Nothing Special   »   [go: up one dir, main page]

JPH11189461A - Highly corrosion resistant silica-containing refractory - Google Patents

Highly corrosion resistant silica-containing refractory

Info

Publication number
JPH11189461A
JPH11189461A JP9358468A JP35846897A JPH11189461A JP H11189461 A JPH11189461 A JP H11189461A JP 9358468 A JP9358468 A JP 9358468A JP 35846897 A JP35846897 A JP 35846897A JP H11189461 A JPH11189461 A JP H11189461A
Authority
JP
Japan
Prior art keywords
fused silica
refractory
raw material
coated
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9358468A
Other languages
Japanese (ja)
Inventor
Koji Ogata
浩二 緒方
Yoshiharu Iizuka
祥治 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP9358468A priority Critical patent/JPH11189461A/en
Publication of JPH11189461A publication Critical patent/JPH11189461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a refractory having improved corrosion resistance while keeping a low thermal expansion inherent in fused silica by coating the surfaces of the fused silica in an Al2 O3 -SiO2 -graphased refractory containing the fused silica having specific particle diameters with zirconia, magnesia and a compound containing them. SOLUTION: This refractory is the one including fused silica having >=0.1 mm particle diameter and a coated layer. The thickness of the coated layer is preferably 0.02-0.2 mm. For example, a method for adding a suitable amount of a binder to the fused silica and the refractory raw material, previously kneading the added product, adding the remaining raw material to the previously kneaded materials and kneading th resulting added product again, or a method for forming the refractory raw material to be coated into a slurry, coating the slurry on the surface of the fused silica, drying the coated product, adding the remaining raw materials and the binder to the obtained dried material and kneading the added product, are adopted as the method for coating a refractory raw material only on the surface of the fused silica. The coated layer can be one layer or plural layers, but the effect is extremely manufactured by the first coated layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼などの金属の連
続鋳造において取鍋からタンディッシュへの金属溶湯の
注入に使用されるロングノズル、タンディッシュからモ
ールドへの溶融金属の注入に使用する浸漬ノズル、溶鋼
の流量を制御するロングストッパー等に好適なA123
−Si02−黒鉛系耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long nozzle used for pouring molten metal from a ladle into a tundish in continuous casting of metal such as steel, and is used for pouring molten metal from a tundish to a mold. immersion nozzle, suitable for long stopper for controlling the flow rate of the molten steel A1 2 0 3
-Si0 2 - regarding graphite refractory.

【0002】[0002]

【従来の技術】溶鋼の連続鋳造においては、取鍋からタ
ンディッシュへの金属溶湯の注入にはロングノズルが、
タンディッシュからモールドへの溶鋼の注入には浸漬ノ
ズルが一般に使用されている。これらのノズルは溶鋼を
整流化し、大気との接触による酸化を防止し、また溶鋼
の飛散を防止して安全に鋳造を行うなど重要な役割を担
っている。
2. Description of the Related Art In continuous casting of molten steel, a long nozzle is used for pouring molten metal from a ladle to a tundish.
Immersion nozzles are commonly used for pouring molten steel from a tundish into a mold. These nozzles play an important role such as rectifying molten steel, preventing oxidation due to contact with the atmosphere, and preventing scattering of molten steel for safe casting.

【0003】ところで、浸漬ノズルやロングノズルは必
ずしも十分な予熱を受けずに溶鋼が注入されるため内孔
側が急激に加熱されて熱応力が発生し、これがしばしば
ノズルに亀裂を生じさせて漏鋼に至り、操業上大きな問
題となる場合があった。そこで、特公昭47−4940
9公報では熱膨張が小さい溶融シリカをA123−黒鉛
系耐火物に添加することによって耐スポール性を改善
し、これら操業トラブルの減少が図られている。
[0003] By the way, since immersion nozzles and long nozzles are not necessarily subjected to sufficient preheating and molten steel is injected, the inner side of the nozzle is rapidly heated to generate thermal stress, which often causes cracks in the nozzle and causes leakage of steel. In some cases, the operation became a major problem. Therefore, Tokiko 47-4940
9 fused silica thermal expansion is small in Japanese A1 2 0 3 - improving spalling resistance by adding a graphite-based refractory, reduction of these operational troubles can be achieved.

【0004】このAl23−黒鉛系耐火物に溶融シリカ
を添加したA123−Si02−黒鉛系耐火物は、浸漬
ノズルの本体、ロングノズル、ロングストッパー等に広
く適用されており、ロングノズルでは予熱温度が低くな
りがちな未浸漬部には大量のシリカを添加し、予熱が比
較的良好で耐食性が重視される浸漬部にはシリカの添加
量を減少させるなどの使い分けされている。
[0004] The Al 2 0 3 - A1 2 0 3 -Si0 2 was added fused silica graphite-based refractory - graphite refractory, the body of the immersion nozzle, a long nozzle, which is widely applied to the long stopper, etc. In the long nozzle, a large amount of silica is added to the non-immersed part where the preheating temperature tends to be low, and the amount of silica is reduced in the immersed part where the preheating is relatively good and corrosion resistance is important, etc. I have.

【0005】しかし、溶融シリカを添加したA123
Si02−黒鉛材質は耐スポール性は大幅に改善された
ものの、溶融シリカ自身が溶鋼あるいはスラグに対して
溶損しやすいため、A123−Si02−黒鉛系耐火物
も溶融シリカの添加量が増大するに従って耐食性は低下
する。
However, the addition of fused silica A1 2 0 3 -
Si0 2 - although the graphite material is spalling resistance was greatly improved, fused since silica itself easily melting against the molten steel or slag, A1 2 0 3 -Si0 2 - amount of graphite refractory also fused silica As corrosion resistance increases, corrosion resistance decreases.

【0006】一方、特開平4−127944公報におい
ては、アルミナを被覆させたシリカを使用することが開
示され、これによって耐食性の改善が図られている。し
かしながら、スラグとの接触がほとんどない浸漬ノズル
の本体や浸漬部に対しては有効であるが、スラグと接触
しているロングノズルやロングストッパーのスラグライ
ンには十分な効果が発揮されない。
On the other hand, Japanese Patent Application Laid-Open No. 4-127944 discloses the use of silica coated with alumina, thereby improving the corrosion resistance. However, it is effective for the main body and the immersion part of the immersion nozzle that hardly comes into contact with the slag, but does not exert a sufficient effect on the slag line of the long nozzle or the long stopper that is in contact with the slag.

【0007】[0007]

【発明が解決しようとする課題】本発明は、A123
Si02−黒鉛系耐火物の耐スポール性を低下すること
なくスラグに対する耐食性を向上し、これによって鋳造
にさいしての安定性と耐用性との両方が改善された鋳造
用ノズルを得ることをその解決課題とする。
The object of the invention is to solve the present invention, A1 2 0 3 -
It is an object of the present invention to obtain a casting nozzle having improved corrosion resistance to slag without deteriorating the spall resistance of a SiO 2 -graphite refractory, thereby improving both the stability and the durability during casting. It is a problem to be solved.

【0008】[0008]

【課題を解決するための手段】本発明は、溶融シリカの
表面にジルコニア、マグネシアのような高耐食性の耐火
性原料を被覆することによって、溶融シリカの持つ低熱
膨張性という特長を保ちながら耐食性も改善できるとい
う知見に基づいて完成した。
SUMMARY OF THE INVENTION According to the present invention, a high corrosion resistant refractory material such as zirconia or magnesia is coated on the surface of a fused silica to maintain the corrosion resistance while maintaining the low thermal expansion characteristic of the fused silica. It was completed based on the finding that it could be improved.

【0009】すなわち、本発明は、粒子径0.lmm以
上の溶融シリカを含有するA123−Si02−黒鉛系
耐火物において、溶融シリカがジルコニア、マグネシア
のような高耐食性耐火性原料によって被覆されているこ
とを特徴とする。
That is, according to the present invention, a particle diameter of 0.1. A1 2 0 3 -Si0 2 contains more fused silica lmm - in graphite refractory, characterized in that it is coated fused silica zirconia, by a high corrosion resistance refractory material such as magnesia.

【0010】溶融シリカを含有するA123−Si02
−黒鉛系耐火物においては、主として溶融シリカがスラ
グに選択的に溶損していくことで溶損が進行する。そこ
で、溶融シリカの表面を耐食性に優れた耐火性原料で被
覆する。すると、溶融シリカが稼働面でスラグと接触し
た場合、スラグはまず被覆した耐火性原料と反応するた
め溶損速度が小さくなる。また、被覆層の厚みが小さけ
れば溶融シリカの熱膨張への影響は小さく低熱膨張性が
維持される。
[0010] containing fused silica A1 2 0 3 -Si0 2
-In graphite-based refractories, erosion progresses mainly because fused silica selectively erodes into slag. Therefore, the surface of the fused silica is coated with a refractory raw material having excellent corrosion resistance. Then, when the fused silica comes into contact with the slag on the operating surface, the slag first reacts with the coated refractory raw material, so that the erosion rate is reduced. Further, if the thickness of the coating layer is small, the influence on the thermal expansion of the fused silica is small, and the low thermal expansion property is maintained.

【0011】被覆する高耐食性耐火性原料としては、溶
融シリカより耐食性に優れたものであれば特に制限はな
いが、特にジルコニア、マグネシアが経済性や耐食性の
点で好適である。さらにこれらの成分を含有する化合物
も適用可能であり、例えばジルコン、スビネル、ジルコ
ニア・ムライト、アルミナ・ジルコニア等が挙げられ
る。
[0011] The high corrosion-resistant refractory raw material to be coated is not particularly limited as long as it is more excellent in corrosion resistance than fused silica, but zirconia and magnesia are particularly suitable in terms of economy and corrosion resistance. Further, compounds containing these components are also applicable, and examples thereof include zircon, subinel, zirconia-mullite, and alumina-zirconia.

【0012】被覆される溶融シリカの粒度については
0.lmm以上が好ましい。0.lmm以下の粒度の溶
融シリカをA123−黒鉛系耐火物に添加しても耐スポ
ール性改善の効果は非常に小さいため溶融シリカを添加
する必要性がなくなるためである。
Regarding the particle size of the fused silica to be coated, a value of 0. 1 mm or more is preferable. 0. lmm a particle size of fused silica A1 2 0 3 - effect of the spalling resistance improvement was added to graphite-based refractory is because there is no need to add a very small for fused silica.

【0013】被覆する高耐食性耐火性原料の厚みは、
0.02mm以上0.2mm以下が好ましい。0.02
mm未満では被覆層の溶損が早く、耐食性の改善効果が
小さくなり、また逆に0.2mmを越えると熱膨張の大
きな被覆層の影響で被覆した溶融シリカの熱膨張が大き
くなり耐スポール性の改善効果が小さくなるためであ
る。
The thickness of the high corrosion resistant refractory raw material to be coated is as follows:
It is preferably from 0.02 mm to 0.2 mm. 0.02
If the thickness is less than 0.2 mm, the coating layer is rapidly melted, and the effect of improving corrosion resistance is reduced. This is because the effect of the improvement becomes small.

【0014】本発明は、粒径0.lmm以上の溶融シリ
カ全てついて高耐食性の耐火性原料を被覆することが好
ましいが、一部にのみ適用してもその適用割合に応じて
効果を発揮することができる。また、被覆厚みについて
も一部が0.02mm以上0.2mm以下の範囲外にあ
ったとしても同様に問題はない。
According to the present invention, a particle size of 0.1. It is preferable to coat all of the fused silica of 1 mm or more with a high corrosion resistant refractory raw material. However, even if it is applied to only a part, the effect can be exhibited according to the application ratio. Further, there is no problem even if a part of the coating thickness is out of the range of 0.02 mm or more and 0.2 mm or less.

【0015】また、本発明は、溶融シリカと接触してい
る被覆層すなわち1層目の被覆層が重要である。粉末原
料の混練工程によっては、2層以上の被覆層が形成され
ることもあるが、本発明の効果が顕著に現れるのは1層
目の被覆層による。
In the present invention, the coating layer in contact with the fused silica, that is, the first coating layer is important. Depending on the kneading step of the powder raw material, two or more coating layers may be formed, but the effect of the present invention is remarkably exhibited by the first coating layer.

【0016】溶融シリカの表面にのみ所定の耐火性原料
を被覆させるためには、例えば最初に溶融シリカと耐火
性原料に適量のバインダーを添加してあらかじめ混練し
ておき、次に残りの原料を添加して再度混練する方法を
採用することができる。あるいは、被覆させる耐火原料
をスラリー状にして溶融シリカの表面にコーティング
し、乾燥させたものに残りの原料とバインダーを添加し
て同様に混練する方法もある。これらの混練の形態で、
溶融シリカの被覆層は1層のみあるいは複数層に任意形
成できる。
In order to coat only the surface of the fused silica with a predetermined refractory raw material, for example, first, an appropriate amount of a binder is added to the fused silica and the refractory raw material and kneaded in advance, and then the remaining raw material is mixed. A method of adding and kneading again can be adopted. Alternatively, there is a method in which the refractory raw material to be coated is formed into a slurry, coated on the surface of fused silica, dried, and the remaining raw materials and a binder are added and kneaded similarly. In the form of these kneading,
The coating layer of fused silica can be arbitrarily formed in one layer or a plurality of layers.

【0017】なお、本発明のA123−Si02−黒鉛
系耐火物においては、SiC、B4C、Si、A1等を
少量添加することによって酸化防止や強度向上が期待で
きる。
[0017] Incidentally, A1 2 0 3 -Si0 2 of the present invention - in the graphite-based refractory, SiC, B4C, preventing oxidation and strength enhanced by adding a small amount of Si, A1, etc. can be expected.

【0018】[0018]

【発明の実施の形態】以下、実施例に基づいて発明の実
施の形態を具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below based on examples.

【0019】実施例1 本発明の実施例の耐火物の特性を比較例とともに表1に
示す。同表においては、前混練用原料と後混練用原料の
配合割合、得られた被覆層の厚み、これを配合原料とし
て得た耐火物の特性を示している。
Example 1 Table 1 shows the characteristics of the refractory of the example of the present invention together with comparative examples. In the table, the mixing ratio of the raw material for pre-kneading and the raw material for post-kneading, the thickness of the obtained coating layer, and the characteristics of the refractory obtained by using this as the raw material for mixing are shown.

【0020】[0020]

【表1】 同表における試料のNo.1〜No.3は比較例を示
し、No.4〜No.7は本発明の実施例を示す。比較
例である試料No.1は従来の一般的なA123−Si
2−黒鉛系耐火物を、同じくNo.2はNo.1に超
微粉ジルコニアを均一に混合した例を、同じくNo.3
は溶融シリカにアルミナを被覆した従来例を示す。N
o.1とNo.2については、表1に示す配合割合の全
量を混合し適量のフェノールレジンを添加して混練し、
配合物を得た。
[Table 1] No. of the sample in the same table. 1 to No. No. 3 shows a comparative example. 4-No. 7 shows an embodiment of the present invention. Sample No. which is a comparative example. 1 conventional general A1 2 0 3 -Si
0 2 - a graphite-based refractory, like No. No. 2 is No. No. 1 was mixed with ultrafine zirconia uniformly, and 3
Shows a conventional example in which fused silica is coated with alumina. N
o. 1 and No. For 2, the total amount of the mixing ratio shown in Table 1 was mixed, an appropriate amount of phenolic resin was added and kneaded,
A formulation was obtained.

【0021】比例例であるNo.3と実施例であるN
o.4からNo.7の試料の場合、それぞれ、溶融シリ
カヘ所定の耐火性原料を被覆させるため最初に前混練用
の原料にバインダーとして適量のフェノールレジンを添
加してあらかじめ混練して造粒子を作製し、これに後混
練用の原料を加えてさらに混練し配合物を得た。得られ
た配合物は1000kg/cm2の圧力でノズル形状に
CIP成形し、コークス中に埋め込んで最高温度100
0℃にて還元焼成を行った。
No. 1 is a proportional example. 3 and N in the embodiment
o. 4 to No. 4. In the case of the sample No. 7, in order to coat the predetermined refractory raw material on the fused silica, first, an appropriate amount of phenol resin is added as a binder to the raw material for pre-kneading, and the mixture is kneaded in advance to produce granulated particles. The ingredients for kneading were added and further kneaded to obtain a blend. The obtained composition was CIP-molded into a nozzle shape at a pressure of 1000 kg / cm 2 , embedded in coke, and subjected to a maximum temperature of 100.
Reduction firing was performed at 0 ° C.

【0022】焼成後の試料の断面を顕微鏡で観察すると
溶融シリカの周囲に1層あるいは2層の被覆層を確認す
ることができ、1層目の被覆層の厚みは表1の計算値と
ほぼ一致するものであった。
When the cross section of the fired sample was observed with a microscope, one or two coating layers could be confirmed around the fused silica. The thickness of the first coating layer was almost the same as the calculated value in Table 1. It was a match.

【0023】焼成したノズルの、曲げ強度、弾性率、熱
膨張率および耐食性を調査した。測定結果及び耐スポー
ル性を表す熱衝撃抵抗係数の結果を表1に示す。曲げ強
度は3点曲げ法により、弾性率は超音波法により、熱膨
張率は市販の熱膨張計で測定し1500℃までの平均線
膨張係数を示した。熱衝撃抵抗係数はポアソン比がほぼ
一定のため次式により算出した。数字は大きいほど耐ス
ポール性に優れていることを示す。
The fired nozzle was examined for bending strength, modulus of elasticity, coefficient of thermal expansion, and corrosion resistance. Table 1 shows the measurement results and the results of the thermal shock resistance coefficient representing the spall resistance. The bending strength was measured by a three-point bending method, the elastic modulus was measured by an ultrasonic method, and the thermal expansion coefficient was measured by a commercially available thermal dilatometer, and showed an average linear expansion coefficient up to 1500 ° C. The thermal shock resistance coefficient was calculated by the following equation since the Poisson's ratio was almost constant. The larger the number, the better the spall resistance.

【0024】 (曲げ強度)/[(弾性率)×(熱膨張率)] 耐食性は、炭素含有量が0.01重量%の鋼を1600
℃にて溶解し、表面にCaOを40%、SiO2を30
%、Al23を10%、マグネシアを10%、二酸化マ
ンガンを7%含有するスラグを浮遊させ、1辺が20m
mの角柱状試料を30分間浸漬し、最大溶損部分の溶損
量を測定した。表1に示した数字はNo.1の溶損速度
を100として指数化しており、数字が小さいほど耐食
性に優れていることを示す。
(Bending strength) / [(elastic modulus) × (thermal expansion coefficient)] The corrosion resistance of a steel having a carbon content of 0.01% by weight was 1600.
° C, 40% CaO and 30% SiO 2 on the surface
%, Al 2 O 3 10%, magnesia 10%, slag containing manganese dioxide 7%, and 20 m on each side
m was immersed for 30 minutes, and the amount of erosion at the maximum erosion portion was measured. The numbers shown in Table 1 are No. The erosion rate of 1 is indexed as 100, and the smaller the number, the better the corrosion resistance.

【0025】品質測定結果から明らかなように、本発明
の実施例であるNo.4からNo.7は、比較例である
従来品のNo.1やNo.3と比較して溶融シリカへの
耐火性原料の被覆効果により熱衝撃抵抗性が維持されて
いるとともに、耐食性が大幅に改善されていることがわ
かる。特にNo.2とNo.4を比較すると、最終的に
は同一の原料を使用したにも関わらず、溶融シリカの表
面にのみ超微粉ジルコニアを配置したNo.4は超微粉
ジルコニアをマトリックスに均一に分散させたに過ぎな
いNo.2と比較して耐スポール性、耐食性ともに優れ
ており本発明の効果が顕著に現れている。
As is evident from the quality measurement results, No. 1 of the embodiment of the present invention. 4 to No. 4. No. 7 is No. 7 of a conventional product as a comparative example. 1 and No. It can be seen that the thermal shock resistance is maintained due to the effect of coating the fused silica with the refractory raw material and the corrosion resistance is significantly improved, as compared with Comparative Example 3. In particular, no. 2 and No. Comparing No. 4 with No. 4 in which ultrafine zirconia was arranged only on the surface of fused silica, despite the fact that the same raw material was finally used. No. 4 merely dispersed ultrafine zirconia uniformly in the matrix. Compared with No. 2, both the spall resistance and the corrosion resistance are excellent, and the effect of the present invention is remarkably exhibited.

【0026】実施例2 本発明における被覆層の厚みの影響について調査するた
めに表2のNo.8からNo.14の7種類の配合を混
練した。比較例としてのNo.8は、実施例1の比較例
No.1と同様に均一に混練した。No.9からNo.
14についてはNo.3からNo.7と同様に混練し、
溶融シリカへの超微粉ジルコニアの被覆厚みを増加させ
た。配合作製以降の成形、焼成、品質評価等については
実施例1と全く同様に実施した。
Example 2 In order to investigate the influence of the thickness of the coating layer in the present invention, No. 2 of Table 2 was used. 8 to No. 8 Fourteen kinds of seven kinds of compounds were kneaded. No. as a comparative example. 8 is Comparative Example No. 8 of Example 1. Kneaded uniformly as in Example 1. No. 9 to No. 9
No. 14 is No. 3 to No. Knead the same as 7,
The coating thickness of the ultrafine zirconia on the fused silica was increased. The molding, firing, quality evaluation, and the like after the preparation of the blend were performed in exactly the same manner as in Example 1.

【0027】[0027]

【表2】 品質評価の結果、本発明の実施例であるNo.9からN
o.14は、比較例のNo.8よりも耐食性に優れてい
る。但し、被覆厚みが0.02mm未満であるNo.9
は耐食性改善効果が比較的小さい。また、0.2mmを
越えるNo.14はNo.13と比較すると耐食性には
優れるものの、特に熱膨張係数の増大に伴う耐スポール
性の低下が比較的顕著であり好ましくない。このことか
ら、より好ましい被覆層の厚みは0.02mmから0.
2mmであることがわかる。
[Table 2] As a result of the quality evaluation, No. 1 of the embodiment of the present invention was obtained. 9 to N
o. 14 is No. 14 of the comparative example. 8 is more excellent in corrosion resistance. However, when the coating thickness is less than 0.02 mm, 9
Has a relatively small effect on improving corrosion resistance. In addition, No. No. 14 is No. As compared with No. 13, the corrosion resistance is excellent, but the decrease in spall resistance with an increase in the coefficient of thermal expansion is relatively remarkable, which is not preferable. For this reason, a more preferable thickness of the coating layer is 0.02 mm to 0.2 mm.
It turns out that it is 2 mm.

【0028】実施例3 この実施例においては、本発明によって得た超微粉ジル
コニアの被覆層を有する溶融シリカを含有するA123
−Si02−黒鉛系耐火物をロングノズルに適用し実炉
試験に供した。表1に示すNo.1とNo.4の材質を
スラグラインに適用してロングノズルを作製しスラブ連
鋳機にて実炉試験に供した。取鍋の容量は300トン、
l回チャージあたりの鋳造時問は約40分である。テス
ト本数は各々5本ずつで、1本あたり平均して約12回
のチャージ回使用した。使用後のノズルを回収し、スラ
グライン部の溶損速度を調査した結果No.4はNo.
1と比較して約30%溶損速度が小さくなることが判明
した。これによって、本発明品をロングノズルのスラグ
ライン部に適用することによつてノズルの耐用を向上さ
せることが可能となった。
[0028] Example 3 In this example, A1 2 0 3 containing a fused silica having a coating layer of ultrafine zirconia obtained by the present invention
-Si0 2 - were subjected to applied Miro tested graphite refractory to long nozzle. No. shown in Table 1. 1 and No. The material No. 4 was applied to a slag line to produce a long nozzle, which was subjected to an actual furnace test using a continuous slab casting machine. Ladle capacity is 300 tons,
The casting time per charge is about 40 minutes. The number of test pieces was five each, and about 12 charge times were used per one piece on average. The nozzle after use was recovered and the erosion rate of the slag line was investigated. 4 is No. 4.
It was found that the erosion rate was reduced by about 30% as compared with No. 1. This makes it possible to improve the durability of the nozzle by applying the product of the present invention to the slag line portion of the long nozzle.

【0029】[0029]

【発明の効果】本発明によって、溶融シリカの耐食性は
改善され、この溶融シリカを使用したA123−Si0
2−黒鉛系耐火物をロングノズルや浸漬ノズルに適用す
ることによって耐用性を格段に向上できる。
[Effect of the Invention] According to the present invention, the corrosion resistance of the fused silica is improved, A1 2 0 3 using this fused silica -Si0
By using 2 -graphite refractories for long nozzles and immersion nozzles, the durability can be significantly improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒子径0.lmm以上の溶融シリカを含
有するA123−Si02−黒鉛系耐火物において、前
記溶融シリカがジルコニア、マグネシアおよびこれらを
含有する化合物の中から選択される1種または2種以上
の被覆層によって被覆されている高耐食性溶融シリカ含
有耐火物。
1. The method of claim 1, wherein the particle size is 0. containing more fused silica lmm A1 2 0 3 -Si0 2 - in graphite refractories, one or more coating layers are selected from the compounds wherein the fused silica contains zirconia, magnesia and their High corrosion resistant fused silica containing refractory coated with.
【請求項2】 溶融シリカを被覆する被覆層の厚みが
0.02mm以上0.2mm以下である請求項1に記載
の高耐食性溶融シリカ含有耐火物。
2. The high corrosion resistant fused silica-containing refractory according to claim 1, wherein the thickness of the coating layer covering the fused silica is 0.02 mm or more and 0.2 mm or less.
JP9358468A 1997-12-25 1997-12-25 Highly corrosion resistant silica-containing refractory Pending JPH11189461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9358468A JPH11189461A (en) 1997-12-25 1997-12-25 Highly corrosion resistant silica-containing refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9358468A JPH11189461A (en) 1997-12-25 1997-12-25 Highly corrosion resistant silica-containing refractory

Publications (1)

Publication Number Publication Date
JPH11189461A true JPH11189461A (en) 1999-07-13

Family

ID=18459472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9358468A Pending JPH11189461A (en) 1997-12-25 1997-12-25 Highly corrosion resistant silica-containing refractory

Country Status (1)

Country Link
JP (1) JPH11189461A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114945544A (en) * 2020-02-20 2022-08-26 里弗雷克特里知识产权两合公司 Grain for producing sintered refractory product, batch for producing sintered refractory product, method for producing sintered refractory product, and sintered refractory product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114945544A (en) * 2020-02-20 2022-08-26 里弗雷克特里知识产权两合公司 Grain for producing sintered refractory product, batch for producing sintered refractory product, method for producing sintered refractory product, and sintered refractory product
CN114945544B (en) * 2020-02-20 2023-11-17 里弗雷克特里知识产权两合公司 Particles for producing a sintered refractory product, batch for producing a sintered refractory product, method for producing a sintered refractory product, and sintered refractory product

Similar Documents

Publication Publication Date Title
JP3283883B2 (en) Alumina-magnesia-graphite refractory for continuous casting
AU712600B2 (en) Nozzle for use in continuous casting of steel
JP4132212B2 (en) Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same
JP2607918B2 (en) Pouring refractories
JPH082975A (en) Refractory for casting application
EP1736258A1 (en) Nozzle for use in continuous casting
JPH11189461A (en) Highly corrosion resistant silica-containing refractory
JPH0352423B2 (en)
JP3096586B2 (en) Alumina-carbon casting nozzle refractories
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JP2002338347A (en) Zirconia-graphite fire resisting material and immersion nozzle for continuous casting using the material
AU6855298A (en) Nozzle for continuous casting of steel
JPH08175875A (en) Castable refractory
JPH10130053A (en) Refractory for casting, nozzle for continuous casting and production thereof
JPH11320049A (en) Long nozzle for continuous casting
JPH039066B2 (en)
JPS5864260A (en) Nozzle for high anticorrosion continuous casting
JP2760751B2 (en) Immersion nozzle for continuous casting
KR100367647B1 (en) A continuous casting nozzle for molten steel and manufacturing method thereof
JP2004066251A (en) Refractory material for refractory member for continuously casting steel and continuous casting nozzle for steel using refractory material
JPH11147761A (en) Zirconia-graphite refractory
JPH033631B2 (en)
JPH10158072A (en) Magnesia-carbon castable refractory and its applied body
JP2719278B2 (en) Fine nozzle refractories for continuous casting
JP2971824B2 (en) High corrosion resistance refractory