Nothing Special   »   [go: up one dir, main page]

JPH11207850A - Resin sheet, metal foil clad laminated board and multi-layer printed-wiring board - Google Patents

Resin sheet, metal foil clad laminated board and multi-layer printed-wiring board

Info

Publication number
JPH11207850A
JPH11207850A JP1757098A JP1757098A JPH11207850A JP H11207850 A JPH11207850 A JP H11207850A JP 1757098 A JP1757098 A JP 1757098A JP 1757098 A JP1757098 A JP 1757098A JP H11207850 A JPH11207850 A JP H11207850A
Authority
JP
Japan
Prior art keywords
fiber
resin
fibers
weight
resin sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1757098A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakai
広志 酒井
Akira Murai
曜 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1757098A priority Critical patent/JPH11207850A/en
Publication of JPH11207850A publication Critical patent/JPH11207850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an insulating substrate layer easy to bore by laser by a method wherein a heat curable resin particle which is solid and cured at room temperature is dispersed among fibers having an organic fiber formed in a nonwoven state with a curable binder resin as an essential ingredient. SOLUTION: A sheet is made from a slurry containing a fiber having an organic fiber as an essential ingredient and a heat curable resin particle, a curable binder resin is applied to the obtained sheet, and then the curable binder rein is cured to a B stage or a C stage by heating to be dried. As the organic fiber to be used, a polyvinyl chloride based fiber such as a polyamide fiber, a polyvinyl chloride fiber, a vinylchloride-ethylene copolymer fiber, etc., polyvinylidene chloride fiber, etc., are given. As for the heat curable resin particle to be used which is solid and uncured at room temperature, particles of an epoxy-based resin, a phenol-based resin, a cyanate-based resin, a polyimide- based resin, or the like are given.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂シート、金属
はく張積層板及び多層プリント配線板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin sheet, a metal-clad laminate, and a multilayer printed wiring board.

【0002】[0002]

【従来の技術】電子機器において、回路素子を搭載した
ボードの基板としては、プリント配線板が用いられてい
る。このプリント配線板は、熱硬化性樹脂ワニスを繊維
基材に含浸乾燥して得られるプリプレグの所要枚数に金
属はくを重ね加熱加圧して金属はく張積層板とし、この
金属はく張積層板の金属はく面をエッチング等の加工を
施して回路パターンを形成して得られる。金属はくとし
ては通常銅はくが用いられ、パソコンや産業用電子機器
においては、信頼性が良好であることから、繊維基材と
してガラス織布を用いたガラス織布基材プリプレグが用
いられていた。また、配線密度を高くするため、1枚の
基板に3層以上の回路パターンを有する多層プリント配
線板が用いられているが、この多層プリント配線板は、
通常、回路形成済みの両面プリント配線板を内層構成材
とし、銅はくを外層構成材とし、これらの構成材をシー
ト状の接着材料を用いて積層一体化して製造される。こ
のシート状の接着材料としても、ガラス織布を基材とす
るプリプレグが用いられていた。このように、多層プリ
ント配線板、両面又は片面プリント配線板いずれも絶縁
基材層にはガラス繊維が含まれていた。
2. Description of the Related Art In electronic equipment, a printed wiring board is used as a substrate of a board on which circuit elements are mounted. This printed wiring board is made by impregnating and drying a thermosetting resin varnish on a fiber base material, and laminating a required number of prepregs to form a metal clad laminate by heating and pressing. It is obtained by forming a circuit pattern by performing processing such as etching on the metal foil surface of the plate. Copper foil is usually used as the metal foil, and in PCs and industrial electronic equipment, glass woven fabric prepreg using glass woven fabric as the fiber base material is used because of its good reliability. I was In order to increase the wiring density, a multilayer printed wiring board having three or more circuit patterns on one board is used.
Usually, a double-sided printed wiring board on which a circuit is formed is used as an inner layer component, copper foil is used as an outer layer component, and these components are laminated and integrated using a sheet-like adhesive material. As this sheet-like adhesive material, a prepreg using a glass woven fabric as a base material has been used. As described above, the glass substrate was contained in the insulating base material layer in both the multilayer printed wiring board and the double-sided or single-sided printed wiring board.

【0003】携帯用通信機器の普及が進みかつ小型化さ
れてきている。このような小型電子機器に使用されるプ
リント配線板は、薄型である必要があり、薄型の金属は
く張積層板ないし多層プリント配線板が要求されるよう
になってきている。ガラス織布を基材とするプリプレグ
を用いると薄型化には限度があるため、硬化性バインダ
ー樹脂により不織布状に形成された無機繊維の間に、常
温で固体で未硬化の熱硬化性樹脂粒子を分散してなる不
織布状の樹脂シートをプリプレグに代えて用いることが
提案されている(特開平8−109278号公報参
照)。
[0003] Portable communication devices have become more popular and smaller. Printed wiring boards used in such small electronic devices need to be thin, and thin metal-clad laminates or multilayer printed wiring boards have been required. When using a prepreg based on a glass woven fabric, there is a limit to thinning, and thermosetting resin particles that are solid and uncured at room temperature between inorganic fibers formed into a nonwoven fabric by a curable binder resin. It has been proposed to use a non-woven resin sheet obtained by dispersing a prepreg instead of a prepreg (see JP-A-8-109278).

【0004】[0004]

【発明が解決しようとする課題】配線板技術の向上と軽
量化指向により、多層プリント配線板の高多層化、高密
度化が進んでいる。高密度化するために、多層プリント
配線板の配線回路の細線化が進み、それに伴いIVH
(Interstitial Via Hole)やS
VH(Surface Via Hole)等の層間接
続用の穴も細径化が進んでいる。その結果、ドリルによ
る穴あけでは対応できなくなり、レーザーによる穴あけ
法が使用されるようになってきた。ところが、前記の樹
脂シートをプリプレグに代えて用いた金属はく張積層板
又は多層プリント配線板は、絶縁基材層に高融点の無機
繊維が含まれているため、レーザーによる穴あけ法で
は、穴あけが困難であった。
With the improvement in wiring board technology and the trend toward weight reduction, multilayer printed wiring boards are becoming more multi-layered and higher in density. In order to increase the density, the wiring circuit of the multilayer printed wiring board has become thinner, and accordingly, the IVH
(Interstitial Via Hole) or S
Holes for interlayer connection such as VH (Surface Via Hole) have also been reduced in diameter. As a result, drilling cannot be used, and a laser drilling method has been used. However, a metal-clad laminate or a multilayer printed wiring board using the above resin sheet in place of a prepreg has a high melting point inorganic fiber in an insulating base material layer. Was difficult.

