-30 2012-09-20 ユミコア ソシエテ アノニム High voltage negative active material for rechargeable lithium batteries
JP2010277958A (en) * 2009-06-01 2010-12-09 Hitachi Chem Co Ltd Lithium ion secondary battery
JP2011246342A (en) * 2010-04-28 2011-12-08 Ishihara Sangyo Kaisha Ltd Lithium titanate, method for producing the same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
WO2011136258A1 (en) 2010-04-28 2011-11-03 石原産業株式会社 Novel lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP5701863B2 (en) * 2010-04-28 2015-04-15 石原産業株式会社 Novel lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material
US9150424B2 (en) 2010-04-28 2015-10-06 Ishihara Sangyo Kaisha, Ltd. Lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
WO2012023501A1 (en) * 2010-08-20 2012-02-23 株式会社 村田製作所 Non-aqueous electrolyte secondary battery
JP5565465B2 (en) * 2010-08-20 2014-08-06 株式会社村田製作所 Nonaqueous electrolyte secondary battery
WO2012029697A1 (en) 2010-08-31 2012-03-08 戸田工業株式会社 Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2012182077A (en) * 2011-03-02 2012-09-20 Toshiba Corp Nonaqueous electrolyte battery and battery pack
JP2013093188A (en) * 2011-10-25 2013-05-16 Kyocera Corp Secondary battery
JP2012151121A (en) * 2012-03-29 2012-08-09 Toshiba Corp Nonaqueous electrolyte battery, lithium titanium composite oxide, and battery pack
CN108975389A (en) * 2018-08-22 2018-12-11 安徽科达铂锐能源科技有限公司 A kind of lithium titanium oxide material Li2Ti3O7Preparation method

Similar Documents

Publication Publication Date Title
JP3813001B2 (en) Non-aqueous secondary battery
JP3582161B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
KR101473322B1 (en) Cathode active material and cathode and lithium battery containing the material
KR100507021B1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
JP2007200865A (en) Nonaqueous electrolyte secondary battery
JPH11283624A (en) Lithium secondary battery and manufacture thereof
EP1609201A1 (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
JP5036100B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2008091236A (en) Nonaqueous electrolyte secondary battery
KR100922685B1 (en) Cathode active material for lithium secondary battery
JP2008277309A (en) Positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP4159640B2 (en) Anode active material for lithium ion battery and method for producing the same
JP2000195513A (en) Nonaqueous electrolyte secondary battery
JP3007859B2 (en) Method for preparing high capacity LiMn2O4 secondary battery anode compound
JP2000012090A (en) Lithium secondary battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JPH0536411A (en) Nonaqueous solvent secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JPH0541251A (en) Nonaqueous electrolyte secondary battery
JP4581157B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JPH10302766A (en) Lithium ion secondary battery
JP4278321B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof