Nothing Special   »   [go: up one dir, main page]

JP4581157B2 - Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same - Google Patents

Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same Download PDF

Info

Publication number
JP4581157B2
JP4581157B2 JP16638799A JP16638799A JP4581157B2 JP 4581157 B2 JP4581157 B2 JP 4581157B2 JP 16638799 A JP16638799 A JP 16638799A JP 16638799 A JP16638799 A JP 16638799A JP 4581157 B2 JP4581157 B2 JP 4581157B2
Authority
JP
Japan
Prior art keywords
lithium
ratio
manganese
positive electrode
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16638799A
Other languages
Japanese (ja)
Other versions
JP2000357513A (en
Inventor
真司 有元
邦夫 伊藤
彰 橋本
秀和 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP16638799A priority Critical patent/JP4581157B2/en
Publication of JP2000357513A publication Critical patent/JP2000357513A/en
Application granted granted Critical
Publication of JP4581157B2 publication Critical patent/JP4581157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池における正極活物質の製造方法に関するものである。
【0002】
【従来の技術】
近年、民生用電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源を担う小型・軽量で、高エネルギー密度を有する二次電池への要望も高まっている。このような観点から、非水電解質系二次電池、特にリチウム二次電池は、とりわけ高電圧・高エネルギー密度を有する電池としてその期待は大きく、開発が急がれている。
【0003】
近年、リチウム含有複合酸化物を正極活物質とし、負極に炭素質材料を用いた電池系が高エネルギー密度が得られるリチウム二次電池として注目を集めている。このリチウム含有複合酸化物としてLiCoO2を用いた電池が実用化され、さらに高容量を目指したLiNiO2を実用化する試みも盛んに行われている。しかしながら、LiCoO2は資源が乏しく高価であり、またLiNiO2は熱安定性が低いという問題点を有している。
【0004】
これに対し、資源が豊富であるマンガンを使用したリチウム含有複合酸化物として、LiMn24が提案されている。この酸化物は4V付近と2.8V付近の2段の放電電位を持っており、4V付近のプラトーな放電領域を使用し、4.5〜3.0Vの電圧範囲で充放電を繰り返すことで高電位、高エネルギー密度を達成することができる。このリチウム複合マンガン酸化物の主な製造方法としては、マンガン化合物とリチウム化合物を所定のモル比となるように混合した後、熱処理し合成する方法が一般的である。
【0005】
しかしながら、このようにして得られるリチウム複合マンガン酸化物を非水電解質二次電池用正極活物質として用いた場合、得られる放電容量が小さいという問題をかかえている。
【0006】
この問題点を解決する方法として、様々なリチウム複合マンガン酸化物の製造方法が提案されている。水酸化リチウムと酸化マンガンを混合した混合物を粉砕した後、焼成することにより両者の反応を短時間で、均一に進行させる方法(特開平6−76824号公報)、500℃以下の温度で第1の熱処理をおこなった後に、500℃以上850℃以下の温度で第2の熱処理をおこなうことでより組成が均一なスピネル構造を得る方法(特開平8−217452号公報)、200℃以上500℃未満で熱処理をした後、500℃以上850℃以下で再度熱処理をおこなうことで高容量なリチウム複合マンガン酸化物を得る方法(特開平9−86933号公報)などがある。
【0007】
【発明が解決しようとする課題】
しかしながら上記方法により、リチウム複合マンガン酸化物であるLiMn24を合成しても、マンガンに対するリチウムを目的とする原子モル比に合成したにも係わらず、十分な放電容量を得ることができず、また、充放電サイクル特性においても良いものが得られなかった。本発明はこのような課題を解決するもので、放電容量の高い、優れた充放電サイクル特性を有する非水電解質二次電池用正極活物質およびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明は、リチウム複合マンガン酸化物の平均粒径が1.5〜19.1μmであり、マンガンに対するリチウムの原子モル比(Li/Mn比)が0.50〜0.54であって、リチウム複合マンガン酸化物の平均粒径が小さな集団ほどマンガンに対するリチウムの原子モル比(Li/Mn比)が小さく、平均粒径が大きな集団ほどマンガンに対するリチウムの原子モル比(Li/Mn比)が大きくなるようなリチウム複合マンガン酸化物を用いることにより、活物質利用率の高い、優れた充放電特性を持つ非水電解質二次電池用正極活物質を得るものである。
【0009】
また、本発明は、リチウム複合マンガン酸化物の平均粒径が1.5〜19.1μmであり、マンガンに対するリチウムの原子モル比(Li/Mn比)が0.50〜0.54であって、2つ以上の粒度分布の異なるマンガン化合物の平均粒径の小さな集団ほどマンガンに対するリチウムの原子モル比(Li/Mn比)が小さく、平均粒径が大きな集団ほどマンガンに対するリチウムの原子モル比(Li/Mn比)が大きくなるようにそれぞれ個別にリチウム化合物と混合し、加熱し合成を行った後、混合する非水電解質二次電池用正極活物質の製造方法である。
【0010】
【発明の実施の形態】
本発明は、リチウム複合マンガン酸化物が平均粒径の小さな集団ほどマンガンに対するリチウムの原子モル比(Li/Mn比)が小さく、平均粒径が大きな集団ほどマンガンに対するリチウムの原子モル比(Li/Mn比)が大きいことを特徴とする非水電解質二次電池用正極活物質を用いるものである。
【0011】
また、本発明は2つ以上の粒度分布の異なるマンガン化合物を平均粒径の小さな集団ほどLi/Mn比が小さく、平均粒径が大きな集団ほどLi/Mn比が大きくなるようにそれぞれ個別にリチウム化合物と混合し、加熱し合成を行った後、混合する非水電解質二次電池用正極活物質の製造方法である。
【0012】
さらに、本発明はマンガン化合物を粒度分布により2つ以上に分割して用いるものである。
【0013】
リチウム複合マンガン酸化物の合成方法として、出発原料であるマンガン化合物やリチウム化合物の所定量を定比混合して高温で焼成する方法は従来からよく知られた合成法である。しかし、マンガン化合物の粒径によりリチウム化合物との反応性が異なるため、目的とするマンガンに対するリチウムの原子モル比に合成したにも係わらず全体は不均一なリチウム複合マンガン酸化物が生成される。
これは粒径の小さなマンガン化合物が優先的にリチウム化合物と反応してしまうため、粒径の大きなマンガン化合物は反応が不充分となり、得られたリチウム複合マンガン酸化物は見かけ上は目的とする配合通りのマンガンに対するリチウムの原子モル比となるが、実際は粒径別に見ると原子モル比が大きく異なるものとなっており、不均一なリチウム複合マンガン酸化物が合成されていることとなる。
【0014】
たとえば、出発材料のマンガン化合物として二酸化マンガン、リチウム化合物として炭酸リチウムを用いてマンガンとリチウムの原子モル比が理論値でサイクル特性、初期特性が良いとされる1:0.5となるよう混合し、加熱し合成を行う。合成されたリチウム複合マンガン酸化物は見かけ上は理論値通りであるが、実際はマンガンに対するリチウムの原子モル比(Li/Mn比)は0.46から0.56のばらつきを持つ。この時、平均粒径が小さな集団ほどLi/Mn比が大きく、平均粒径が大きな集団ほどLi/Mn比は小さくなっている。これは粒径が小さいマンガンほどリチウム化合物との反応性が高いため先に反応してしまいLi/Mn比が高く、逆に粒径が大きいマンガン化合物はリチウム化合物との反応性が低く、後で反応するためにリチウムが不足し、Li/Mn比が低くなるためであると考えられる。
【0015】
このように合成が不充分なリチウム複合マンガン酸化物が含まれるため、これを正極活物質として電池を構成した場合、サイクル特性が低下するという問題が生じてくる。この問題を解決するため、Li/Mn比が0.5〜0.46のものがなくなるようにマンガンに対するリチウムの混合比を上げて合成を行うと、リチウムの割合が多きすぎるものが生じ初期容量が減少するなどの問題が生じる。
【0016】
また、我々の詳細な検討の結果、リチウム複合マンガン酸化物の平均粒径により充放電サイクル特性が異なることがわかった。同じ原材料、同じLi/Mn比で合成したものであれば、充放電サイクル特性は比表面積が大きいほど良く、比表面積が小さいほど悪いのである。つまり、平均粒径が小さな集団ほど充放電サイクル特性は良く、平均粒径が大きな集団ほど充放電サイクル特性は悪いのである。また、Li/Mn比と充放電サイクル特性について詳細な検討を行った結果、同じ原材料を用いたのであれば、Li/Mn比が大きいほど充放電サイクル特性が良く、Li/Mn比が小さいほど充放電サイクル特性が悪いことがわかった。しかし、充放電サイクル特性を向上させるためにLi/Mn比を大きくすると、放電容量が減少するという問題があった。
【0017】
この問題に対し、本発明では粒径別に放電容量とサイクル特性のバランスが良いLi/Mn比に、つまり、リチウム複合マンガン酸化物を2つ以上の集団に分割した際、平均粒径が小さな集団ほどLi/Mn比が小さく、平均粒径が大きな集団ほどLi/Mn比が大きくなるようなリチウム複合マンガン酸化物を正極活物質として用いるものである。平均粒径の小さい集団ほど充放電サイクル特性が良好であるため、Li/Mn比が高い放電容量を得ることができる0.5に近くても良好な充放電サイクル特性を確保できる。平均粒径の大きな集団は充放電サイクル特性が悪いため、Li/Mn比を大きくしサイクル特性を確保する。このような材料が混合された正極活物質は、粒度に合わせて最適なLi/Mn比になるように合成されているため、放電容量、充放電サイクル特性とも良いバランスの取れた電池を構成することができる。
【0018】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0019】
(実施例1)
本実施例のリチウム複合マンガン酸化物の合成法について説明する。
【0020】
平均粒径が1.2μmである電解二酸化マンガン(MnO2)Aと炭酸リチウム(Li2CO3)をLi/Mn比が0.50になるように混合した。この混合物をアルミナ製容器に入れ電気炉中に静置し、送風10l/minの空気雰囲気下で2時間で800℃まで昇温した後、800℃で10時間保持することによりリチウム複合マンガン酸化物(LiMn24)を合成し、正極活物質Aとした。
【0021】
また、平均粒径の異なる電解二酸化マンガン(MnO2)B〜Eについても表1に示したLi/Mn比になるように電解二酸化マンガンと炭酸リチウムを混合し、正極活物質Aと同様の合成方法によりLiMn24を合成し、正極活物質B〜Eとした。
【0022】
【表1】

Figure 0004581157
【0023】
これらの正極活物質A〜Eを同じ重量ずつ混合し、正極活物質Fとした。この正極活物質Fは分級機を用いて5つの異なる粒度分布を持つ集団に分割し、正極活物質G〜Kとした。これらの正極活物質G〜KのLi/Mn比を測定した。この結果を表2に示す。なお、平均粒径はレーザー回折式粒度分布測定装置により測定を行い、累計50%に相当する値とした。また、マンガンとリチウムの原子モル比はICP発光分光分析法を用いて行った。以降の実施例、比較例においても同様の方法を用いた。
【0024】
【表2】
Figure 0004581157
【0025】
表2より、正極活物質Fは、平均粒径が小さな集団ほどLi/Mn比が小さく、平均粒径が大きな集団ほどLi/Mn比が大きくなっているといえる。
(比較例1)
電解二酸化マンガン(MnO2)A〜Eを同じ重量ずつ混合し、電解二酸化マンガンLを得た。この電解二酸化マンガンLと炭酸リチウム(Li2CO3)をLi/Mn比が0.52になるように混合した。この混合物を実施例1と同様の方法にて、アルミナ製容器に入れ電気炉中に静置し、送風10l/minの空気雰囲気下で2時間で800℃まで昇温した後、800℃で10時間保持することによりリチウム複合マンガン酸化物(LiMn24)を合成し、正極活物質Lとした。
【0026】
この正極活物質Lは分級機を用いて5つの異なる粒度分布を持つ集団に分割し、正極活物質M〜Qとし、それぞれの平均粒径およびLi/Mn比を測定した。
この結果を表3に示す。
【0027】
【表3】
Figure 0004581157
【0028】
表3より、正極活物質Lは見かけ上、Li/Mn比が目的値である0.52に合成されている。しかしながら、これを分級した正極活物質M〜Qは、平均粒径の小さな集団ほどLi/Mn比が大きく、平均粒径の大きな集団ほどLi/Mn比が小さくなっているといえる。
【0029】
上記、実施例1および比較例1の正極活物質FおよびLを用いて電池評価を行った。図1に本実施例で用いた円筒型リチウム二次電池の縦断面図を示す。図1において正極板5および負極板6がセパレータ7を介して複数回渦巻状に巻回し構成された極板群4が耐有機電解液性のステンレス鋼板を加工した電池ケース1内に収納されている。正極板5からは正極アルミリード5aが引き出されて封口板2に接続され、負極板6からは負極ニッケルリード6aが引き出されて電池ケース1の底部に接続されている。極板群4の上下部にそれぞれ絶縁リング8が設けられており、電池ケース1の開口部は、安全弁を設けた封口板2および絶縁パッキング3により封口されている。
【0030】
負極板6は炭素材料(本実施例においてはピッチ系球状黒鉛を用いた)にスチレン−ブタジエンゴムの水性ディスパージョンを重量比で100:3.5の割合で混合し、これをカルボキシメチルセルロースの水溶液に懸濁させてペースト状にしたものを銅箔の両面に塗着し、乾燥後、圧延し所定の大きさに切り出し負極板を作製した。なお、スチレン−ブタジエンゴムの水性ディスパージョンの混合比率はその固形分で計算している。
【0031】
正極板5は、合成した正極活物質FおよびLのLiMn24にアセチレンブラックおよびポリ四フッ化エチレンの水性ディスパージョンを重量比で100:2.5:7.5の割合で混合し、これをカルボキシメチルセルロースの水溶液に懸濁させてペースト状にする。次いでこのペーストをアルミ箔の両面に塗着し、乾燥後、圧延し所定の大きさに切り出して正極板を作製した。なお、ポリ四フッ化エチレンの水性ディスパージョンの混合比率はその固形分で計算している。
【0032】
上記方法により作製した正、負極板にそれぞれリードを取付け、ポリエチレン製のセパレータを介して渦巻き状に巻回し、電池ケースに収納した。電解液にはエチレンカーボネートとエチルメチルカーボネートを体積比で1:3で混合した溶媒に6フッ化リン酸リチウム(LiPF6)を1.5mol/l溶解したものを用いた。この電解液を上記の電池ケースに減圧注液後封口し、電池FおよびLとした。なお本実施例においては、正極活物質の特性を評価するため、予め負極の容量を大きくしたものを用いた。
【0033】
これら電池FおよびLを用いて下記の条件で試験を行った。まず、20℃で電池電圧4.2Vまで120mAの定電流で充電した後1時間休止を行い、その後120mAの定電流で電池電圧3.0Vまで放電する。この方法で充放電を3回繰り返し、3回目の放電容量を初期容量とした。また、初期容量を電池内に含まれるLiMn24の重量で割ることによって活物質の比容量を算出した。さらに、20℃で充放電電流を120mAとし、充電終止電圧4.2V、放電終止電圧3.0Vの条件で定電流充放電サイクル試験を行った。初期容量に対する300サイクル時点での放電容量を%で表したものを容量維持率として算出した。この結果を表4に示す。
【0034】
【表4】
Figure 0004581157
【0035】
表4より、電池Fと電池Lにおいては、正極活物質の見かけ上の平均粒径とLi/Mn比が同様であるにもかかわらず、電池特性が異なっていることがわかる。電池Fは充放電サイクル特性の良い平均粒径が小さな集団はLi/Mn比が0.5に近く、充放電サイクル特性が悪い平均粒径が大きな集団はLi/Mn比が大きくなっているため、正極比容量およびサイクル容量維持率ともに良好な値を示したと考えられる。これに対して電池Lは充放電サイクル特性の良い平均粒径が小さな集団ほどLi/Mn比が大きく、充放電サイクルの悪い平均粒径が大きな集団ほどLi/Mn比が小さいため、正極比容量およびサイクル特性が悪くなったと考えられる。
【0036】
(実施例2)
本実施例のリチウム複合マンガン酸化物の合成法について説明する。
【0037】
平均粒径が11.3μmである電解二酸化マンガン(MnO2)aを分級機を用いて、5つの異なる粒度分布を持つ集団に分割し、電解二酸化マンガンb〜fを得た。得られた電解二酸化マンガンbと炭酸リチウム(Li2CO3)をMnとLiとの原子モル比が1:0.50になるように混合した。この混合物をアルミナ製容器に入れ電気炉中に静置し、送風10l/minの空気雰囲気下で2時間で800℃まで昇温した後、800℃で10時間保持することによりリチウム複合マンガン酸化物(LiMn24)を合成し、正極活物質bとした。電解二酸化マンガンc〜fにおいても、電解二酸化マンガンbと同様の方法にて合成し、正極活物質c〜fとした。
【0038】
また、電解二酸化マンガンc〜fについても表5に示したLi/Mn比になるように電解二酸化マンガンと炭酸リチウムを混合し、正極活物質bと同様の合成方法によりLiMn24を合成し、正極活物質c〜fとした。
【0039】
【表5】
Figure 0004581157
【0040】
これらの正極活物質b〜fを再び混合し、正極活物質gとした。この正極活物質gは分級機を用いて5つの異なる粒度分布を持つ集団に分割し、正極活物質h〜lとした。これらの正極活物質h〜lの平均粒径およびLi/Mn比を測定した。この結果を表6に示す。なお、平均粒径およびマンガンとリチウムの原子モル比は実施例1と同様の方法を用いた。
【0041】
【表6】
Figure 0004581157
【0042】
表6より、正極活物質gは平均粒径が小さな集団ほどLi/Mn比が小さく、平均粒径が大きな集団ほどLi/Mn比が大きくなっているといえる。
【0043】
(比較例2)
実施例2で用いたのと同様の平均粒径が11.3μmである電解二酸化マンガン(MnO2)aと炭酸リチウム(Li2CO3)をLi/Mn比が0.52になるように混合した。この混合物を実施例2と同様の方法にて、アルミナ製容器に入れ電気炉中に静置し、送風10l/minの空気雰囲気下で2時間で800℃まで昇温した後、800℃で10時間保持することによりリチウム複合マンガン酸化物(LiMn24)を合成し、正極活物質aとした。
【0044】
この正極活物質aは分級機を用いて5つの異なる粒度分布を持つ集団に分割し、正極活物質m〜qとし、それぞれのMnとLiとの原子モル比を測定した。この結果を表7に示す。
【0045】
【表7】
Figure 0004581157
【0046】
表7より、正極活物質aは見かけ上、Li/Mn比が目的値である0.52に合成されている。しかしながら、これを分級した正極活物質m〜qは、平均粒径の小さな集団ほどLi/Mn比が大きく、平均粒径の大きな集団ほどLi/Mn比が小さくなっているといえる。
【0047】
上記、実施例2および比較例2の正極活物質gおよびaを用いて電池評価を行った。電池の構成は実施例1と同様にした。
【0048】
これら電池gおよびaを用いて実施例1と同様の条件で、初期容量、活物質の比容量および充放電サイクル容量維持率を測定した。この結果を表8に示す。
【0049】
【表8】
Figure 0004581157
【0050】
表8より、電池gと電池aにおいては、正極活物質の見かけ上の平均粒径とLi/Mn比が同様であるにもかかわらず、電池特性が異なっていることがわかる。電池gは充放電サイクル特性の良い平均粒径が小さな集団はLi/Mn比が0.5に近く、充放電サイクル特性が悪い平均粒径が大きな集団はLi/Mn比が大きくなっているため、正極比容量およびサイクル容量維持率ともに良好な値を示したと考えられる。これに対して電池aは充放電サイクル特性の良い平均粒径が小さな集団ほどLi/Mn比が大きく、充放電サイクルの悪い平均粒径が大きな集団ほどLi/Mn比が小さいため、正極比容量およびサイクル特性が悪くなったと考えられる。
【0051】
なお、本実施例ではLiMn24の出発材料として電解二酸化マンガン、炭酸リチウムの組合せを用いたが、マンガンの炭酸塩、低級酸化物、硝酸塩などの他のマンガン化合物、また、水酸化リチウム、硝酸リチウム、酸化リチウムなどの他のリチウム化合物を組み合わせて用いても同様の効果が得られる。
【0052】
また、負極としてリチウムの吸蔵放出が可能な種々の炭素質材、リチウム合金、インターカレーションが可能な無機物系負極を用いた電池においても同様の効果が見られる。さらに、電解質として本実施例で用いたエチレンカーボネートとエチルメチルカーボネートの混合溶媒に六フッ化リン酸リチウムを溶解したもの以外の組合せの溶媒にリチウム塩を溶解した電解液、ポリマ電解質を用いた電池においても効果が見られる。
【0053】
【発明の効果】
以上のように本発明によれば、LiMn24で表されるリチウム複合マンガン酸化合物を粒度に合わせた最適なLi/Mn比にすることにより、電池特性に優れた非水電解質二次電池用正極活物質を得ることができる。
【図面の簡単な説明】
【図1】本発明の円筒型リチウム二次電池の縦断面図
【符号の説明】
1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極板
5a 正極リード
6 負極板
6a 負極リード
7 セパレータ
8 絶縁リング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a positive electrode active material in a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, consumer electronic devices have become increasingly portable and cordless, and there is an increasing demand for secondary batteries that are compact, lightweight, and have a high energy density as the driving power source. From such a point of view, non-aqueous electrolyte secondary batteries, particularly lithium secondary batteries, are particularly expected as batteries having high voltage and high energy density, and development is urgently required.
[0003]
In recent years, a battery system using a lithium-containing composite oxide as a positive electrode active material and a carbonaceous material as a negative electrode has attracted attention as a lithium secondary battery capable of obtaining a high energy density. Batteries using LiCoO 2 as a lithium-containing composite oxide have been put into practical use, and attempts to put LiNiO 2 into practical use aiming at higher capacity are being actively made. However, LiCoO 2 has a problem that resources are scarce and expensive, and LiNiO 2 has a low thermal stability.
[0004]
On the other hand, LiMn 2 O 4 has been proposed as a lithium-containing composite oxide using abundant resources of manganese. This oxide has a two-stage discharge potential near 4V and 2.8V. By using a plateau discharge region near 4V, charging and discharging are repeated in the voltage range of 4.5 to 3.0V. High potential and high energy density can be achieved. As a main method for producing this lithium composite manganese oxide, a method is generally employed in which a manganese compound and a lithium compound are mixed at a predetermined molar ratio and then heat-treated and synthesized.
[0005]
However, when the lithium composite manganese oxide thus obtained is used as a positive electrode active material for a non-aqueous electrolyte secondary battery, there is a problem that the obtained discharge capacity is small.
[0006]
As a method for solving this problem, various methods for producing lithium composite manganese oxide have been proposed. A method in which a mixture of lithium hydroxide and manganese oxide is pulverized and then baked to cause both reactions to proceed uniformly in a short time (JP-A-6-76824). A method of obtaining a spinel structure having a more uniform composition by performing a second heat treatment at a temperature of 500 ° C. or higher and 850 ° C. or lower after performing the heat treatment (Japanese Patent Laid-Open No. 8-217452), 200 ° C. or higher and lower than 500 ° C. There is a method of obtaining a high-capacity lithium composite manganese oxide by performing the heat treatment again at 500 ° C. or higher and 850 ° C. or lower after the heat treatment in (Japanese Patent Laid-Open No. 9-86933).
[0007]
[Problems to be solved by the invention]
However, even if LiMn 2 O 4 which is a lithium composite manganese oxide is synthesized by the above method, a sufficient discharge capacity cannot be obtained even though lithium is synthesized at a desired atomic molar ratio with respect to manganese. Also, no good charge / discharge cycle characteristics were obtained. This invention solves such a subject, and it aims at providing the positive electrode active material for nonaqueous electrolyte secondary batteries with high discharge capacity and the outstanding charging / discharging cycling characteristics, and its manufacturing method.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has an average particle size of lithium composite manganese oxide of 1.5 to 19.1 μm, and an atomic molar ratio of lithium to manganese (Li / Mn ratio) of 0.50 to 0. .54, the smaller the average particle size of the lithium composite manganese oxide, the smaller the atomic molar ratio of lithium to manganese (Li / Mn ratio), and the larger the average particle size, the atomic molar ratio of lithium to manganese ( By using a lithium composite manganese oxide having a large (Li / Mn ratio), a positive electrode active material for a non-aqueous electrolyte secondary battery having a high active material utilization rate and excellent charge / discharge characteristics is obtained.
[0009]
In the present invention, the lithium composite manganese oxide has an average particle size of 1.5 to 19.1 μm, and an atomic molar ratio of lithium to manganese (Li / Mn ratio) of 0.50 to 0.54. A group having a smaller average particle diameter of two or more manganese compounds having different particle size distributions has a smaller atomic molar ratio of lithium to manganese (Li / Mn ratio), and a group having a larger average particle diameter has a lower atomic molar ratio of lithium to manganese ( This is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, in which each is individually mixed with a lithium compound so as to increase (Li / Mn ratio), heated and synthesized, and then mixed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the population of lithium composite manganese oxide having a smaller average particle size has a smaller atomic molar ratio of lithium to manganese (Li / Mn ratio), and the population having a larger average particle size has a lower atomic molar ratio of lithium to manganese (Li / Mn). A positive electrode active material for a non-aqueous electrolyte secondary battery characterized by having a large Mn ratio) is used.
[0011]
Further, the present invention provides two or more manganese compounds having different particle size distributions such that a group having a smaller average particle size has a smaller Li / Mn ratio, and a group having a larger average particle size has a larger Li / Mn ratio. This is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is mixed with a compound, heated and synthesized, and then mixed.
[0012]
Furthermore, the present invention uses a manganese compound divided into two or more according to the particle size distribution.
[0013]
As a method for synthesizing a lithium composite manganese oxide, a method in which a predetermined amount of a manganese compound or a lithium compound as a starting material is mixed at a constant ratio and fired at a high temperature is a well-known synthesis method. However, since the reactivity with the lithium compound varies depending on the particle size of the manganese compound, a heterogeneous lithium composite manganese oxide is produced as a whole despite the synthesis of the atomic molar ratio of lithium to manganese.
This is because the manganese compound with a small particle size preferentially reacts with the lithium compound, so the reaction with the manganese compound with a large particle size becomes inadequate, and the resulting lithium composite manganese oxide appears to have the desired composition. Although the atomic molar ratio of lithium to manganese is actually different, the atomic molar ratio varies greatly depending on the particle size, and a heterogeneous lithium composite manganese oxide is synthesized.
[0014]
For example, using manganese dioxide as the starting material manganese compound and lithium carbonate as the lithium compound, the atomic ratio of manganese to lithium is the theoretical value, and the cycle characteristics and initial characteristics are set to 1: 0.5. , Heating and synthesis. Although the synthesized lithium composite manganese oxide appears to be theoretically apparent, the atomic molar ratio of lithium to manganese (Li / Mn ratio) actually varies from 0.46 to 0.56. At this time, the group having a smaller average particle diameter has a larger Li / Mn ratio, and the group having a larger average particle diameter has a smaller Li / Mn ratio. This is because manganese with a smaller particle size has a higher reactivity with the lithium compound, so it reacts first and has a higher Li / Mn ratio. Conversely, a manganese compound with a larger particle size has a lower reactivity with the lithium compound, It is thought that this is because lithium is insufficient for the reaction and the Li / Mn ratio is lowered.
[0015]
As described above, since the lithium composite manganese oxide which is insufficiently synthesized is included, when the battery is configured using this as the positive electrode active material, there arises a problem that the cycle characteristics are deteriorated. In order to solve this problem, when the synthesis was performed by increasing the mixing ratio of lithium to manganese so that the Li / Mn ratio of 0.5 to 0.46 was eliminated, an excessive amount of lithium was generated, and the initial capacity This causes problems such as a decrease.
[0016]
As a result of our detailed study, it was found that the charge / discharge cycle characteristics differed depending on the average particle size of the lithium composite manganese oxide. If they are synthesized with the same raw material and the same Li / Mn ratio, the charge / discharge cycle characteristics are better as the specific surface area is larger, and worse as the specific surface area is smaller. That is, the group having a smaller average particle size has better charge / discharge cycle characteristics, and the group having a larger average particle diameter has worse charge / discharge cycle characteristics. Moreover, as a result of conducting a detailed study on the Li / Mn ratio and the charge / discharge cycle characteristics, if the same raw material is used, the higher the Li / Mn ratio, the better the charge / discharge cycle characteristics, and the smaller the Li / Mn ratio. It was found that the charge / discharge cycle characteristics were poor. However, when the Li / Mn ratio is increased in order to improve the charge / discharge cycle characteristics, there is a problem that the discharge capacity decreases.
[0017]
In response to this problem, the present invention has a Li / Mn ratio with a good balance between discharge capacity and cycle characteristics according to particle size, that is, a group having a small average particle size when the lithium composite manganese oxide is divided into two or more groups. A lithium composite manganese oxide having a smaller Li / Mn ratio and a larger Li / Mn ratio for a group having a larger average particle size is used as the positive electrode active material. Since the group having a smaller average particle size has better charge / discharge cycle characteristics, good charge / discharge cycle characteristics can be ensured even when the Li / Mn ratio is close to 0.5 at which a high discharge capacity can be obtained. Since a group having a large average particle size has poor charge / discharge cycle characteristics, the Li / Mn ratio is increased to ensure cycle characteristics. Since the positive electrode active material mixed with such materials is synthesized so as to have an optimum Li / Mn ratio according to the particle size, it constitutes a battery having a good balance between discharge capacity and charge / discharge cycle characteristics. be able to.