【0005】請求項1に記載の発明は、レーザーによる
穴あけが容易な絶縁基材層を形成できる樹脂シートを提
供することを目的とする。請求項1に記載の樹脂シート
は、熱硬化性樹脂粒子と繊維とを水に分散させたスラリ
ーを用いてシート状に抄造することにより製造される。
このとき、繊維に熱硬化性樹脂粒子が担持されて樹脂シ
ートとなる。ところが、熱硬化性樹脂粒子は繊維の間隙
をくぐりぬけやすく、樹脂シート中に定着されにくい。
そこで、請求項2に記載の発明は、請求項1に記載の発
明の目的に加えて、樹脂シートを製造するときに熱硬化
性樹脂粒子の定着が良好な樹脂シートを提供することを
目的とする。また、請求項3に記載の発明は、レーザー
による穴あけが容易な絶縁基材層を有する金属はく張積
層板を提供することを目的とする。さらに、請求項4に
記載の発明は、レーザーによる穴あけが容易な絶縁基材
層を有する多層プリント配線板を提供することを目的と
する。
An object of the present invention is to provide a resin sheet capable of forming an insulating base material layer that is easily drilled by a laser. The resin sheet according to the first aspect is manufactured by forming a sheet using a slurry in which thermosetting resin particles and fibers are dispersed in water.
At this time, the thermosetting resin particles are carried on the fibers to form a resin sheet. However, the thermosetting resin particles easily pass through the gap between the fibers and are hardly fixed in the resin sheet.
Therefore, an object of the present invention is to provide, in addition to the object of the present invention, a resin sheet having good fixation of thermosetting resin particles when manufacturing the resin sheet. I do. Another object of the present invention is to provide a metal-clad laminate having an insulating base material layer that can be easily drilled by a laser. Still another object of the present invention is to provide a multilayer printed wiring board having an insulating base material layer that is easily drilled by a laser.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明
は、硬化性バインダー樹脂により不織布状に形成された
有機繊維を必須成分とする繊維の間に、常温で固体で未
硬化の熱硬化性樹脂粒子が分散されてなる樹脂シートで
ある。
According to the first aspect of the present invention, there is provided an uncured thermosetting solid at room temperature between fibers containing organic fibers formed as a non-woven fabric by a curable binder resin. It is a resin sheet in which conductive resin particles are dispersed.

【0007】本発明の樹脂シートは、後述するように、
有機繊維を必須成分とする繊維及び熱硬化性樹脂粒子を
スラリーとし抄造して製造される。繊維として有機繊維
のみを用いると熱硬化性樹脂粒子の定着が悪くなること
がある。このようなときには、レーザーによる穴あけ性
を損なわない範囲でガラス繊維を併用するのが好まし
い。すなわち、請求項2に記載の発明は、有機繊維に加
えて、繊維径10μm以下のガラス繊維を全繊維100
重量部に対して5〜70重量部含有してなる請求項1に
記載の樹脂シートである。ここで、繊維径とは平均繊維
径を意味する。
[0007] The resin sheet of the present invention, as described below,
It is manufactured by forming a slurry containing fibers containing organic fibers as essential components and thermosetting resin particles into a slurry. When only organic fibers are used as the fibers, fixing of the thermosetting resin particles may be deteriorated. In such a case, it is preferable to use glass fibers in combination within a range that does not impair the drilling property by the laser. That is, in the invention according to claim 2, glass fibers having a fiber diameter of 10 μm or less are added to all the fibers in addition to the organic fibers.
The resin sheet according to claim 1, which is contained in an amount of 5 to 70 parts by weight based on parts by weight. Here, the fiber diameter means an average fiber diameter.

【0008】繊維径10μm以下の微細なガラス繊維が
熱硬化性樹脂粒子の担持体となり、熱硬化性樹脂粒子の
定着量を増大させることができる。ガラス繊維の繊維径
が大きくなるとレーザー加工性が悪くなる傾向にあるた
め、繊維径が10μm以下、より好ましくは6μm以下
さらに好ましくは3μm以下のものが適している。繊維
径が10μm以下であれば、繊維径の異なるガラス繊維
を併用してもよい。繊維径10μm以下のガラス繊維の
配合量が全繊維100重量部に対して5重量部未満では
熱硬化性樹脂粒子の定着の効果が小さすぎる傾向にあ
り、また、70重量部を超えるとレーザー加工性が悪く
なる傾向にある。このことから、繊維径10μm以下の
ガラス繊維の配合量は、全繊維100重量部に対して2
0〜60重量部であるのがより好ましい。
Fine glass fibers having a fiber diameter of 10 μm or less serve as a support for the thermosetting resin particles, and can increase the fixing amount of the thermosetting resin particles. As the fiber diameter of the glass fiber increases, the laser processability tends to deteriorate. Therefore, a fiber having a fiber diameter of 10 μm or less, more preferably 6 μm or less, and still more preferably 3 μm or less is suitable. If the fiber diameter is 10 μm or less, glass fibers having different fiber diameters may be used in combination. If the blending amount of glass fiber having a fiber diameter of 10 μm or less is less than 5 parts by weight based on 100 parts by weight of all fibers, the effect of fixing the thermosetting resin particles tends to be too small, and if it exceeds 70 parts by weight, laser processing is performed. It tends to be poor. From this, the blending amount of glass fiber having a fiber diameter of 10 μm or less is 2 parts per 100 parts by weight of all fibers.
More preferably, it is 0 to 60 parts by weight.

【0009】本発明になる樹脂シートは、従来公知のプ
リプレグと同様に積層板の材料として、また、多層プリ
ント配線板の接着材料として使用される。すなわち請求
項3に記載の発明は、請求項1又は2に記載の樹脂シー
トの硬化物により絶縁基材層を構成してなる金属はく張
積層板である。また、請求項4に記載の発明は、請求項
1又は2に記載の樹脂シートを構成材の接着材料として
積層一体化してなる多層プリント配線板である。
[0009] The resin sheet according to the present invention is used as a material for a laminated board and an adhesive material for a multilayer printed wiring board in the same manner as a conventionally known prepreg. That is, the invention according to claim 3 is a metal-clad laminate in which an insulating base material layer is constituted by a cured product of the resin sheet according to claim 1 or 2. According to a fourth aspect of the present invention, there is provided a multilayer printed wiring board formed by laminating and integrating the resin sheet according to the first or second aspect as an adhesive material for a component.

【0010】[0010]

【発明の実施の形態】本発明の樹脂シートは、有機繊維
を必須成分とする繊維及び熱硬化性樹脂粒子を含むスラ
リーを抄造し、抄造して得られたシートに硬化性バイン
ダ樹脂を塗布し、次いで加熱乾燥して硬化性バインダ樹
脂をBステージ又はCステージまで硬化させることによ
り製造される。
BEST MODE FOR CARRYING OUT THE INVENTION The resin sheet of the present invention is obtained by forming a slurry containing fibers containing organic fibers as essential components and thermosetting resin particles, and applying a curable binder resin to the obtained sheet. Then, it is manufactured by curing by heating and drying the curable binder resin to the B stage or the C stage.