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
Example 1
A method for synthesizing the lithium composite manganese oxide of this example will be described.
[0020]
Electrolytic manganese dioxide (MnO 2 ) A having an average particle size of 1.2 μm and lithium carbonate (Li 2 CO 3 ) were mixed so that the Li / Mn ratio was 0.50. The mixture was placed in an alumina container and allowed to stand in an electric furnace, heated to 800 ° C. in 2 hours in an air atmosphere of 10 l / min. (LiMn 2 O 4 ) was synthesized and used as the positive electrode active material A.
[0021]
In addition, electrolytic manganese dioxide (MnO 2 ) B to E having different average particle diameters are also mixed with electrolytic manganese dioxide and lithium carbonate so as to have the Li / Mn ratio shown in Table 1, and synthesized in the same manner as the positive electrode active material A. LiMn 2 O 4 was synthesized by the method to obtain positive electrode active materials B to E.
[0022]
[Table 1]
Figure 0004581157
[0023]
These positive electrode active materials A to E were mixed by the same weight to obtain a positive electrode active material F. This positive electrode active material F was divided into groups having five different particle size distributions using a classifier to obtain positive electrode active materials G to K. The Li / Mn ratio of these positive electrode active materials G to K was measured. The results are shown in Table 2. The average particle size was measured with a laser diffraction particle size distribution measuring device and was set to a value corresponding to a total of 50%. Further, the atomic molar ratio of manganese to lithium was determined using ICP emission spectroscopy. The same method was used in the following examples and comparative examples.
[0024]
[Table 2]
Figure 0004581157
[0025]
From Table 2, it can be said that the positive electrode active material F has a smaller Li / Mn ratio as the group has a smaller average particle diameter, and a larger Li / Mn ratio as the group has a larger average particle diameter.
(Comparative Example 1)
Electrolytic manganese dioxide (MnO 2 ) A to E were mixed by the same weight to obtain electrolytic manganese dioxide L. This electrolytic manganese dioxide L and lithium carbonate (Li 2 CO 3 ) were mixed so that the Li / Mn ratio was 0.52. This mixture was placed in an alumina container in the same manner as in Example 1, and allowed to stand in an electric furnace. After raising the temperature to 800 ° C. in 2 hours in an air atmosphere of 10 l / min, the temperature was increased to 800 ° C. Lithium composite manganese oxide (LiMn 2 O 4 ) was synthesized by maintaining the time, and used as the positive electrode active material L.
[0026]
This positive electrode active material L was divided into groups having five different particle size distributions using a classifier, and the positive electrode active materials M to Q were measured, and the average particle size and the Li / Mn ratio were measured.
The results are shown in Table 3.
[0027]
[Table 3]
Figure 0004581157
[0028]
From Table 3, the positive electrode active material L is apparently synthesized at 0.52 which is the target value of Li / Mn ratio. However, it can be said that the positive electrode active materials M to Q obtained by classifying them have a larger Li / Mn ratio in a group having a smaller average particle diameter, and a smaller Li / Mn ratio in a group having a larger average particle diameter.
[0029]
Battery evaluation was performed using the positive electrode active materials F and L of Example 1 and Comparative Example 1 described above. FIG. 1 is a longitudinal sectional view of a cylindrical lithium secondary battery used in this example. In FIG. 1, an electrode plate group 4 in which a positive electrode plate 5 and a negative electrode plate 6 are spirally wound through a separator 7 is housed in a battery case 1 processed from an organic electrolyte resistant stainless steel plate. Yes. A positive electrode aluminum lead 5 a is drawn from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode nickel lead 6 a is drawn from the negative electrode plate 6 and connected to the bottom of the battery case 1. Insulating rings 8 are respectively provided at the upper and lower portions of the electrode plate group 4, and the opening of the battery case 1 is sealed by a sealing plate 2 provided with a safety valve and an insulating packing 3.
[0030]
The negative electrode plate 6 was prepared by mixing an aqueous dispersion of styrene-butadiene rubber in a weight ratio of 100: 3.5 to a carbon material (pitch-based spherical graphite was used in this example), and mixing this with an aqueous solution of carboxymethyl cellulose. What was made into the paste form after being suspended in was applied to both sides of the copper foil, dried, rolled and cut into a predetermined size to produce a negative electrode plate. In addition, the mixing ratio of the aqueous dispersion of styrene-butadiene rubber is calculated by the solid content.
[0031]
The positive electrode plate 5 was prepared by mixing the aqueous dispersions of acetylene black and polytetrafluoroethylene with the synthesized positive electrode active materials F and L LiMn 2 O 4 at a weight ratio of 100: 2.5: 7.5, This is suspended in an aqueous solution of carboxymethyl cellulose to make a paste. Next, this paste was applied to both sides of an aluminum foil, dried, rolled and cut into a predetermined size to produce a positive electrode plate. In addition, the mixing ratio of the aqueous dispersion of polytetrafluoroethylene is calculated by the solid content.
[0032]
Leads were attached to the positive and negative electrode plates produced by the above method, wound in a spiral shape through a polyethylene separator, and stored in a battery case. As the electrolytic solution, a solution obtained by dissolving 1.5 mol / l of lithium hexafluorophosphate (LiPF 6 ) in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3 was used. This electrolytic solution was poured into the above battery case under reduced pressure and sealed to obtain batteries F and L. In this example, in order to evaluate the characteristics of the positive electrode active material, a material in which the capacity of the negative electrode was increased in advance was used.
[0033]
Using these batteries F and L, tests were performed under the following conditions. First, the battery is charged at a constant current of 120 mA up to a battery voltage of 4.2 V at 20 ° C., then rested for 1 hour, and then discharged to a battery voltage of 3.0 V at a constant current of 120 mA. The charging / discharging was repeated 3 times by this method, and the third discharge capacity was set as the initial capacity. Further, the specific capacity of the active material was calculated by dividing the initial capacity by the weight of LiMn 2 O 4 contained in the battery. Further, a constant current charge / discharge cycle test was conducted under the conditions of a charge / discharge current of 120 mA at 20 ° C., a charge end voltage of 4.2 V, and a discharge end voltage of 3.0 V. The discharge capacity at the time of 300 cycles with respect to the initial capacity expressed in% was calculated as the capacity maintenance rate. The results are shown in Table 4.