【0011】ここで用いられる有機繊維としては、
(a)ポリアミド系繊維、(b)ポリ塩化ビニル繊維、
塩化ビニル−エチレン共重合体繊維等のポリ塩化ビニル
系繊維、(c)ポリ塩化ビニリデン繊維、ポリ塩化ビニ
リデン−エチレン共重合体繊維等のポリ塩化ビニリデン
系繊維、(d)ポリアクリロニトリル系繊維、(e)ポ
リエステル系繊維、(f)ポリウレタン系繊維、(g)
ポリシアン化ビニリデン系繊維、(h)ポリフルオロエ
チレン系繊維、(i)フェノール−ホルムアルデヒド共
重合体繊維等のフェノール系繊維、(j)ポリ(p−ベ
ンズアミド)繊維、ポリ(p−フェニレンテレフタルア
ミド)繊維、ポリ(2−クロロ−p−フェニレンテレフ
タルアミド)繊維、ポリ(p−フェニレン−2,6−ナ
フタリンジカルボン酸アミド)繊維、ポリ(2,6−ジ
クロロ−p−フェニレン−2,6−ナフタリンジカルボ
ン酸アミド)繊維、ポリ(p,p’−フェニレンベンズ
アミド)繊維、ポリ(1,5−ナフチレンテレフタルア
ミド)繊維、規則性芳香族共重合体アミド繊維(例え
ば、p,p’−ジアミノベンズアニリド−テレフタルア
ミド共重合体繊維)、ランダム芳香族共重合体アミド繊
維(例えば、p−ベンズアミド−p−フェニレンテレフ
タルアミド共重合体繊維)、ポリメタフェニレンイソフ
タラミド繊維、メタフェニレンイソフタラミド−メタフ
ェニレンテレフタラミド共重合体繊維、メタフェニレン
イソフタラミド−パラフェニレンテレフタラミド共重合
体繊維、ポリオキサベンゾールアミド繊維、ポリベンゾ
オキサジアゾールアミド繊維、ポリベンゾオキサゾール
アミド繊維、パラフェニレン−3,4’−オキシジフェ
ニレンテレフタルアミド共重合体繊維等の全芳香族ポリ
アミド系繊維(アラミド繊維ともいわれる)、(k)ポ
リベンゾイミダゾール繊維、ポリチアゾール繊維、ポリ
フェニレントリアゾール繊維等のポリチアゾール系繊
維、(l)ポリビスベンゾイミダドアゾベンゾフェナン
スロリン繊維、(m)ポリパラフェニレンサルファイド
繊維、ポリパラフェニレンオキサイド繊維、ポリ(p−
フェニレンベンゾビスオキサゾール)繊維等が挙げられ
る。これら有機繊維は単独で使用してもよく、何種類か
を併用してもよい。また、これらの有機繊維は、シート
状に抄造可能であればよく、長繊維、短繊維いずれも使
用できる。また、有機繊維の繊維径としては、1〜30
μmのものが分散性、樹脂シートの形成性、レーザー加
工性及び回路凹凸の埋込性の観点から好適である。
The organic fibers used here include:
(A) a polyamide fiber, (b) a polyvinyl chloride fiber,
Polyvinyl chloride fibers such as vinyl chloride-ethylene copolymer fibers, (c) polyvinylidene chloride fibers, polyvinylidene chloride fibers such as polyvinylidene chloride-ethylene copolymer fibers, (d) polyacrylonitrile fibers, e) polyester fiber, (f) polyurethane fiber, (g)
Polyvinylidene cyanide fiber, (h) polyfluoroethylene fiber, (i) phenolic fiber such as phenol-formaldehyde copolymer fiber, (j) poly (p-benzamide) fiber, poly (p-phenylene terephthalamide) Fiber, poly (2-chloro-p-phenyleneterephthalamide) fiber, poly (p-phenylene-2,6-naphthalene dicarboxylic amide) fiber, poly (2,6-dichloro-p-phenylene-2,6-naphthalene) Dicarboxylic acid amide) fiber, poly (p, p'-phenylene benzamide) fiber, poly (1,5-naphthylene terephthalamide) fiber, regular aromatic copolymer amide fiber (for example, p, p'-diaminobenz) Anilide-terephthalamide copolymer fiber), random aromatic copolymer amide fiber (for example, p-ben Amide-p-phenyleneterephthalamide copolymer fiber), polymetaphenyleneisophthalamide fiber, metaphenyleneisophthalamide-metaphenyleneterephthalamide copolymer fiber, metaphenyleneisophthalamide-paraphenyleneterephthalamide copolymer Wholly aromatic polyamide fibers (aramide) such as coalesced fibers, polyoxabenzolamide fibers, polybenzoxadiazoleamide fibers, polybenzoxazolamide fibers, paraphenylene-3,4'-oxydiphenylene terephthalamide copolymer fibers (K) polybenzimidazole fiber, polythiazole fiber, polythiazole fiber such as polyphenylene triazole fiber, (l) polybisbenzimidado azobenzophenanthroline fiber, (m) polyparaphenylene fiber Fido fibers, poly-p-phenylene oxide fibers, poly (p-
(Phenylenebenzobisoxazole) fiber and the like. These organic fibers may be used alone or in combination of several kinds. Further, these organic fibers need only be capable of being formed into a sheet, and both long fibers and short fibers can be used. Further, the fiber diameter of the organic fiber is 1 to 30.
μm is preferred from the viewpoints of dispersibility, resin sheet formability, laser workability, and embedding of circuit irregularities.

【0012】繊維径6μm以下のガラス繊維は、マイク
ロファイバーとして知られ、市販品を使用することがで
きる。
Glass fibers having a fiber diameter of 6 μm or less are known as microfibers, and commercially available products can be used.

【0013】本発明で使用する常温で固体で未硬化の熱
硬化性樹脂粒子(以下単に熱硬化性樹脂粒子という)と
しては、エポキシ系樹脂、フェノール系樹脂、シアネー
ト系樹脂、ポリイミド系樹脂、メラミン系樹脂、尿素系
樹脂、フラン系樹脂、アニリン系樹脂、ウレタン系樹
脂、ポリエステル系樹脂、ポリエーテル系樹脂、シリコ
ーン系樹脂の粒子が挙げられる。これらは単独で用いて
も併用してもよい。これらは、粒子状に合成され、又
は、粉砕により粒子化されたものいずれでも使用でき、
それぞれ必要な硬化剤とともに使用される。熱硬化性樹
脂粒子の粒径は、分散性及び樹脂シートの形成性の観点
から、0.01〜300μmであるのが好ましく、0.
1〜100μmであるのがより好ましい。粒径が0.0
1μm未満であると、樹脂シートへの定着が困難となる
傾向にあり、また、300μmを超えると樹脂シート表
面が平滑にならない傾向にある。
The thermosetting resin particles which are solid and uncured at room temperature (hereinafter, simply referred to as thermosetting resin particles) used in the present invention include epoxy resins, phenol resins, cyanate resins, polyimide resins, melamine resins. Particles of a series resin, a urea series resin, a furan series resin, an aniline series resin, a urethane series resin, a polyester series resin, a polyether series resin, and a silicone series resin. These may be used alone or in combination. These can be used in any form synthesized in the form of particles or granulated by grinding.
Each is used with the required curing agent. The particle size of the thermosetting resin particles is preferably 0.01 to 300 μm from the viewpoint of dispersibility and formability of the resin sheet.
More preferably, it is 1 to 100 μm. Particle size 0.0
If it is less than 1 μm, fixing to the resin sheet tends to be difficult, and if it exceeds 300 μm, the surface of the resin sheet tends not to be smooth.

【0014】有機繊維を必須成分とする繊維と、熱硬化
性樹脂粒子との配合割合は、有機繊維を必須成分とする
繊維50〜10重量%、熱硬化性樹脂粒子50〜90重
量%の範囲が好ましく、有機繊維を必須成分とする繊維
30〜10重量%、熱硬化性樹脂粒子70〜90重量%
の範囲がより好ましい。有機繊維を必須成分とする繊維
が50重量%を超え、熱硬化性樹脂粒子が50重量%未
満であると、樹脂シートを硬化させて絶縁基材層を形成
するときにボイドやかすれを生じやすく、また、回路凹
凸の埋込性が悪くなる傾向にあり、有機繊維を必須成分
とする繊維が10重量%未満で、熱硬化性樹脂粒子が9
0重量%を超えると強度が小さくなる傾向にある。
The mixing ratio of the fibers containing organic fibers as essential components and the thermosetting resin particles is in the range of 50 to 10% by weight of fibers containing organic fibers as essential components and 50 to 90% by weight of thermosetting resin particles. Preferably, 30 to 10% by weight of fibers containing organic fibers as essential components, 70 to 90% by weight of thermosetting resin particles
Is more preferable. When the amount of the fiber containing the organic fiber as an essential component exceeds 50% by weight and the amount of the thermosetting resin particles is less than 50% by weight, voids and blurs are easily generated when the resin sheet is cured to form the insulating base material layer. In addition, there is a tendency that the embedding property of the circuit unevenness tends to be poor, the fiber containing organic fiber as an essential component is less than 10% by weight, and the thermosetting resin particles are 9% by weight.
If it exceeds 0% by weight, the strength tends to decrease.

【0015】熱硬化性樹脂粒子のほか、必要に応じて、
難燃剤、熱可塑性樹脂、硬化促進剤、着色材、紫外線不
透過剤、酸化防止剤、還元剤、充填剤などをスラリーに
加えて抄造することもできる。これらは、熱硬化性樹脂
粒子と同様の粒径を有する粒子としてスラリーに加えら
れる。また、これらを多量に添加すると、硬化物の強度
を小さくする傾向にあるので、この点を考慮してかつ添
加する目的に応じて添加量の範囲を定める必要がある。
[0015] In addition to the thermosetting resin particles, if necessary,
A paper can also be formed by adding a flame retardant, a thermoplastic resin, a curing accelerator, a colorant, an ultraviolet opaque agent, an antioxidant, a reducing agent, a filler, and the like to the slurry. These are added to the slurry as particles having a particle size similar to the thermosetting resin particles. Further, when these are added in large amounts, the strength of the cured product tends to be reduced. Therefore, it is necessary to determine the range of the added amount in consideration of this point and according to the purpose of addition.

【0016】有機繊維を必須成分とする繊維及び熱硬化
性樹脂粒子並びに硬化剤等を含むスラリーをシート状に
抄造し、抄造して得られたシートに硬化性バインダー樹
脂を含浸法やスプレー法等の手段により塗布し、加熱乾
燥して樹脂シートを製造する。 抄造の条件を適宜設定
することにより、例えば、10〜400μmの範囲の樹
脂シートを得ることができる。得られた樹脂シートは、
例えば巻取り機で巻取られ、次の工程に供される。硬化
性バインダー樹脂としては、熱硬化性樹脂粒子が完全硬
化に至らない温度(通常100〜180℃の範囲で適宜
選択される)でBステージ又はCステージに硬化可能な
樹脂であるのが好ましい。このような硬化性バインダー
樹脂としては、例えば、熱硬化性アクリルエマルショ
ン、フェノール樹脂エマルション、水溶性シリコーン樹
脂エマルション等が挙げられる。
A slurry containing fibers containing organic fibers as essential components, thermosetting resin particles, and a curing agent is formed into a sheet, and the sheet obtained by the forming is impregnated with a curable binder resin, sprayed, or the like. And heat drying to produce a resin sheet. By appropriately setting the papermaking conditions, for example, a resin sheet having a range of 10 to 400 μm can be obtained. The obtained resin sheet is
For example, it is wound by a winding machine and provided to the next step. The curable binder resin is preferably a resin that can be cured to the B stage or the C stage at a temperature at which the thermosetting resin particles do not completely cure (usually appropriately selected in the range of 100 to 180 ° C.). Examples of such a curable binder resin include a thermosetting acrylic emulsion, a phenol resin emulsion, and a water-soluble silicone resin emulsion.

【0017】硬化性バインダー樹脂は、樹脂シートの強
度及び取り扱い性の観点から、乾燥状態で熱硬化性樹脂
粒子と繊維の合計100重量部に対して、1〜20重量
部の範囲となるように塗布されるのが好ましく、5〜1
0重量部の範囲となるように塗布されるのがより好まし
い。硬化性バインダー樹脂が1重量部未満であると樹脂
シートの強度が脆弱となる傾向にあり、20重量部を超
えると、樹脂シート硬化後の耐熱性が悪くなる傾向にあ
る。
The curable binder resin is used in an amount of 1 to 20 parts by weight based on 100 parts by weight of the thermosetting resin particles and fibers in a dry state in view of the strength and handleability of the resin sheet. Preferably applied, 5 to 1
It is more preferable that the composition is applied so as to be in a range of 0 parts by weight. If the amount of the curable binder resin is less than 1 part by weight, the strength of the resin sheet tends to be weak, and if it exceeds 20 parts by weight, the heat resistance after curing the resin sheet tends to deteriorate.

【0018】本発明の樹脂シートは、公知のプリプレグ
と同様の用途に使用される。例えば、樹脂シートを所定
枚数重ね合わせ、その片側または両側に金属はくを配
し、加熱加圧して金属はく張積層板を製造する。また、
多層プリント配線板の内層構成材と外層用金属はくとの
間に樹脂シートを配し、加熱加圧して多層プリント配線
板を製造する。金属はくとしては、主に銅はくやアルミ
はくが用いられるが、これに制限されるものではなく、
他の金属はくを用いることもできる。金属はくの厚さに
ついても特に制限はなく、通常積層板用に用いられいて
いる5〜200μmのものを使用できる。金属はく張積
層板又は多層プリント配線板を製造するときの条件、す
なわち、加熱温度、及び、加圧の圧力については、樹脂
シートに用いられる熱硬化性樹脂粒子により異なり、熱
硬化性樹脂粒子の種類に応じた適宜の条件を選定する必
要がある。
The resin sheet of the present invention is used for the same applications as known prepregs. For example, a predetermined number of resin sheets are stacked, a metal foil is arranged on one or both sides thereof, and heated and pressed to produce a metal-clad laminate. Also,
A resin sheet is placed between the inner layer constituting material of the multilayer printed wiring board and the metal foil for the outer layer, and heated and pressed to manufacture a multilayer printed wiring board. As the metal foil, mainly copper foil or aluminum foil is used, but it is not limited to this.
Other metal foils can be used. There is also no particular limitation on the thickness of the metal foil, and a metal foil having a thickness of 5 to 200 μm, which is usually used for a laminate, can be used. The conditions for manufacturing a metal-clad laminate or a multilayer printed wiring board, that is, the heating temperature, and the pressure of pressurization differ depending on the thermosetting resin particles used for the resin sheet, and the thermosetting resin particles It is necessary to select an appropriate condition according to the type of.

【0019】[0019]

【実施例】実施例1 繊維径15μm、繊維長5mmのポリイミド繊維を、繊
維の濃度が0.4重量%となるように水に分散した。ビ
スフェノールA型エポキシ樹脂(油化シェルエポキシ株
式会社製、エピコートE5048(商品名)を使用)1
00重量部、フェノールノボラック樹脂(大日本インキ
化学工業株式会社製、フェノライトTD−2131(商
品名)を使用)15重量部、2−フェニルイミダゾール
0.15重量部を混合して粉砕し、粒径が10〜90μ
mの粉末とし、前記ポリイミド繊維を分散した水に加え
て混合して分散させスラリーを調製した。このスラリー
を、米坪が80g/m2になるようにしてシートを抄造
した。抄造されたシートは、ポリイミド繊維と熱硬化性
樹脂粒子を含む樹脂成分(以下熱硬化性樹脂粒子分とす
る)の比率は、重量比で、ポリイミド繊維2、熱硬化性
樹脂分7であった。
Example 1 A polyimide fiber having a fiber diameter of 15 μm and a fiber length of 5 mm was dispersed in water so that the fiber concentration became 0.4% by weight. Bisphenol A type epoxy resin (Epicoat E5048 (trade name) manufactured by Yuka Shell Epoxy Co., Ltd.) 1
00 parts by weight, 15 parts by weight of a phenol novolak resin (made by Dainippon Ink and Chemicals, Inc., using phenolite TD-2131 (trade name)), and 0.15 parts by weight of 2-phenylimidazole were mixed and pulverized to obtain a granule. 10-90μ in diameter
m, powder was added to water in which the polyimide fiber was dispersed, mixed and dispersed to prepare a slurry. A sheet was formed from this slurry such that the rice tsubo was 80 g / m 2 . The ratio of the polyimide fiber and the resin component containing thermosetting resin particles (hereinafter, referred to as thermosetting resin particles) was 2 in the weight ratio of the polyimide fiber 2 and the thermosetting resin component 7 in the sheet formed. .

【0020】このシートに、熱硬化性アクリル樹脂エマ
ルション(帝国化学産業株式会社製、HTR−600L
B(商品名)を使用した)100重量部、メラミン樹脂
(日立化成工業株式会社製、メランX66(商品名)を
使用した)10重量部及びp−トルエンスルホン酸0.
3重量部の割合で配合してなる硬化性バインダー樹脂
を、乾燥後の重量で7重量%となるようにスプレー法で
塗布し、120℃で40秒間加熱乾燥して樹脂シートを
作製した。樹脂シートの厚さは、173μmであった。
On this sheet, a thermosetting acrylic resin emulsion (HTR-600L, manufactured by Teikoku Chemical Industry Co., Ltd.)
B (trade name), 10 parts by weight of melamine resin (trade name, Melan X66 (trade name), manufactured by Hitachi Chemical Co., Ltd.), and 0.1 part of p-toluenesulfonic acid.
A curable binder resin blended in a ratio of 3 parts by weight was applied by a spray method so that the weight after drying was 7% by weight, and heated and dried at 120 ° C. for 40 seconds to prepare a resin sheet. The thickness of the resin sheet was 173 μm.

【0021】得られた樹脂シート2枚を重ね、その両側
に厚さ18μmの銅はくを重ね、温度170℃、圧力3
MPaで90分間加熱加圧して、絶縁基材層の厚さ10
0μmの両面銅張積層板を得た。表面の銅はくを直径
0.2mmの穴形状にエッチングにより除去し、銅はく
をマスクとして、炭酸ガスレーザー穴あけ機(日立精工
株式会社製、NLC−1B21(商品名)を使用)によ
り、パルス幅20μsにてレーザー穴あけ加工を実施し
たところ、3ショットにて貫通し、直径0.2mmの穴
をあけることができた。また、厚さ0.6mmで銅はく
の厚さが18μmのガラス布基材エポキシ樹脂両面銅張
積層板(日立化成工業株式会社製、MCL−E−67
(商品名)を使用)に導体パターンを形成して得られた
内層構成材の両側に、前記で得られた樹脂シートを1枚
ずつ重ね、さらにその外側に厚さ18μmの銅はくを配
し、温度170℃、圧力3MPaで90分間加熱加圧し
て4層プリント配線板を得た。内層構成材の導体パター
ンと表面構成材の銅はくとの間の絶縁基材層の厚さは、
47μmであった。表面の銅はくを直径0.2mmの穴
形状にエッチングにより除去し、銅はくをマスクとし
て、前記と同じレーザー穴あけ機により、パルス幅10
μsにてレーザー穴あけ加工を実施したところ、2ショ
ットにて内層構成材の導体パターン上の絶縁基材層を貫
通し、直径0.2mmの穴をあけることができた。
Two sheets of the obtained resin sheet are stacked, and copper foil having a thickness of 18 μm is stacked on both sides thereof at a temperature of 170 ° C. and a pressure of 3 ° C.
Heating and pressing at 90 MPa for 90 minutes, the thickness of the insulating base material layer is 10
A 0 μm double-sided copper-clad laminate was obtained. The copper foil on the surface was removed by etching into a hole shape having a diameter of 0.2 mm, and using the copper foil as a mask, a carbon dioxide laser drilling machine (NLC-1B21 (trade name) manufactured by Hitachi Seiko Co., Ltd.) was used. When laser drilling was performed with a pulse width of 20 μs, a hole having a diameter of 0.2 mm could be drilled through with three shots. A glass cloth base epoxy resin double-sided copper-clad laminate having a thickness of 0.6 mm and a copper foil thickness of 18 μm (manufactured by Hitachi Chemical Co., Ltd., MCL-E-67)
(Using trade name)), the resin sheets obtained above are stacked one by one on both sides of an inner layer constituting material obtained by forming a conductor pattern, and a copper foil having a thickness of 18 μm is arranged on the outside thereof. Then, it was heated and pressed at a temperature of 170 ° C. and a pressure of 3 MPa for 90 minutes to obtain a four-layer printed wiring board. The thickness of the insulating base layer between the conductor pattern of the inner layer component and the copper foil of the surface component is
It was 47 μm. The copper foil on the surface is removed by etching into a hole shape having a diameter of 0.2 mm, and the copper foil is used as a mask, and the pulse width is 10 mm by the same laser drilling machine as described above.
When laser drilling was performed in μs, a hole having a diameter of 0.2 mm was able to be drilled in two shots by penetrating the insulating base material layer on the conductor pattern of the inner layer constituting material.

【0022】実施例2 ポリイミド繊維を、繊維径20μm、繊維長6mmのポ
リパラフェニレンサルファイド(PPS)繊維に変更
し、米坪が90g/m2になるようにしてシートを抄造
するようにしたほかは実施例1と同様にしてシートを抄
造した。抄造されたシートは、PPS繊維と熱硬化性樹
脂分の比率が、重量比で、PPS繊維2、熱硬化性樹脂
分7であった。
Example 2 In addition to changing the polyimide fiber to a polyparaphenylene sulfide (PPS) fiber having a fiber diameter of 20 μm and a fiber length of 6 mm, a sheet was formed so that the rice tsubo became 90 g / m 2. A sheet was formed in the same manner as in Example 1. In the sheet thus produced, the ratio of the PPS fiber to the thermosetting resin was 2 in terms of the weight ratio of the PPS fiber and the thermosetting resin.

【0023】このシートに、実施例1と同じ硬化性バイ
ンダー樹脂を、乾燥後の重量で8重量%となるようにス
プレー法で塗布し、120℃で43秒間加熱乾燥して樹
脂シートを作製した。樹脂シートの厚さは、186μm
であった。
The same curable binder resin as in Example 1 was applied to this sheet by a spray method so that the weight after drying was 8% by weight, and heated and dried at 120 ° C. for 43 seconds to prepare a resin sheet. . The thickness of the resin sheet is 186μm
Met.

【0024】以下実施例1と同様にして絶縁基材層の厚
さ140μmの両面銅張積層板を得た。この両面銅張積
層板について、実施例1と同じレーザー穴あけ機により
パルス幅30μsにて穴あけを実施したところ、3ショ
ットにて貫通し、直径0.2mmの穴をあけることがで
きた。また、実施例1と同様にして、4層プリント配線
板を作製したところ、内層構成材の導体パターンと表面
構成材である銅はくとの間の絶縁基材層の厚さは、65
μmであった。表面の銅はくをエッチングにより除去
し、実施例1と同じレーザー穴あけ機によりパルス幅2
0μsにてレーザー穴あけ加工を実施したところ、2シ
ョットにて内層構成材の導体パターン上の絶縁基材層を
貫通し、直径0.15mmの穴をあけることができた。
Thereafter, a double-sided copper-clad laminate having a thickness of 140 μm was obtained in the same manner as in Example 1. This double-sided copper-clad laminate was drilled with the same laser drilling machine as in Example 1 at a pulse width of 30 μs. As a result, a hole having a diameter of 0.2 mm could be drilled through three shots. When a four-layer printed wiring board was produced in the same manner as in Example 1, the thickness of the insulating base layer between the conductor pattern of the inner layer component and the copper foil as the surface component was 65%.
μm. The copper foil on the surface was removed by etching, and the pulse width was 2 using the same laser drilling machine as in Example 1.
When laser drilling was performed at 0 μs, a hole having a diameter of 0.15 mm was able to be drilled in two shots by penetrating the insulating base material layer on the conductor pattern of the inner layer constituting material.

【0025】実施例3 繊維径12μm、繊維長3mmのアラミド繊維と繊維径
1.8μm、繊維長6mmの細径Eガラス繊維とを等重
量ずつ混合し、混合繊維の濃度が0.4重量%になるよ
うに水に分散した。ビスフェノールAノボラック型エポ
キシ樹脂(大日本インキ化学工業株式会社製、エピクロ
ンN−865(商品名)を使用)100重量部、変性フ
ェノールノボラック樹脂(大日本インキ化学工業株式会
社製、フェノライトVH−4170(商品名)を使用)
45重量部、テトラブロモビスフェノールA30重量部
及びウンデシルイミダゾール0.3重量部を混合して粉
砕し、粒径10〜60μmの粉末とし、前記混合繊維を
分散した水に加えて混合して分散させスラリーを調製し
た。このスラリーを、米坪が70g/m2になるように
してシートを抄造した。抄造されたシートは、混合繊維
と熱硬化性樹脂分の比率は、重量比で、混合繊維3、熱
硬化性樹脂分7であった。
Example 3 An aramid fiber having a fiber diameter of 12 μm and a fiber length of 3 mm and a small-diameter E glass fiber having a fiber diameter of 1.8 μm and a fiber length of 6 mm were mixed by an equal weight, and the concentration of the mixed fiber was 0.4% by weight. And dispersed in water. 100 parts by weight of bisphenol A novolak epoxy resin (Epiclon N-865 (trade name) manufactured by Dainippon Ink and Chemicals, Inc.), modified phenol novolak resin (Phenolite VH-4170 manufactured by Dainippon Ink and Chemicals, Inc.) (Use the product name)
45 parts by weight, 30 parts by weight of tetrabromobisphenol A and 0.3 part by weight of undecylimidazole are mixed and pulverized to obtain a powder having a particle size of 10 to 60 μm. The mixed fiber is added to water, mixed, and dispersed. A slurry was prepared. A sheet was formed from this slurry so that the rice tsubo was 70 g / m 2 . The ratio of the mixed fiber and the thermosetting resin in the sheet thus formed was 3 in the mixed fiber and 7 in the thermosetting resin in weight ratio.

【0026】このシートに、実施例1と同じ硬化性バイ
ンダー樹脂を、乾燥後の重量で8重量%となるようにス
プレー法で塗布し、120℃で30秒間加熱乾燥して樹
脂シートを作製した。樹脂シートの厚さは、168μm
であった。
The same curable binder resin as in Example 1 was applied to this sheet by a spray method so that the weight after drying was 8% by weight, and was heated and dried at 120 ° C. for 30 seconds to produce a resin sheet. . The thickness of the resin sheet is 168 μm
Met.

【0027】以下実施例1と同様にして絶縁基材層の厚
さ85μmの両面銅張積層板を得た。この両面銅張積層
板について、実施例1と同じレーザー穴あけ機によりパ
ルス幅20μsにて穴あけを実施したところ、4ショッ
トにて貫通し、直径0.2mmの穴をあけることができ
た。また、実施例1と同様にして、4層プリント配線板
を作製したところ、内層構成材の導体パターンと表面構
成材である銅はくとの間の絶縁基材層の厚さは、39μ
mであった。表面の銅はくをエッチングにより除去し、
実施例1と同じレーザー穴あけ機によりパルス幅20μ
sにてレーザー穴あけ加工を実施したところ、2ショッ
トにて内層構成材の導体パターン上の絶縁基材層を貫通
し、直径0.10mmの穴をあけることができた。
Thereafter, a double-sided copper-clad laminate having a thickness of 85 μm was obtained in the same manner as in Example 1. This double-sided copper-clad laminate was drilled with the same laser drilling machine as in Example 1 with a pulse width of 20 μs. As a result, a hole having a diameter of 0.2 mm could be drilled with four shots. When a four-layer printed wiring board was produced in the same manner as in Example 1, the thickness of the insulating base layer between the conductor pattern of the inner layer component and the copper foil as the surface component was 39 μm.
m. The copper foil on the surface is removed by etching,
Pulse width of 20 μm using the same laser drilling machine as in Example 1.
When the laser drilling process was performed in s, a hole having a diameter of 0.10 mm was able to be drilled in two shots by penetrating the insulating base material layer on the conductor pattern of the inner layer constituting material.

【0028】実施例4 混合繊維を繊維径20μm、繊維長10mmの4フッ化
エチレン繊維と繊維径6μm、繊維長6mmの細径Eガ
ラス繊維とを等重量ずつ混合した混合繊維に変更し、米
坪が97g/m2になるようにしてシートを抄造するよ
うにしたほかは実施例3と同様にしてシートを抄造し
た。抄造されたシートは、混合繊維と熱硬化性樹脂分の
比率が、重量比で、混合繊維2、熱硬化性樹脂分7であ
った。
Example 4 The mixed fiber was changed to a mixed fiber obtained by mixing equal weights of 20 μm fiber diameter, 10 mm fiber length tetrafluoroethylene fiber and 6 μm fiber diameter, 6 mm small fiber E glass fiber in equal weight. A sheet was formed in the same manner as in Example 3, except that the sheet was formed so that the basis weight was 97 g / m 2 . In the sheet, the ratio of the mixed fiber to the thermosetting resin component was 2 by the mixed fiber and the thermosetting resin component was 7 by weight.

【0029】このシートに、実施例1と同じ硬化性バイ
ンダー樹脂を、乾燥後の重量で6重量%となるようにス
プレー法で塗布し、120℃で40秒間加熱乾燥して樹
脂シートを作製した。樹脂シートの厚さは、200μm
であった。
The same curable binder resin as in Example 1 was applied to this sheet by a spray method so that the weight after drying was 6% by weight, and was heated and dried at 120 ° C. for 40 seconds to produce a resin sheet. . The thickness of the resin sheet is 200 μm
Met.

【0030】以下実施例1と同様にして絶縁基材層の厚
さ180μmの両面銅張積層板を得た。この両面銅張積
層板について、実施例1と同じレーザー穴あけ機により
パルス幅30μsにて穴あけを実施したところ、8ショ
ットにて貫通し、直径0.2mmの穴をあけることがで
きた。また、実施例1と同様にして、4層プリント配線
板を作製したところ、内層構成材の導体パターンと表面
構成材である銅はくとの間の絶縁基材層の厚さは、82
μmであった。表面の銅はくをエッチングにより除去
し、実施例1と同じレーザー穴あけ機によりパルス幅3
0μsにてレーザー穴あけ加工を実施したところ、3シ
ョットにて内層構成材の導体パターン上の絶縁基材層を
貫通し、直径0.10mmの穴をあけることができた。
Thereafter, a double-sided copper-clad laminate having a thickness of 180 μm was obtained in the same manner as in Example 1. This double-sided copper-clad laminate was drilled with the same laser drilling machine as in Example 1 with a pulse width of 30 μs. As a result, a hole having a diameter of 0.2 mm could be drilled through 8 shots. When a four-layer printed wiring board was manufactured in the same manner as in Example 1, the thickness of the insulating base layer between the conductor pattern of the inner layer component and the copper foil as the surface component was 82%.
μm. The copper foil on the surface was removed by etching, and a pulse width of 3 using the same laser drilling machine as in Example 1.
When laser drilling was performed at 0 μs, a hole having a diameter of 0.10 mm was able to be drilled through three shots through the insulating base material layer on the conductor pattern of the inner layer constituting material.

【0031】比較例1 ポリイミド繊維を、繊維径1.8μm、繊維長6mmの
細径Eガラス繊維と繊維径9μm、繊維長10mmのE
ガラス繊維のガラス混合繊維(重量比でポリイミド繊維
25、ガラス繊維75)に変更し、米坪が75g/m2
になるようにしてシートを抄造するようにしたほかは実
施例1と同様にしてシートを抄造した。抄造されたシー
トは、混合繊維と熱硬化性樹脂粒子分の比率が、重量比
で、ガラス混合繊維3、熱硬化性樹脂粒子分7であっ
た。
Comparative Example 1 A polyimide fiber was prepared by mixing a small-diameter E glass fiber having a fiber diameter of 1.8 μm and a fiber length of 6 mm with an E glass fiber having a fiber diameter of 9 μm and a fiber length of 10 mm.
The glass fiber was changed to glass mixed fiber (polyimide fiber 25, glass fiber 75 in weight ratio), and the rice tsubo was 75 g / m 2.
The sheet was formed in the same manner as in Example 1 except that the sheet was formed in such a manner that The ratio of the mixed fiber and the thermosetting resin particles in the sheet made was 3 by the glass mixed fiber and 7 by the thermosetting resin particles by weight.

【0032】このシートに、実施例1と同じ硬化性バイ
ンダー樹脂を、乾燥後の重量で5重量%となるようにス
プレー法で塗布し、120℃で40秒間加熱乾燥して樹
脂シートを作製した。樹脂シートの厚さは、220μm
であった。
The same curable binder resin as in Example 1 was applied to this sheet by a spray method so that the weight after drying was 5% by weight, and heated and dried at 120 ° C. for 40 seconds to prepare a resin sheet. . The thickness of the resin sheet is 220 μm
Met.

【0033】以下実施例1と同様にして絶縁基材層の厚
さ85μmの両面銅張積層板を得た。この両面銅張積層
板について、実施例1と同じレーザー穴あけ機によりパ
ルス幅20μsにて穴あけを実施したが、6ショットで
穴あけできず、穴壁面にガラスが溶融して形成されたガ
ラス玉が見られた。また、実施例1と同様にして、4層
プリント配線板を作製したところ、内層構成材の導体パ
ターンと表面構成材である銅はくとの間の絶縁基材層の
厚さは、42μmであった。表面の銅はくを直径0.2
mmの穴形状にエッチングにより除去し、実施例1と同
じレーザー穴あけ機により銅はくをマスクとしてパルス
幅20μsにてレーザー穴あけ加工を実施したが、5シ
ョットで穴あけできず、穴壁面にガラスが溶融して形成
されたガラス玉が見られた。
Thereafter, a double-sided copper-clad laminate having an insulating substrate layer thickness of 85 μm was obtained in the same manner as in Example 1. For this double-sided copper-clad laminate, drilling was performed with the same laser drilling machine as in Example 1 with a pulse width of 20 μs. However, drilling was not possible with 6 shots, and a glass ball formed by melting glass on the hole wall surface was seen. Was done. When a four-layer printed wiring board was prepared in the same manner as in Example 1, the thickness of the insulating base layer between the conductor pattern of the inner layer component and the copper foil as the surface component was 42 μm. there were. Copper foil on the surface has a diameter of 0.2
The hole was removed by etching into a hole shape of mm, and laser drilling was performed with the same laser drilling machine as in Example 1 using a copper foil as a mask and a pulse width of 20 μs. Glass beads formed by melting were seen.

【0034】比較例2 ビスフェノールA型エポキシ樹脂(油化シェルエポキシ
株式会社製、エピコートE5048(商品名)を使用)
100重量部、フェノールノボラック樹脂(大日本イン
キ化学工業株式会社製、フェノライトTD−2131
(商品名)を使用)15重量部、2−フェニルイミダゾ
ール0.15重量部を、メチルエチルケトンとエチレン
グリコールモノメチルエーテルの混合溶剤(重量比で1
0:1)に溶解して樹脂固形分60重量%のワニスを調
製した。このワニスを厚さ50μmのガラスクロス(M
IL品番1080タイプ)に含浸し、170℃の乾燥器
中で3分間乾燥して樹脂分64重量%のプリプレグを得
た。得られたプリプレグの厚さを測定したところ82μ
mであった。
Comparative Example 2 Bisphenol A epoxy resin (Epicoat E5048 (trade name) manufactured by Yuka Shell Epoxy Co., Ltd.)
100 parts by weight, phenol novolak resin (Denippon Ink and Chemicals, Inc., phenolite TD-2131)
(Using trade name) 15 parts by weight and 0.15 parts by weight of 2-phenylimidazole were mixed with a mixed solvent of methyl ethyl ketone and ethylene glycol monomethyl ether (1 by weight ratio).
0: 1) to prepare a varnish having a resin solid content of 60% by weight. This varnish was applied to a glass cloth (M
(IL type 1080 type) and dried in a dryer at 170 ° C. for 3 minutes to obtain a prepreg having a resin content of 64% by weight. When the thickness of the obtained prepreg was measured, it was 82 μm.
m.

【0035】得られたプリプレグ2枚を重ね、その両側
に厚さ18μmの銅はくを重ね、温度170℃、圧力3
MPaで90分間加熱加圧して、絶縁基材層の厚さ12
5μmの両面銅張積層板を得た。表面の銅はくを直径
0.2mmの穴形状にエッチングにより除去し、実施例
1と同じレーザー穴あけ機により銅はくをマスクとして
パルス幅50μsにてレーザー穴あけ加工を実施した
が、7ショットで穴あけできなかった。また、得られた
プリプレグを樹脂シートに代えて用いたほかは、実施例
1と同様にして4層プリント配線板を作製したところ、
内層構成材の導体パターンと表面構成材である銅はくと
の間の絶縁基材層の厚さは、68μmであった。表面の
銅はくをエッチングにより除去し、実施例1と同じレー
ザー穴あけ機によりパルス幅50μsにてレーザー穴あ
け加工を実施したが、5ショットでも穴あけできなかっ
た。
Two sheets of the obtained prepreg were stacked, and copper foil having a thickness of 18 μm was stacked on both sides thereof at a temperature of 170 ° C. and a pressure of 3 ° C.
By heating and pressurizing at 90 MPa for 90 minutes, the thickness of the insulating base material layer becomes 12
A 5 μm double-sided copper-clad laminate was obtained. The copper foil on the surface was removed by etching into a hole shape having a diameter of 0.2 mm, and laser drilling was performed with a pulse width of 50 μs using the copper foil as a mask by the same laser drilling machine as in Example 1. Could not drill. A four-layer printed wiring board was prepared in the same manner as in Example 1, except that the obtained prepreg was used in place of the resin sheet.
The thickness of the insulating base layer between the conductor pattern of the inner layer component and the copper foil as the surface component was 68 μm. The copper foil on the surface was removed by etching, and laser drilling was performed using the same laser drilling machine as in Example 1 with a pulse width of 50 μs. However, drilling was not possible even with 5 shots.

【0036】[0036]

【発明の効果】請求項1に記載の発明になる樹脂シート
は、レーザーによる穴あけが容易な絶縁基材層を形成で
きる樹脂シートである。また、請求項2に記載の発明に
なる樹脂シートは、これに加えて、樹脂シートを製造す
るときに熱硬化性樹脂粒子の定着が良好な樹脂シートで
ある。また、請求項3に記載の発明になる金属はく張積
層板及び請求項4に記載の発明になる多層プリント配線
板は、ともに、レーザーによる穴あけが容易である。
The resin sheet according to the first aspect of the present invention is a resin sheet capable of forming an insulating base material layer that is easily drilled by a laser. In addition, the resin sheet according to the second aspect of the present invention is a resin sheet in which the thermosetting resin particles are well fixed when the resin sheet is manufactured. The metal-clad laminate according to the third aspect of the present invention and the multilayer printed wiring board according to the fourth aspect of the present invention can be easily drilled by a laser.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 硬化性バインダー樹脂により不織布状に
形成された有機繊維を必須成分とする繊維の間に、常温
で固体で未硬化の熱硬化性樹脂粒子が分散されてなる樹
脂シート。
1. A resin sheet in which uncured thermosetting resin particles which are solid at normal temperature are dispersed between fibers having an organic fiber formed as a nonwoven fabric by a curable binder resin as an essential component.
【請求項2】 有機繊維に加えて、繊維径10μm以下
のガラス繊維を全繊維100重量部に対して5〜70重
量部含有してなる請求項1に記載の樹脂シート。
2. The resin sheet according to claim 1, further comprising 5 to 70 parts by weight of glass fibers having a fiber diameter of 10 μm or less based on 100 parts by weight of the total fibers in addition to the organic fibers.
【請求項3】 請求項1又は2に記載の樹脂シートの硬
化物により絶縁基材層を構成してなる金属はく張積層
板。
3. A metal-clad laminate comprising an insulating base material layer made of a cured product of the resin sheet according to claim 1 or 2.
【請求項4】 請求項1又は2に記載の樹脂シートを構
成材の接着材料として積層一体化してなる多層プリント
配線板。
4. A multilayer printed wiring board obtained by laminating and integrating the resin sheet according to claim 1 or 2 as an adhesive material for a constituent material.
JP1757098A 1998-01-29 1998-01-29 Resin sheet, metal foil clad laminated board and multi-layer printed-wiring board Pending JPH11207850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1757098A JPH11207850A (en) 1998-01-29 1998-01-29 Resin sheet, metal foil clad laminated board and multi-layer printed-wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1757098A JPH11207850A (en) 1998-01-29 1998-01-29 Resin sheet, metal foil clad laminated board and multi-layer printed-wiring board

Publications (1)

Publication Number Publication Date
JPH11207850A true JPH11207850A (en) 1999-08-03

Family

ID=11947585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1757098A Pending JPH11207850A (en) 1998-01-29 1998-01-29 Resin sheet, metal foil clad laminated board and multi-layer printed-wiring board

Country Status (1)

Country Link
JP (1) JPH11207850A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274523A (en) * 2000-03-23 2001-10-05 Risho Kogyo Co Ltd Prepreg for printed wiring board
JP2002353633A (en) * 2001-05-25 2002-12-06 Shin Kobe Electric Mach Co Ltd Method for manufacturing multi-layer printed wiring board and multi-layer printed wiring board
JP2008085106A (en) * 2006-09-28 2008-04-10 Kyocera Corp Printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274523A (en) * 2000-03-23 2001-10-05 Risho Kogyo Co Ltd Prepreg for printed wiring board
JP2002353633A (en) * 2001-05-25 2002-12-06 Shin Kobe Electric Mach Co Ltd Method for manufacturing multi-layer printed wiring board and multi-layer printed wiring board
JP2008085106A (en) * 2006-09-28 2008-04-10 Kyocera Corp Printed wiring board

Similar Documents

Publication Publication Date Title
JP2009147323A (en) Method of manufacturing multilayer printed wiring board, and multilayer printed wiring board
JPH10212364A (en) Prepreg for laminate and production of printed wiring board by using the same
JP2004082687A (en) Production method, of copper foil with insulating layer obtained copper foil with insulating layer obtained by the method and printed wiring board using copper foil with insulating layer
US20060210780A1 (en) Circuit board and production method therefor
JP2004002653A (en) Prepreg for printed circuit board and method for manufacturing the same, and printed circuit board
JP2000017148A (en) Thermosetting resin composition and interlaminar adhesive film for printed wiring board using the same
JP2008239826A (en) Method for producing resin film-laminated prepreg
KR101464142B1 (en) Method for manufacturing multilayer printed wiring board
JPH11207850A (en) Resin sheet, metal foil clad laminated board and multi-layer printed-wiring board
JP4804671B2 (en) Prepreg
JPH1037054A (en) Base material for circuit board, prepreg and printed circuit board using the same
JP2001031782A (en) Prepreg and laminate prepared by using the same
JP2007277463A (en) Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same
JP2003318499A (en) Prepreg for inner layer circuit, metal-foiled laminate for inner layer circuit, and multilayer printed circuit board
JP2000022302A (en) Laminate for laser punching and method thereof
JPH11236456A (en) Resin sheet, metallic foil-clad laminate and multilayer printed wiring board
JP5625635B2 (en) MULTILAYER PRINTED WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME, PREPREG, METAL FILMS WITH RESIN, RESIN FILM
JP2002088175A (en) Prepreg and laminate
JP2003347695A (en) Method of manufacturing printed wiring board
JP6967736B2 (en) Prepreg, metal-clad laminate, printed wiring board and multilayer printed wiring board
JPH09214139A (en) Manufacture of multilayer printed wiring board
JP2003012836A (en) Prepreg and laminated sheet using it
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board
JP2003313272A (en) Epoxy resin composition for impregnating organic fiber base material, and prepreg, laminated sheet, and printed- wiring board using the same
JPH11284348A (en) Manufacture of printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926