[0034]
[Table 4]
Figure 0004581157
[0035]
From Table 4, it can be seen that the battery characteristics are different between the battery F and the battery L although the apparent average particle diameter and the Li / Mn ratio of the positive electrode active material are the same. Battery F has a small average particle size with good charge / discharge cycle characteristics and a Li / Mn ratio close to 0.5, and a group with large average particle size with poor charge / discharge cycle characteristics has a large Li / Mn ratio. It is considered that the positive electrode specific capacity and the cycle capacity retention ratio both showed good values. On the other hand, the battery L has a larger Li / Mn ratio as the group having a smaller average particle size with good charge / discharge cycle characteristics, and a smaller Li / Mn ratio as the group with a larger average particle size with poor charge / discharge cycle. It is thought that the cycle characteristics deteriorated.
[0036]
(Example 2)
A method for synthesizing the lithium composite manganese oxide of this example will be described.
[0037]
Electrolytic manganese dioxide (MnO 2 ) a having an average particle size of 11.3 μm was divided into groups having five different particle size distributions using a classifier to obtain electrolytic manganese dioxides b to f. The obtained electrolytic manganese dioxide b and lithium carbonate (Li 2 CO 3 ) were mixed so that the atomic molar ratio of Mn to Li was 1: 0.50. The mixture was placed in an alumina container and allowed to stand in an electric furnace, heated to 800 ° C. in 2 hours in an air atmosphere of 10 l / min. (LiMn 2 O 4 ) was synthesized and used as the positive electrode active material b. Electrolytic manganese dioxides cf were also synthesized in the same manner as electrolytic manganese dioxide b to obtain positive electrode active materials cf.
[0038]
In addition, electrolytic manganese dioxide and lithium carbonate were mixed so as to have the Li / Mn ratio shown in Table 5 for electrolytic manganese dioxides c to f, and LiMn 2 O 4 was synthesized by the same synthesis method as that for the positive electrode active material b. And positive electrode active materials cf.
[0039]
[Table 5]
Figure 0004581157
[0040]
These positive electrode active materials b to f were mixed again to obtain a positive electrode active material g. This positive electrode active material g was divided into groups having five different particle size distributions using a classifier to obtain positive electrode active materials h to l. The average particle diameter and Li / Mn ratio of these positive electrode active materials hl were measured. The results are shown in Table 6. The average particle size and the atomic molar ratio of manganese to lithium were the same as in Example 1.
[0041]
[Table 6]
Figure 0004581157
[0042]
From Table 6, it can be said that the positive electrode active material g has a smaller Li / Mn ratio as the group has a smaller average particle diameter, and a larger Li / Mn ratio as the group has a larger average particle diameter.
[0043]
(Comparative Example 2)
Electrolytic manganese dioxide (MnO 2 ) a having an average particle diameter of 11.3 μm similar to that used in Example 2 and lithium carbonate (Li 2 CO 3 ) were mixed so that the Li / Mn ratio was 0.52. did. This mixture was placed in an alumina container in the same manner as in Example 2 and allowed to stand in an electric furnace. The temperature was raised to 800 ° C. in 2 hours in an air atmosphere of 10 l / min of air blowing, and then 10 ° C. at 800 ° C. By maintaining for a time, lithium composite manganese oxide (LiMn 2 O 4 ) was synthesized and used as a positive electrode active material a.
[0044]
This positive electrode active material a was divided into groups having five different particle size distributions using a classifier, and the positive electrode active materials m to q were measured, and the atomic molar ratio of each Mn and Li was measured. The results are shown in Table 7.
[0045]
[Table 7]
Figure 0004581157
[0046]
From Table 7, the positive electrode active material a is apparently synthesized at 0.52 which is the target value of Li / Mn ratio. However, it can be said that the positive electrode active materials m to q obtained by classifying them have a larger Li / Mn ratio in a group having a smaller average particle diameter, and a smaller Li / Mn ratio in a group having a larger average particle diameter.
[0047]
The battery was evaluated using the positive electrode active materials g and a of Example 2 and Comparative Example 2 described above. The configuration of the battery was the same as in Example 1.
[0048]
Using these batteries g and a, the initial capacity, the specific capacity of the active material, and the charge / discharge cycle capacity retention rate were measured under the same conditions as in Example 1. The results are shown in Table 8.
[0049]
[Table 8]
Figure 0004581157
[0050]
Table 8 shows that the battery characteristics are different between the battery g and the battery a, although the apparent average particle diameter and the Li / Mn ratio of the positive electrode active material are the same. Battery g has a small average particle diameter with good charge / discharge cycle characteristics, and the Li / Mn ratio is close to 0.5, and a group with large average particle diameter with poor charge / discharge cycle characteristics has a large Li / Mn ratio. It is considered that the positive electrode specific capacity and the cycle capacity retention ratio both showed good values. On the other hand, the battery a has a larger Li / Mn ratio as the group having a smaller average particle size with good charge / discharge cycle characteristics, and a smaller Li / Mn ratio as the group with a larger average particle size with poor charge / discharge cycle. It is thought that the cycle characteristics deteriorated.
[0051]
In this example, a combination of electrolytic manganese dioxide and lithium carbonate was used as a starting material for LiMn 2 O 4 , but other manganese compounds such as manganese carbonate, lower oxide, and nitrate, lithium hydroxide, The same effect can be obtained even when other lithium compounds such as lithium nitrate and lithium oxide are used in combination.
[0052]
The same effect is also seen in batteries using various carbonaceous materials capable of occluding and releasing lithium, lithium alloys, and inorganic negative electrodes capable of intercalation as the negative electrode. Further, as an electrolyte, a battery using a polymer electrolyte, an electrolytic solution in which a lithium salt is dissolved in a combination solvent other than that obtained by dissolving lithium hexafluorophosphate in a mixed solvent of ethylene carbonate and ethyl methyl carbonate used in this example The effect is also seen in.
[0053]
【The invention's effect】
As described above, according to the present invention, the lithium composite manganate compound represented by LiMn 2 O 4 is made to have an optimum Li / Mn ratio in accordance with the particle size, thereby providing a nonaqueous electrolyte secondary battery having excellent battery characteristics. A positive electrode active material can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a cylindrical lithium secondary battery of the present invention.
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8 Insulation ring

Claims (3)

一般式LiMn24で表されるリチウム複合マンガン酸化物からなる非水電解質二次電池用正極活物質であって、前記リチウム複合マンガン酸化物の平均粒径が1.5〜19.1μmであり、マンガンに対するリチウムの原子モル比(Li/Mn比)が0.50〜0.54であり、前記リチウム複合マンガン酸化物が平均粒径の小さな集団ほどマンガンに対するリチウムの原子モル比(Li/Mn比)が小さく、平均粒径が大きな集団ほどマンガンに対するリチウムの原子モル比(Li/Mn比)が大きことを特徴とする非水電解質二次電池用正極活物質。Formula I represented ruri lithium non-aqueous electrolyte secondary battery positive electrode active material der comprising a composite manganese oxide in LiMn 2 O 4, the average particle diameter of the lithium composite manganese oxide is 1.5 to 19. 1 μm, the atomic molar ratio of lithium to manganese (Li / Mn ratio) is 0.50 to 0.54, and the lithium composite manganese oxide has a smaller average particle diameter, the atomic molar ratio of lithium to manganese ( A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein a group having a smaller (Li / Mn ratio) and a larger average particle diameter has a larger atomic molar ratio of lithium to manganese (Li / Mn ratio). 一般式LiMn24で表されるリチウム複合マンガン酸化物からなる非水電解質二次電池用正極活物質の製造方法であって、前記リチウム複合マンガン酸化物の平均粒径が1.5〜19.1μmであり、マンガンに対するリチウムの原子モル比(Li/Mn比)が0.50〜0.54であり、2つ以上の粒度分布の異なるマンガン化合物の平均粒径の小さな集団ほどマンガンに対するリチウムの原子モル比(Li/Mn比)が小さく、平均粒径が大きな集団ほどマンガンに対するリチウムの原子モル比(Li/Mn比)が大きくなるようにそれぞれ個別にリチウム化合物と混合し、加熱し合成を行った後、混合することを特徴とする非水電解質二次電池用正極活物質の製造方法。 What formula LiMn 2 O 4 is represented by azure lithium composite manufacturing method der manganese oxide positive electrode active material for non-aqueous electrolyte secondary cell comprising an average particle diameter of the lithium composite manganese oxide is 1.5 −19.1 μm, the atomic molar ratio of lithium to manganese (Li / Mn ratio) is 0.50 to 0.54, and a group having a smaller average particle size of two or more manganese compounds having different particle size distributions has a higher manganese content. The lithium atomic ratio (Li / Mn ratio) to lithium is small, and the larger the average particle size, the larger the atomic molar ratio of lithium to manganese (Li / Mn ratio) is. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is mixed after being synthesized. 前記マンガン化合物は粒度分布により2つ以上に分割して用いる請求項2記載の非水電解質二次電池用正極活物質の製造方法。  The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the manganese compound is divided into two or more according to a particle size distribution.
JP16638799A 1999-06-14 1999-06-14 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same Expired - Fee Related JP4581157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16638799A JP4581157B2 (en) 1999-06-14 1999-06-14 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16638799A JP4581157B2 (en) 1999-06-14 1999-06-14 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000357513A JP2000357513A (en) 2000-12-26
JP4581157B2 true JP4581157B2 (en) 2010-11-17

Family

ID=15830485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16638799A Expired - Fee Related JP4581157B2 (en) 1999-06-14 1999-06-14 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4581157B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102062521B1 (en) 2005-10-20 2020-01-06 미쯔비시 케미컬 주식회사 Lithium secondary cell and nonaqueous electrolytic solution for use therein
JP5671771B2 (en) * 2005-11-16 2015-02-18 三菱化学株式会社 Lithium secondary battery
JP2007165301A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165299A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2007165298A (en) * 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP5671770B2 (en) * 2005-11-16 2015-02-18 三菱化学株式会社 Lithium secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06295724A (en) * 1993-04-02 1994-10-21 Mitsui Mining & Smelting Co Ltd Manufacture of lithium manganate for lithium secondary battery
FR2721308B1 (en) * 1994-06-21 1996-10-11 Commissariat Energie Atomique Manganese oxide insertion compounds, usable as a positive electrode in a lithium battery.
JP3512534B2 (en) * 1994-12-21 2004-03-29 株式会社リコー Rechargeable battery
JP3575582B2 (en) * 1996-09-12 2004-10-13 同和鉱業株式会社 Positive active material for non-aqueous secondary battery and method for producing the same
JPH10106561A (en) * 1996-09-26 1998-04-24 Nec Corp Positive electrode active material and organic electrolyte secondary battery using this positive electrode active material
JPH10182158A (en) * 1996-12-25 1998-07-07 Tosoh Corp Method for producing spinel-type lithium manganate

Also Published As

Publication number Publication date
JP2000357513A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP3897387B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5079951B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method
JP2008153017A (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2000277116A (en) Lithium secondary battery
CN101026235A (en) Negative active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
JP2012206925A (en) Sodium, manganese, titanium and nickel composite oxide, method for manufacturing the same, and sodium secondary battery using the same as member
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JPH0737576A (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP4777543B2 (en) Method for producing lithium cobalt composite oxide
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3503688B2 (en) Lithium secondary battery
JPH08153513A (en) Manufacture of positive electrode active material
JP4145138B2 (en) Nonaqueous electrolyte secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP4581157B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4626058B2 (en) Non-aqueous electrolyte secondary battery
JP2003288899A (en) Cathode active material for non-aqueous electrolyte secondary batteries
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP4456668B2 (en) Nonaqueous secondary battery and its positive electrode
JP4278321B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH07134986A (en) Nonaqueous electrolyte battery
JP3394020B2 (en) Lithium ion secondary battery
JPH11242959A (en) Lithium secondary battery
JP2015022950A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140910

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees