JPH11179496A - Divided flow plate for continuously casting thin sheet and method for continuously casting thin sheet - Google Patents
Divided flow plate for continuously casting thin sheet and method for continuously casting thin sheetInfo
- Publication number
- JPH11179496A JPH11179496A JP35561497A JP35561497A JPH11179496A JP H11179496 A JPH11179496 A JP H11179496A JP 35561497 A JP35561497 A JP 35561497A JP 35561497 A JP35561497 A JP 35561497A JP H11179496 A JPH11179496 A JP H11179496A
- Authority
- JP
- Japan
- Prior art keywords
- flow
- molten metal
- dividing plate
- width
- flow dividing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、溶融金属(以下、
溶湯という)から直接薄板を製造する薄板連続鋳造に用
いる薄板連続鋳造用分流板および薄板連続鋳造方法に関
する。TECHNICAL FIELD The present invention relates to a molten metal (hereinafter, referred to as molten metal).
The present invention relates to a flow dividing plate for continuous sheet casting and a sheet continuous casting method used in sheet continuous casting for producing a sheet directly from a molten metal.
【0002】[0002]
【従来の技術】薄板連続鋳造法は従来のスラブ連続鋳造
法に比べ、熱延工程を省略できるため製造コストを低減
できるというメリットがある。薄板連続鋳造法には上注
ぎ法と横注ぎ法がある。横注ぎ法には下記の特長があ
る。2. Description of the Related Art Compared with a conventional continuous slab casting method, a thin plate continuous casting method has an advantage that a manufacturing cost can be reduced because a hot rolling step can be omitted. The continuous casting method of a thin plate includes an upper pouring method and a horizontal pouring method. The horizontal pouring method has the following features.
【0003】(a) 横方向の給湯であって、溶湯ヘッドが
小さいため、ノズル内の湯面制御が容易であり、広幅の
均一給湯が可能である。 (b) 設備高さが低くなるため設備費が小さい。 (c) 鋳片の搬送が水平方向であり、高温強度の低い材料
でも自重による応力が小さく、鋳片の割れ、破断がない
ため安定した鋳造ができる。(A) Hot water is supplied in the horizontal direction, and the molten metal head is small, so that the level of the hot water in the nozzle can be easily controlled and uniform hot water supply with a wide width is possible. (b) The equipment cost is small because the equipment height is low. (c) The slab is conveyed in the horizontal direction, the stress due to its own weight is small even for materials having low high-temperature strength, and there is no cracking or breaking of the slab, so that stable casting can be performed.
【0004】横注ぎ法には双ロール法と単ロール法があ
る。双ロール法は鋳片の品質が上下面で均一であるため
単ロール法より優れている。The lateral pouring method includes a twin roll method and a single roll method. The twin roll method is superior to the single roll method because the quality of the slab is uniform on the upper and lower surfaces.
【0005】薄板連続鋳造用の鋳造ノズル例として、実
開平7−37447号には単ロールまたは双ロール横注
ぎ法用の鋳造ノズルが開示されている。As an example of a casting nozzle for continuous casting of a thin plate, Japanese Utility Model Laid-Open No. 7-37447 discloses a casting nozzle for a single roll or twin roll lateral pouring method.
【0006】図8に同公報に開示された鋳造ノズルを用
いた双ロール横注ぎ法による薄板連続鋳造の模式図を示
す。同図(a) は縦断面図、同図(b) は平面図である。FIG. 8 is a schematic view of continuous casting of a thin plate by a twin-roll lateral pouring method using a casting nozzle disclosed in the publication. FIG. 1A is a longitudinal sectional view, and FIG. 1B is a plan view.
【0007】同図において、溶湯10は底ノズル側壁1
3を備えた底ノズル4と、1対のサイドノズル5で保持
される。溶湯10は湯面12側では上ロール8、底ノズ
ル4側では下ロール9で冷却され、2つの凝固シェルと
なり、圧着されて薄板、すなわち鋳片11となる。In FIG. 1, a molten metal 10 is provided on a bottom nozzle side wall 1.
3 and a pair of side nozzles 5. The molten metal 10 is cooled by the upper roll 8 on the molten metal surface 12 side and by the lower roll 9 on the bottom nozzle 4 side, forms two solidified shells, and is pressed into a thin plate, that is, a slab 11.
【0008】底ノズル4は、底部の前縁が下ロール9の
周面と接することにより、溶湯の底面をシールし、サイ
ドノズル5は、底面が下ロール9の周面と接し、かつ、
その側面が上ロール8の端面および底ノズル側壁13の
外側面に接することにより、溶湯の側面をシールする。The bottom nozzle 4 seals the bottom surface of the molten metal by the front edge of the bottom contacting the peripheral surface of the lower roll 9, and the side nozzle 5 contacts the peripheral surface of the lower roll 9, and
By contacting the side surface with the end surface of the upper roll 8 and the outer surface of the bottom nozzle side wall 13, the side surface of the molten metal is sealed.
【0009】同図において溶湯は、溶湯/下ロール/底
ノズル、溶湯/上ロール/雰囲気ガス、溶湯/下ロール
/サイドノズルおよび溶湯/上ロール/サイドノズルの
各個所で3重境界線を形成している。これらの3重境界
線の交点は、溶湯/下ロール/底ノズル/サイドノズル
および溶湯/上ロール/雰囲気ガス/サイドノズル、の
各個所で4重境界点を形成する。In FIG. 1, the molten metal forms a triple boundary at each of the molten metal / lower roll / bottom nozzle, molten metal / upper roll / atmosphere gas, molten metal / lower roll / side nozzle and molten metal / upper roll / side nozzle. doing. The intersections of these triple boundaries form quadruple boundaries at each of the following points: molten metal / lower roll / bottom nozzle / side nozzle and molten metal / upper roll / atmospheric gas / side nozzle.
【0010】ロール間へ供給される溶湯10は底ノズル
側壁13およびサイドノズル5による粘性抵抗を受け、
同図(b) に示すように、幅中央部で流速が大きく、サイ
ドノズル5の内壁面に近い端部の流速が小さくなる傾向
があり、幅端部で溶湯流の滞留を生じやすい。[0010] The molten metal 10 supplied between the rolls is subjected to viscous resistance by the bottom nozzle side wall 13 and the side nozzle 5,
As shown in FIG. 3B, the flow velocity tends to be large at the center of the width and small at the end near the inner wall surface of the side nozzle 5, and the molten metal flow tends to stay at the width end.
【0011】3重境界線や4重境界点では溶湯がロール
とノズル耐火物に囲まれており、周囲からの抜熱によっ
て冷却されやすいため、溶湯の温度が低くなる。特に、
4重境界点では異常凝固が発生しやすく、凝固物が耐火
物に付着して固着シェル14を生ずる。At the triple boundary line or quadruple boundary point, the molten metal is surrounded by the roll and the nozzle refractory, and is easily cooled by heat removal from the surroundings, so that the temperature of the molten metal is lowered. Especially,
At the quadruple boundary point, abnormal solidification is apt to occur, and the solidified substance adheres to the refractory to form the fixed shell 14.
【0012】同図(a) に示すように、溶湯流の上下方向
の流速分布は、底面からの粘性抵抗をうける下面の流速
に比べ、表面近傍の流速の方が大きい。従って、前記3
重境界線では上面よりも下面の方が溶湯温度が低下する
傾向にあり、4重境界点での固着シェルも下ロール側で
発生しやすい傾向にある。また前記のように、上下ロー
ル間で溶湯の温度が異なると、鋳片表面品質の差が生じ
やすい。As shown in FIG. 1 (a), the vertical flow velocity distribution of the molten metal flow is larger near the surface than at the lower surface where viscous resistance is applied from the bottom surface. Therefore, the above 3
In the heavy boundary line, the temperature of the molten metal tends to be lower on the lower surface than on the upper surface, and the fixed shell at the quadruple boundary point tends to be generated on the lower roll side. Further, as described above, when the temperature of the molten metal is different between the upper and lower rolls, a difference in the surface quality of the slab tends to occur.
【0013】固着シェルは鋳造開始直後に生成しやす
い。鋳造開始直後はロールおよび鋳造ノズルの温度が低
く、溶湯が溶湯表面の輻射およびタンディッシュと鋳造
ノズル等の耐火物からの抜熱により冷却されるためであ
る。The sticking shell is likely to be formed immediately after the start of casting. This is because the temperature of the roll and the casting nozzle is low immediately after the start of casting, and the molten metal is cooled by radiation of the molten metal surface and heat removal from the refractory such as the tundish and the casting nozzle.
【0014】固着シェルが生成すると、下記(a) 〜(c)
の問題点が生じる。When the fixed shell is formed, the following (a) to (c)
Problem arises.
【0015】(a) ロール表面が固着シェルに覆われて適
正な凝固時間が確保されず、幅方向に鋳片凝固シェルの
厚さむらが生じる等、品質上好ましくない。(A) The roll surface is covered with a fixed shell, so that an appropriate solidification time cannot be secured, and the thickness of the cast solidified shell is uneven in the width direction.
【0016】(b) 耐火物から脱落した固着シェルが、鋳
片に巻き込まれ、噛込み疵と称する致命的な表面欠陥と
なる。(B) The fixed shell which has fallen off from the refractory is caught in the slab, resulting in a fatal surface defect called a biting flaw.
【0017】(c) 固着シェルが脱落する際、耐火物の一
部が欠損し、漏鋼等のトラブルが発生し安定操業を阻害
する原因となる。(C) When the fixed shell comes off, a part of the refractory is broken, causing troubles such as steel leakage, which may hinder stable operation.
【0018】この固着シェルの品質上および操業上の問
題は、単ロール横注ぎ法においても同様におきる。[0018] The quality and operational problems of the anchoring shells also arise in the single-roll lateral pouring method.
【0019】特公平7−10423号公報には、前記固
着シェルの対策として、単ロール横注ぎ法において、ノ
ズル鋳造堰と称する上堰を用い、鋳造ノズル部における
凝固物の付着を減少させる方法および装置が開示されて
いる。Japanese Patent Publication No. 7-10423 discloses a method for reducing the adhesion of coagulated material at a casting nozzle portion by using an upper weir called a nozzle casting weir in a single roll lateral pouring method as a measure against the above-mentioned fixed shell. An apparatus is disclosed.
【0020】特開平5−318039号公報には本発明
者らによって、単ロールまたは双ロール横注ぎ法におい
て、浸漬堰と称する上堰を用い、鋳造ノズルと冷却ロー
ルの境界部での凝固殻の生成を防止する方法および装置
が開示されている。Japanese Patent Application Laid-Open No. Hei 5-318039 discloses that the inventors of the present invention used an upper weir called an immersion weir in a single roll or twin roll lateral pouring method, and formed a solidified shell at the boundary between a casting nozzle and a cooling roll. A method and apparatus for preventing generation is disclosed.
【0021】[0021]
【発明が解決しようとする課題】前記特公平7−104
23号公報もしくは特開平5−318039号公報に開
示されている上堰を用いて固着シェルの生成を抑制する
方法は、単ロール横注ぎ法ではある程度有効な技術であ
るが、双ロール横注ぎ法に適用するには下記(a)〜(c)
の問題がある。Problems to be Solved by the Invention
The method of suppressing the formation of a sticking shell using an upper weir disclosed in Japanese Patent Application Laid-Open No. 23-318039 or Japanese Patent Application Laid-Open No. Hei 5-318039 is an effective technique to some extent in a single roll lateral pouring method. (A) to (c) below
There is a problem.
【0022】(a) 双ロール横注ぎ法において、下ロール
側の3重境界線の近傍に上堰を設置する場合、前記3重
境界線を通過する溶湯流が加速され固着シェルの生成が
抑制されるが、湯面近傍に溶湯流の滞留域が生じやすく
なり、通常問題のない上面側の3重境界線部でも固着シ
ェルが生じやすくなり、特に4重境界点近傍で固着が生
じやすい。(A) In the twin-roll horizontal pouring method, when an upper weir is installed near the triple boundary on the lower roll side, the flow of the molten metal passing through the triple boundary is accelerated to suppress the formation of a fixed shell. However, a stagnation area of the molten metal flow is likely to be generated in the vicinity of the molten metal surface, and a fixing shell is likely to be generated even in the triple boundary portion on the upper surface side where there is no problem, and in particular, fixing is likely to occur in the vicinity of the quadruple boundary point.
【0023】(b) 双ロール横注ぎ法では上下のロールに
均等な条件で溶湯を供給することが好ましい。しかし前
記特公平7−10423号公報もしくは特開平5−31
8039号公報に開示されている上堰を双ロール横注ぎ
法で用いる場合は、上面側と下面側の溶湯の流れが不均
一となるために上下ロール面上での凝固が均等でなくな
り、製品品質が悪化するおそれがある。(B) In the twin roll horizontal pouring method, it is preferable to supply the molten metal to the upper and lower rolls under uniform conditions. However, Japanese Patent Publication No. Hei.
When the upper weir disclosed in Japanese Patent No. 8039 is used in the twin-roll horizontal pouring method, since the flow of the molten metal on the upper surface side and the lower surface side becomes uneven, the solidification on the upper and lower roll surfaces is not uniform, and the product The quality may deteriorate.
【0024】(c) 更に、双ロール横注ぎ法に用いる装置
の構成上、上堰が上ロールと干渉し、効果的に固着シェ
ルを抑制するように上堰を設置することは極めて難し
い。(C) Further, due to the structure of the apparatus used for the twin roll lateral pouring method, it is extremely difficult to install the upper weir so that the upper weir interferes with the upper roll and effectively suppresses the sticking shell.
【0025】上堰を用いない場合でも、前記のような溶
湯の上下方向の流速の不均一のため、下側の3重境界線
で固着シェルが発生しやすくなる。この対策として、溶
湯過熱度を大きくとる方法があるが過度に過熱度を大き
くすると、鋳片に縦割れ疵が発生する恐れがある。Even when the upper weir is not used, the above-described uneven flow velocity of the molten metal in the vertical direction tends to cause the formation of a fixed shell at the lower triple boundary. As a countermeasure, there is a method of increasing the degree of superheat of the molten metal. However, if the degree of superheat is excessively increased, there is a possibility that a vertical crack is generated in the slab.
【0026】本発明の課題は、双ロール横注ぎ法の薄板
連続鋳造において、固着シェルの発生を防止し、高品質
で安定した操業を可能とする手段と鋳造方法を提供する
ことにある。An object of the present invention is to provide a means and a casting method for preventing the occurrence of a sticking shell and enabling high-quality and stable operation in continuous casting of a thin plate by the twin-roll horizontal pouring method.
【0027】[0027]
【課題を解決するための手段】本発明者らは、双ロール
横注ぎ法による薄板連続鋳造法の研究を進めてきた結
果、下記の(a) 〜(f) の知見を得た。Means for Solving the Problems The present inventors have conducted research on a continuous casting method of a thin plate by a twin-roll horizontal pouring method, and have obtained the following findings (a) to (f).
【0028】(a) 固着シェルは、幅端部の溶湯流の滞留
と四重境界点近傍の冷却により溶湯が異常凝固すること
によって生じる。(A) The fixed shell is formed by abnormal solidification of the molten metal due to stagnation of the molten metal flow at the width end and cooling near the quadruple boundary point.
【0029】(b) 固着シェルを防止するには、溶湯流の
上下方向の不均衡をなくし、幅端部の溶湯流動を促進す
るとともに、溶湯流自身の顕熱を供給して周囲からの冷
却を緩和することが有効である。(B) In order to prevent the fixed shell, the imbalance in the melt flow in the vertical direction is eliminated, the melt flow at the width end is promoted, and the sensible heat of the melt flow itself is supplied to cool the melt from the surroundings. It is effective to mitigate this.
【0030】(c) 上記(b) の手段としては、溶湯流を上
下方向に均一化し、幅端部に重点的に給湯することが有
効である。その手段として1枚の水平分流板と水平分流
板上に配置した複数枚の垂直分流板で構成される分流板
を用いる。(C) As means (b) above, it is effective to equalize the flow of the molten metal in the vertical direction and supply hot water mainly to the width end. As the means, a flow dividing plate composed of one horizontal flow dividing plate and a plurality of vertical flow dividing plates arranged on the horizontal flow dividing plate is used.
【0031】(d) 水平分流板の厚肉化により溶湯流路の
断面積を減少させ、溶湯の流速を大きくするとともに、
水平分流板を適正な位置に置くことにより溶湯の流速を
上下均等にすることができる。(D) The cross-sectional area of the molten metal channel is reduced by increasing the thickness of the horizontal flow dividing plate, and the flow velocity of the molten metal is increased.
By placing the horizontal flow dividing plate at an appropriate position, the flow velocity of the molten metal can be equalized in the vertical direction.
【0032】(e) 幅端部の溶湯流路を流入側で広く、流
出側で狭くするように垂直分流板を配置することにより
幅端部の溶湯流動を促進できる。 (f) 溶湯流を適正に配分すれば、溶湯の過熱度を低くす
ることができる。(E) The flow of the molten metal at the width end can be promoted by arranging the vertical flow dividing plate so that the flow path of the molten metal at the width end is wide at the inflow side and narrow at the outflow side. (f) If the molten metal flow is properly distributed, the degree of superheat of the molten metal can be reduced.
【0033】図7は上記検討に基づいた分流板を設置し
た場合の溶湯流動の模式図である。同図(a) は縦断面
図、同図(b) は平面図である。同図において、溶湯1
0、底ノズル側壁13を備えた底ノズル4、サイドノズ
ル5、湯面12、鋳片11および上下のロール8、9は
図8と同一の符号を付しており、同一機能を有する。底
ノズル4には水平分流板1と垂直分流板2とからなる分
流板3が配置されている。FIG. 7 is a schematic diagram of the flow of the molten metal in the case where the flow dividing plate is installed based on the above examination. FIG. 1A is a longitudinal sectional view, and FIG. 1B is a plan view. In FIG.
0, the bottom nozzle 4 having the bottom nozzle side wall 13, the side nozzle 5, the molten metal surface 12, the casting slab 11, and the upper and lower rolls 8 and 9 are denoted by the same reference numerals as those in FIG. 8 and have the same functions. The bottom nozzle 4 is provided with a flow dividing plate 3 including a horizontal flow dividing plate 1 and a vertical flow dividing plate 2.
【0034】図7(a) に示すように、図8の従来法と比
較して、上下方向の溶湯流が均一化され、図7(b) に示
すように幅端部での溶湯流の増速されることが期待でき
る。As shown in FIG. 7 (a), compared to the conventional method of FIG. 8, the molten metal flow in the vertical direction is made uniform, and as shown in FIG. 7 (b), the molten metal flow at the width end is reduced. Expected to be accelerated.
【0035】以上の知見に基づいて、本発明の要旨は以
下の(1) 〜(6) にある。 (1) 双ロール横注ぎ法において、溶湯流路を幅方向に3
つ以上に区画する垂直分流板を備えたことを特徴とする
薄板連続鋳造用分流板。Based on the above findings, the gist of the present invention lies in the following (1) to (6). (1) In the twin roll horizontal pouring method, the melt flow path is
A flow dividing plate for continuous casting of a thin plate, comprising a vertical dividing plate divided into two or more sections.
【0036】(2) 複数枚の垂直分流板の厚さの和が流路
幅の0.5倍以下であって、幅中央部のいずれかの流路
の流路幅と幅端部の流路の流路幅の比が流入側で0.2
5〜1.0、流出側で1.0〜3.0であることを特徴
とする前記(1) 項に記載の薄板連続鋳造用分流板。(2) The sum of the thicknesses of the plurality of vertical flow dividing plates is not more than 0.5 times the width of the flow path, and the flow width of one of the flow paths at the center of the width and the flow at the end of the width. The ratio of the width of the channel to the inflow side is 0.2
The flow splitting plate for continuous casting of a thin plate according to the above item (1), wherein the flow splitting ratio is 5 to 1.0, and 1.0 to 3.0 on an outflow side.
【0037】(3) 双ロール横注ぎ法において、溶湯流路
を上下2つに区画する水平分流板を備えたことを特徴と
する薄板連続鋳造用分流板。(3) A flow dividing plate for continuous casting of a thin plate, comprising a horizontal flow dividing plate for dividing a molten metal flow path into upper and lower two parts in a twin roll horizontal pouring method.
【0038】(4) 水平分流板の厚さが湯面高さの0.2
5〜0.75倍であって、上面の流路の高さと下面の流
路の高さの比が流入側で0.5〜1.0、流出側で1.
0〜2.0であることを特徴とする前記(3) 項に記載の
薄板連続鋳造用分流板。(4) The thickness of the horizontal flow dividing plate is 0.2
5 to 0.75 times, and the ratio of the height of the upper channel to the lower channel is 0.5 to 1.0 on the inflow side and 1.
The flow dividing plate for continuous casting of a thin plate according to the above (3), wherein the ratio is 0 to 2.0.
【0039】(5) 溶湯流路を上下2つに区画する水平分
流板と、溶湯流路を幅方向に3つ以上に区画する垂直分
流板とを備えたことを特徴とする前記(1) 〜(4) 項のい
ずれかに記載の薄板連続鋳造用分流板。(5) The method according to (1), further comprising: a horizontal flow dividing plate for dividing the molten metal flow path into two upper and lower parts, and a vertical flow dividing plate for dividing the molten metal flow path into three or more in the width direction. The flow dividing plate for continuous casting of a thin plate according to any one of items (1) to (4).
【0040】(6) 前記(1) 〜(5) のいずれかに記載の薄
板連続鋳造用分流板を用い、溶湯の過熱度を20〜80
℃で鋳造することを特徴とする薄板連続鋳造方法。(6) The flow dividing plate for continuous casting of a thin plate according to any one of (1) to (5) is used, and the degree of superheat of the molten metal is 20 to 80.
A continuous casting method for a thin plate, characterized in that the casting is performed at ℃.
【0041】[0041]
【発明の実施の形態】以下、図1〜図3に基づいて本発
明の例を説明する。図1は双ロール横注ぎ法に用いる本
発明の分流板の形状の例を示す透視図である。同図(a)
は3枚の垂直分流板2のみの分流板3、同図(b) は水平
分流板1のみの分流板3、同図(c) は水平分流板1と垂
直分流板2とを備えた分流板3である。同図(a) 〜(c)
では分流板3が破線で示す底ノズル4に組み込まれた状
態を示している。なお、同図では分流板3は底ノズル4
に組み込まれる部品として示しているが、底ノズル4も
しくは他の部品と一体であってもよい。同図(c) では水
平分流板1と垂直分流板2を一体としているが、組み合
わせ体でもよい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view showing an example of the shape of the flow dividing plate of the present invention used in the twin-roll horizontal pouring method. Figure (a)
Is a shunt plate 3 having only three vertical shunt plates 2, FIG. 2 (b) is a shunt plate 3 having only a horizontal shunt plate 1, and FIG. 2 (c) is a shunt having a horizontal shunt plate 1 and a vertical shunt plate 2. Plate 3. Figures (a) to (c)
5 shows a state in which the flow dividing plate 3 is incorporated in the bottom nozzle 4 indicated by a broken line. In the figure, the flow dividing plate 3 is a bottom nozzle 4
Although it is shown as a part to be incorporated in the bottom nozzle 4, it may be integrated with the bottom nozzle 4 or other parts. In FIG. 1C, the horizontal shunt plate 1 and the vertical shunt plate 2 are integrated, but may be combined.
【0042】図2は本発明の分流板を用いた鋳造ノズル
の構成例を示す。溶湯を供給する鋳造ノズルは、底ノズ
ル4と一対のサイドノズル5で構成される。分流板3は
上堰6と合体され、底ノズル4に組み込まれる。FIG. 2 shows a configuration example of a casting nozzle using the flow dividing plate of the present invention. The casting nozzle for supplying the molten metal includes a bottom nozzle 4 and a pair of side nozzles 5. The flow dividing plate 3 is combined with the upper weir 6 and incorporated into the bottom nozzle 4.
【0043】図3は本発明の分流板を用いた双ロール横
注ぎ法の薄板連続鋳造装置の一例を示す概要図で、同図
(a) は縦断面図、同図(b) は平面図である。同図におい
てはタンディッシュ7からの溶湯流路が広がるように底
ノズル4の側壁が末広がりになっており、分流板3も末
広がりになった態様を示しているが、本発明の分流板は
必ずしも末広がりである必要はない。FIG. 3 is a schematic view showing an example of a continuous sheet casting apparatus for a twin roll horizontal pouring method using a flow dividing plate according to the present invention.
(a) is a longitudinal sectional view, and (b) is a plan view. In the figure, the side wall of the bottom nozzle 4 is widened so that the molten metal flow path from the tundish 7 is widened, and the flow dividing plate 3 is also widened. However, the flow dividing plate of the present invention is not necessarily required. It doesn't have to be widespread.
【0044】同図において、双ロール横注ぎ法における
鋳造空間は、上ロール8、下ロール9、底ノズル4、お
よび一対のサイドノズル5で構成されている。同図の例
では上ロール8の胴長は鋳片11の幅と同じであり、下
ロール9の胴長は上ロール8より長い。In the figure, the casting space in the twin-roll horizontal pouring method is composed of an upper roll 8, a lower roll 9, a bottom nozzle 4, and a pair of side nozzles 5. In the example shown in the figure, the body length of the upper roll 8 is the same as the width of the slab 11, and the body length of the lower roll 9 is longer than the upper roll 8.
【0045】底ノズル4は、溶湯の流路を形成し、上流
側のタンディッシュ7内の溶湯10をロール間へ供給す
るとともに、下ロール9に密着し、かつその周面と摺動
し溶湯の底面を保持する。The bottom nozzle 4 forms a flow path of the molten metal, supplies the molten metal 10 in the tundish 7 on the upstream side between the rolls, makes close contact with the lower roll 9, and slides on the peripheral surface thereof to melt the molten metal. Hold the bottom of.
【0046】サイドノズル5は、その側面が上ロール8
と密着し、かつ上ロール外端面と摺動すると同時に、そ
の底面が下ロール9の周面と摺動し、溶湯の側面を保持
する。The side nozzle 5 has an upper roll 8
At the same time, the bottom surface slides on the peripheral surface of the lower roll 9 to hold the side surface of the molten metal.
【0047】分流板3は、底ノズル4の内面の溶湯の流
路に組み込まれ、溶湯流路を水平分流板1によって上下
方向で2区画、垂直分流板2によって幅方向で4区画に
分流する。The flow dividing plate 3 is incorporated in the flow path of the molten metal on the inner surface of the bottom nozzle 4, and divides the flow path of the molten metal into two vertical divisions by the horizontal distribution plate 1 and four vertical divisions by the vertical distribution plate 2. .
【0048】上堰6は、分流板1の流入側の上部に組み
込まれ、上流側タンディッシュ7の湯面に生成したスカ
ム等の浮遊物がロール間へ流出するのを防止するが、本
発明の必須構成物ではない。The upper weir 6 is incorporated in the upper part on the inflow side of the flow dividing plate 1 to prevent floating substances such as scum generated on the surface of the upstream tundish 7 from flowing out between the rolls. Is not an essential component.
【0049】図3を用いて本発明の分流板を用いた鋳造
方法を説明する。溶湯10は、図示されていない取鍋ま
たは溶融炉から、タンディッシュ7に注入され、タンデ
ィッシュ7と直結した底ノズル4に至り、分流板3で形
成される流路に流入する。A casting method using the flow dividing plate of the present invention will be described with reference to FIG. The molten metal 10 is injected from a ladle or a melting furnace (not shown) into the tundish 7, reaches the bottom nozzle 4 directly connected to the tundish 7, and flows into a flow path formed by the flow dividing plate 3.
【0050】流入した溶湯10は、湯面高さの中間に配
置された水平分流板1により、上下に適正に分流される
とともに、複数枚の垂直分流板2により幅方向に適正に
分流される。分流板がない場合に比較して、水平分流板
1および垂直分流板2の配置により溶湯流路の断面積は
減少し、溶湯の流速が増加する。The molten metal 10 that has flowed in is appropriately divided up and down by the horizontal flow dividing plate 1 arranged at the middle of the surface level, and is also appropriately divided in the width direction by the plurality of vertical flow dividing plates 2. . Compared to the case where there is no flow dividing plate, the cross-sectional area of the molten metal flow path is reduced by the arrangement of the horizontal flow dividing plate 1 and the vertical flow dividing plate 2, and the flow velocity of the molten metal is increased.
【0051】分流板3を通って流速が適正に増加した溶
湯10は、上記鋳造空間に供給され、上下ロール8、9
の周面で均等に凝固した後、上下ロール8、9の最近接
点で圧接され、鋳片11となる。The molten metal 10 whose flow velocity has been appropriately increased through the flow dividing plate 3 is supplied to the casting space, and the upper and lower rolls 8 and 9
Is solidified evenly on the peripheral surface of the upper and lower rolls 8 and 9, and is pressed into contact with the closest contacts to form a slab 11.
【0052】以下に、本発明の分流板の詳細を説明す
る。本発明の分流板の実施態様は図1(a) の垂直分流板
2のみ、同図(b) の水平分流板1のみ、または同図(c)
の水平分流板1と垂直分流板2との組み合わせでもよ
い。The details of the flow dividing plate of the present invention will be described below. The embodiments of the flow dividing plate of the present invention are only the vertical flow dividing plate 2 of FIG. 1 (a), only the horizontal flow dividing plate 1 of FIG. 1 (b), or FIG.
May be combined with the horizontal distribution plate 1 and the vertical distribution plate 2.
【0053】垂直分流板2は幅中央部と幅端部の溶湯流
動を適正に分配するため、最低2枚、好ましくは3〜5
枚の構成がよい。6枚以上の垂直分流板を配置しても効
果は変わらない。垂直分流板と水平分流板をもつ分流板
を用いる場合、水平分流板1の上下面で垂直分流板2の
枚数を変えてもよいし、必ずしも上下で同位置に配置す
る必要はない。また、垂直分流板2の形状は必ずしも垂
直である必要はなく、流路を幅方向に区画するものであ
れば形状は問わない。In order to properly distribute the flow of the molten metal at the width center and the width end, the vertical flow dividing plate 2 is at least two, preferably 3-5.
The configuration of the sheet is good. The effect does not change even if six or more vertical flow dividing plates are arranged. When using a flow dividing plate having a vertical distribution plate and a horizontal distribution plate, the number of the vertical distribution plates 2 may be changed on the upper and lower surfaces of the horizontal distribution plate 1, and it is not always necessary to arrange them at the same position in the vertical direction. Further, the shape of the vertical flow dividing plate 2 does not necessarily have to be vertical, and any shape may be used as long as the flow path is partitioned in the width direction.
【0054】以下に、分流板の好ましい寸法および配置
関係について説明する。垂直分流板2の厚さの和は流路
幅の0.5倍以下とするのが好ましい。垂直分流板2の
厚さが小さくても幅方向溶湯の整流効果は発揮される。
垂直分流板2の厚さの和が流路幅の0.5倍を超える
と、整流効果が低下する恐れがある。すなわち、垂直分
流板の枚数が2〜3枚のときは、1枚あたりの厚さが大
きくなり、流出側端部の近傍で溶湯流の停滞域や乱れを
生じやすく、垂直分流板の枚数が4〜5枚のときは、個
々の流路幅が小さくなるため、流入側端部の形状差によ
って溶湯の流入量が影響を受け、所期の流量配分効果が
得られない恐れがあるためである。Hereinafter, preferred dimensions and arrangement of the flow dividing plates will be described. It is preferable that the sum of the thicknesses of the vertical flow dividing plates 2 is 0.5 times or less the width of the flow path. Even if the thickness of the vertical flow dividing plate 2 is small, the rectifying effect of the molten metal in the width direction can be exhibited.
If the sum of the thicknesses of the vertical distribution plates 2 exceeds 0.5 times the width of the flow channel, the rectification effect may be reduced. That is, when the number of the vertical flow dividing plates is two or three, the thickness per one becomes large, and the stagnation area or the turbulence of the molten metal flow is likely to occur near the outflow side end. In the case of 4 to 5 sheets, since the width of each flow path becomes small, the flow rate of the molten metal is affected by the shape difference of the inflow side end, and the expected flow distribution effect may not be obtained. is there.
【0055】垂直分流板の厚さは小さい方が好ましく、
かつ同じ厚さで流入側と流出側端部の形状が同じである
ことが好ましい。厚さの下限値は設けないが、分流板材
料の強度不足による破損を生じない程度の厚さであれば
よい。通常得られる耐火物材料では厚さの下限値は20
〜80mm/枚程度である。It is preferable that the thickness of the vertical flow dividing plate is small.
In addition, it is preferable that the shapes of the inflow side and the outflow side end are the same at the same thickness. Although there is no lower limit for the thickness, it is sufficient that the thickness does not cause damage due to insufficient strength of the flow dividing plate material. For the refractory materials normally available, the lower limit of the thickness is 20.
It is about 80 mm / sheet.
【0056】通常は垂直分流板2の厚さは流路方向と上
下方向に一定であるが、前記の厚さの和の好適範囲およ
び後述の分流された各流路幅の好適範囲を維持すれば、
テーパ状であってもよい。Normally, the thickness of the vertical flow dividing plate 2 is constant in the flow direction and the vertical direction, but it is necessary to maintain a preferable range of the sum of the above thicknesses and a preferable range of each divided flow width described later. If
It may be tapered.
【0057】底ノズルの幅端部の4重境界点における固
着シェルの生成を防止するため、溶湯の流速は、幅端部
では中央部より大きくするのが好ましい。このため、幅
端部の流路の流入幅を中央部の流路の流入幅以上とし、
流出幅を同等または小さくすることで対応するのが好ま
しい。従って、流入側では幅中央部の流路の幅と、両幅
端部の流路の幅の比が流入側で1.0以下、流出側で
1.0以上となるよう垂直分流板を配置するのが好まし
い。In order to prevent the formation of a fixed shell at the quadruple boundary point at the width end of the bottom nozzle, the flow velocity of the molten metal is preferably larger at the width end than at the center. For this reason, the inflow width of the flow path at the width end is set to be equal to or greater than the inflow width of the flow path at the center,
It is preferable to cope by making the outflow width equal or smaller. Therefore, on the inflow side, the vertical flow dividing plate is arranged so that the ratio of the width of the flow path at the center of the width to the width of the flow path at both width ends is 1.0 or less on the inflow side and 1.0 or more on the outflow side. Is preferred.
【0058】図4は流路幅の寸法を説明するための概要
図である。同図は水平分流板1と垂直分流板2を有する
分流板を表しているが、以下の説明は水平分流板のない
形式についても適用される。FIG. 4 is a schematic diagram for explaining the dimensions of the flow channel width. Although FIG. 1 shows a flow dividing plate having a horizontal flow dividing plate 1 and a vertical flow dividing plate 2, the following description is also applied to a type without a horizontal flow dividing plate.
【0059】同図において、垂直分流板にA、B、Cの
3枚を用いた場合、底ノズルの側壁と垂直分流板Aおよ
び垂直分流板Cによって定まる幅端部の流路R1および
R4と、垂直分流板A、B、Cによって挟まれた中央部
の流路R2およびR3がある。垂直分流板2の配置は幅
方向で対称で垂直分流板の厚さはすべて同じものとし
て、中央部の流路R2、R3の流入口の流路の幅Wci
は、 Wci=(垂直分流板Aと垂直分流板Bの流入部の間隔
Pi)−(垂直分流板の厚さT)、 幅端部の流路の流入幅Weiは、 Wei=(底ノズルの流入幅Wni)×0.5−(垂直
分流板の厚さT)×1.5−(幅中央部の流入口流路幅
Wci)、 よって、流入口流路幅の比Rriは、 Rri=(幅中央部の流路幅Wci)/(幅端部の流路
幅Wei)、 で表される。In the same figure, when three vertical distribution plates A, B and C are used, the side walls of the bottom nozzle and the flow ends R1 and R4 at the width ends determined by the vertical distribution plates A and C are used. , There are flow paths R2 and R3 in the central part sandwiched by the vertical distribution plates A, B and C. The arrangement of the vertical flow dividing plate 2 is symmetrical in the width direction, and the thickness of the vertical flow dividing plate is all the same, and the width Wci of the flow passages at the inlets of the flow passages R2 and R3 in the central portion is assumed.
Wci = (the interval Pi between the inflow portions of the vertical distribution plate A and the vertical distribution plate B) − (the thickness T of the vertical distribution plate), and the inflow width Wei of the flow path at the width end is Wei = (the bottom nozzle Inflow width Wni) × 0.5− (thickness T of the vertical flow dividing plate) × 1.5− (inflow channel width Wci at the center of the width) Therefore, the ratio Rri of the inflow channel width is Rri = (The flow width Wci at the center of the width) / (the flow width Wei at the width end).
【0060】同様に、中央部R2、R3の流出口流路の
幅Wcoについては、 Wco=Po−T、 幅端部の流路の流出幅Weoは、 Weo=Wno×0.5−T×1.5−(幅中央部の流
出口流路幅Wco)、 よって、流出口流路幅の比Rroは、 Rro=Wco/Weo、 で表される。Similarly, for the width Wco of the outlet flow path at the center portions R2 and R3, Wco = Po−T, and the outflow width Weo of the flow path at the end of the width is expressed as Weo = Wno × 0.5−T × 1.5- (outflow channel width Wco at the center of the width) Therefore, the ratio Rro of the outflow channel width is represented by Rro = Wco / Weo.
【0061】流入側の流路幅の比Rriが1.0を超え
ると、分流板内の端部側の流路への溶湯流入量が小さく
なるため、4重境界点近傍の滞留を抑制し固着シェルを
防止する効果が得られない恐れがある。前記Rriが
0.25未満であると、中央部の流路が狭くなりすぎ
て、中央部に固着シェルが発生する恐れがある。Rri
のさらに好ましい範囲は0.5〜0.8である。If the ratio Rri of the width of the flow path on the inflow side exceeds 1.0, the amount of molten metal flowing into the flow path on the end side in the flow dividing plate becomes small, so that stagnation near the quadruple boundary point is suppressed. There is a possibility that the effect of preventing the fixed shell cannot be obtained. If the Rri is less than 0.25, the flow path in the central portion becomes too narrow, and there is a possibility that a fixed shell is generated in the central portion. Rri
Is more preferably in the range of 0.5 to 0.8.
【0062】流出側の流路幅の比Rroが1.0未満で
あると、分流板内の端部側の流路からの溶湯流出速度が
小さくなるため、幅端部の溶湯の滞留を抑制し固着シェ
ルを防止する効果が得られない恐れがある。前記Rro
が3.0を超えると中央部の流路での流出速度が小さく
なるため中央部での固着シェルが発生する恐れがある。
Rroの更に好ましい範囲は1.2〜2.0である。If the ratio Rro of the width of the flow path on the outflow side is less than 1.0, the flow speed of the molten metal from the flow path on the end side in the flow dividing plate becomes small, so that the stagnation of the molten metal at the width end is suppressed. Then, there is a possibility that the effect of preventing the fixed shell cannot be obtained. Said Rro
If the ratio exceeds 3.0, the outflow velocity in the flow path in the central portion is reduced, and there is a possibility that a fixed shell is generated in the central portion.
The more preferable range of Rro is 1.2 to 2.0.
【0063】図4では垂直分流板2の断面形状を矩形ま
たは平行四辺形で表しているが、流入側および流出側の
端面は、溶湯の乱れや停滞域が生じないよう、テーパ形
状、さらに好ましくは流線型とするのがよい。なお、流
路幅の寸法は垂直分流板の流入口、流出口のテーパ形状
などにかかわらず、垂直分流板の縦断面を矩形または平
行四辺形形状とみなした寸法で定義するものとする。In FIG. 4, the cross-sectional shape of the vertical flow dividing plate 2 is represented by a rectangle or a parallelogram. However, the end faces on the inflow side and the outflow side are preferably tapered so as not to cause turbulence or stagnation of the molten metal. Should be streamlined. The dimension of the width of the flow passage is defined by a size in which the vertical cross section of the vertical flow dividing plate is regarded as a rectangle or a parallelogram regardless of the taper shape of the inlet and the outlet of the vertical flow dividing plate.
【0064】図5に分流板の垂直分流板2の配置例の平
面図を示す。同図(a) は3枚の垂直分流板で流路幅の比
が流入側0.7、流出側1.2の例である。同図(b) お
よび(c) は垂直分流板2の枚数がそれぞれ2枚、5枚の
例で、流路幅の比が流入側で約0.7、流出側で約1.
5の例である。FIG. 5 is a plan view showing an example of the arrangement of the vertical flow dividing plate 2 of the flow dividing plate. FIG. 3A shows an example in which three vertical flow dividing plates have a flow path width ratio of 0.7 on the inflow side and 1.2 on the outflow side. FIGS. 7B and 7C show examples in which the number of the vertical flow dividing plates 2 is two and five, respectively, and the ratio of the flow channel width is about 0.7 on the inflow side and about 1.0 on the outflow side.
5 is an example.
【0065】垂直分流板2の形状と配置は底ノズルの形
状によって制約される。垂直分流板の流路方向の長さが
長いほど整流効果があるが、分流板の流路の最小幅(図
4に示す形式のものではWniに相当する幅)の2.0
倍より長くても効果は変わらないため、長さの上限は最
小流路幅の2.0倍、下限は0.5倍とするのが好まし
い。The shape and arrangement of the vertical flow dividing plate 2 are restricted by the shape of the bottom nozzle. The longer the length of the vertical distribution plate in the flow path direction is, the more rectifying effect is. However, the minimum width of the flow path of the flow distribution plate (the width corresponding to Wni in the type shown in FIG. 4) is 2.0.
Since the effect does not change even if the length is longer than twice, it is preferable that the upper limit of the length is 2.0 times the minimum flow path width and the lower limit is 0.5 times.
【0066】水平分流板1の機能は、上ロール側に供給
される溶湯量と下ロール側の溶湯量をほぼ均等にして、
鋳片の両面の品質をほぼ均等にすることと、流速を増加
することにある。水平分流板の下面の溶湯は底部と水平
分流板からの流動抵抗を受けるのに対し、上面の流路で
は水平分流板の流動抵抗のみであり、流路の平均長さも
上面流路の方が下面流路より短い。そのため、水平分流
板を湯面高さの中間に置くと流出口では上面流路の流速
が大きくなる傾向がある。The function of the horizontal flow dividing plate 1 is to substantially equalize the amount of molten metal supplied to the upper roll and the amount of molten metal to the lower roll.
The objective is to make the quality of both sides of the slab almost uniform and to increase the flow velocity. The molten metal on the lower surface of the horizontal distribution plate receives the flow resistance from the bottom and the horizontal distribution plate, while the flow path on the upper surface is only the flow resistance of the horizontal distribution plate. It is shorter than the lower channel. Therefore, when the horizontal flow dividing plate is placed in the middle of the level of the molten metal, the flow velocity of the upper surface flow path at the outlet tends to increase.
【0067】上下面で流速の均一化を図るためには、上
面の流入口の高さを下面の流入口の高さより小さくし
(上面流路高さ/下面流路高さ<1.0)、流出口では
上面の流出口の高さを下面の流出口高さと同等または下
面の流出口の高さより大きくする(上面流路高さ/下面
流路高さ≧1.0)ことが好ましい。ただし、流入側で
上面の流路の高さが小さくなりすぎると流入量が小さく
なりすぎるので、上面流路高さ/下面流路高さの下限を
0.5とするのが好ましい。流出側では下面流路の高さ
が小さくなりすぎると流路抵抗が増加し、却って流速が
低下する恐れがあるので上面流路高さ/下面流路高さの
上限を2.0とするのが好ましい。さらに好ましくは流
入口で前記の比を0.6〜0.9、流出口で1.1〜
1.5とするのがよい。In order to make the flow velocity uniform on the upper and lower surfaces, the height of the upper inlet is made smaller than the height of the lower inlet (upper channel height / lower channel height <1.0). In the outlet, it is preferable that the height of the outlet on the upper surface is equal to or larger than the height of the outlet on the lower surface (the height of the upper surface passage / the height of the lower surface passage ≧ 1.0). However, if the height of the flow path on the upper surface on the inflow side is too small, the inflow amount becomes too small. Therefore, it is preferable to set the lower limit of the upper surface flow path height / the lower surface flow path height to 0.5. On the outflow side, if the height of the lower flow path is too small, the flow resistance increases and the flow velocity may be reduced. Therefore, the upper limit of the upper flow path height / the lower flow path height is set to 2.0. Is preferred. More preferably, the above ratio is 0.6 to 0.9 at the inlet, and 1.1 to 0.9 at the outlet.
It is good to be 1.5.
【0068】ここで、流路高さは、水平分流板の流入
口、流出口のテーパ形状などにかかわらず、水平分流板
の縦断面を同等厚さの矩形とみなした場合の高さで定義
するものとする。Here, the flow path height is defined as the height when the vertical cross section of the horizontal flow dividing plate is regarded as a rectangle having the same thickness regardless of the taper shape of the inlet and the outlet of the horizontal flow dividing plate. It shall be.
【0069】水平分流板を2枚以上配置してもその効果
は向上しない。水平分流板の厚さは、湯面高さの0.2
5〜0.75倍とするのが好ましい。水平分流板の厚さ
が湯面高さの0.25倍未満では溶湯流路断面積の減少
量が十分でないために流速を増加させる作用が十分に得
られない。水平分流板の厚さが湯面高さの0.75倍を
越えると、流路の高さが小さくなり、特に上面側で溶湯
体積に対する湯面面積の割合が大きくなって、湯面から
の放冷による皮張りの発生のおそれがある。さらに好ま
しくは水平分流板の厚さは、湯面高さの0.4〜0.6
倍とするのがよい。Even if two or more horizontal flow dividing plates are arranged, the effect is not improved. The thickness of the horizontal diversion plate is 0.2
It is preferable to set it to 5 to 0.75 times. If the thickness of the horizontal flow dividing plate is less than 0.25 times the height of the molten metal, the effect of increasing the flow velocity cannot be obtained sufficiently because the reduction in the cross-sectional area of the molten metal flow path is not sufficient. When the thickness of the horizontal flow dividing plate exceeds 0.75 times the height of the molten metal surface, the height of the flow path is reduced, and particularly, the ratio of the molten metal surface area to the volume of the molten metal is increased on the upper surface side. There is a risk of skinning due to cooling. More preferably, the thickness of the horizontal flow dividing plate is 0.4 to 0.6 of the molten metal level.
It is better to double.
【0070】水平分流板の流入側および流出側の端面
は、溶湯の乱れや停滞域が生じないような形状が好まし
い。図1または図2では簡略図のため端面が角形状とな
っているが、テーパ形状、さらに好ましくは流線型とす
るのがよい。The end faces on the inflow side and the outflow side of the horizontal flow dividing plate are preferably shaped so as not to cause turbulence or stagnation of the molten metal. In FIG. 1 or FIG. 2, the end face has a square shape for the sake of simplicity, but a tapered shape, more preferably a streamlined shape is preferable.
【0071】図6に本発明の水平分流板の断面形状の態
様例を示す。同図(a) および(b) は、水平分流板1の厚
さが湯面高さのおよそ0.5倍の例であり、同図(a) は
流入出側端面がテーパ形状、同図(b) は流線型となって
いる。同図(c) および(d) は水平分流板1の厚さを湯面
高さのそれぞれ0.75倍、0.25倍とした例であ
り、同図(c) は流入出側端面がテーパ形状、同図(d) は
矩形断面としたものである。FIG. 6 shows an example of the sectional shape of the horizontal flow dividing plate of the present invention. 2A and 2B are examples in which the thickness of the horizontal flow dividing plate 1 is about 0.5 times the height of the molten metal surface, and FIG. (b) is streamlined. FIGS. 3 (c) and 3 (d) show examples in which the thickness of the horizontal flow dividing plate 1 is 0.75 times and 0.25 times the height of the molten metal, respectively, and FIG. The tapered shape is shown in FIG.
【0072】その他、底ノズルの設計の考慮点として、
底ノズル内面の流路幅は、上流から下流にかけてテーパ
状の末広がり形状とするのが好ましい。これは、湯面の
水平方向断面積を小さくし鋳造開始時の湯面上昇速度を
高くするとともに、放熱面積を小さくする効果がある。Other points to consider when designing the bottom nozzle are:
The width of the flow path on the inner surface of the bottom nozzle is preferably tapered and widened from upstream to downstream. This has the effect of reducing the horizontal cross-sectional area of the metal surface, increasing the metal surface rising speed at the start of casting, and reducing the heat radiation area.
【0073】分流板を構成する各部材の材質は問わない
が、耐熱性および溶湯に対する耐食性を有する耐火物を
用いる。例えば、溶融シリカ、マグネシア、アルミナ、
ジルコニア、サイアロン、炭素、窒化硼素等の単体、あ
るいはこれらの複合体である。Although the material of each member constituting the flow dividing plate is not limited, a refractory having heat resistance and corrosion resistance to molten metal is used. For example, fused silica, magnesia, alumina,
It is a simple substance such as zirconia, sialon, carbon, boron nitride, or a composite thereof.
【0074】以上のような本発明の分流板を双ロール横
注ぎ法に用いれば、3重境界線および4重境界点の近傍
に優先的に溶湯を供給し、固着シェルの生成を抑制し、
鋳片の上下面で均一な凝固組織を有する鋳片が製造でき
る。When the flow dividing plate of the present invention as described above is used in the twin-roll horizontal pouring method, the molten metal is preferentially supplied to the vicinity of the triple boundary and the quadruple boundary, thereby suppressing the formation of the fixed shell.
A slab having a uniform solidification structure on the upper and lower surfaces of the slab can be manufactured.
【0075】なお、図3に示した鋳造ノズルや双ロール
横注ぎ法に用いる装置は、下ロールの胴長が上ロールよ
り長く、サイドノズルの底面を下ロール周面に摺動させ
ている例を示しているが、本発明は前記例に限定される
ものではない。例えば、上ロールと下ロールの胴長を均
等にし、上下ロールの端面にサイドノズル側面を摺動さ
せる双ロール横注ぎ法においても、前記例と同様の効果
が得られるのである。また、上ロールは下ロールと同径
でも異径でもよい。The apparatus used for the casting nozzle and the twin-roll horizontal pouring method shown in FIG. 3 has an example in which the lower roll has a longer body length than the upper roll, and the bottom surface of the side nozzle is slid on the lower roll peripheral surface. However, the present invention is not limited to the above example. For example, the same effect as in the above example can be obtained by a twin-roll lateral pouring method in which the body lengths of the upper roll and the lower roll are made equal and the side surface of the side nozzle is slid on the end faces of the upper and lower rolls. The upper roll may have the same diameter as or a different diameter from the lower roll.
【0076】本発明の分流板を用いた鋳造に際しては、
溶湯の過熱度を適切な範囲にする必要がある。過熱度が
低過ぎると固着シェルが発生しやすく、噛込み疵の原因
となるばかりでなく、鋳片破断が発生するなど操業が不
安定になる。過熱度が高すぎると操業は安定するが、鋳
片には縦割れ疵が多発する。従って、固着シェルが発生
しない範囲でできるだけ低くするのが好ましい。本発明
の鋳造方法においては、過熱度を20〜80℃とする必
要があり、さらに好ましくは30〜70℃とするのがよ
い。本発明の垂直分流板と水平分流板を備えた分流板を
用いると、溶湯が幅方向にも上下方向にも適正に分流さ
れるため、過熱度の下限を狙った操業が可能である。し
かし、本発明の垂直分流板のみの分流板では、上下方向
の溶湯の適正分流がないため、下面での固着シェルが発
生しやすく、過熱度の下限狙いは好ましくない。同様
に、水平分流板のみの分流板では幅方向の適正分流がな
いため、幅端部での固着シェルが発生しやすく、過熱度
の下限狙いは好ましくない。In casting using the flow dividing plate of the present invention,
It is necessary to control the degree of superheat of the molten metal in an appropriate range. If the degree of superheat is too low, a sticking shell is likely to be generated, which not only causes a biting flaw but also makes the operation unstable such as slab breakage. If the degree of superheat is too high, the operation will be stable, but slabs will have many vertical cracks. Therefore, it is preferable to set the temperature as low as possible within a range in which the fixing shell does not occur. In the casting method of the present invention, the degree of superheat needs to be 20 to 80 ° C, and more preferably 30 to 70 ° C. When the flow dividing plate having the vertical flow dividing plate and the horizontal flow dividing plate of the present invention is used, the molten metal is appropriately divided in both the width direction and the vertical direction, so that an operation aiming at the lower limit of the degree of superheat is possible. However, in the flow dividing plate including only the vertical flow dividing plate of the present invention, since there is no appropriate branch flow of the molten metal in the vertical direction, a fixed shell is easily generated on the lower surface, and the lower limit of the degree of superheat is not preferable. Similarly, since there is no appropriate branch flow in the width direction in the case of only the horizontal branch plate, a fixed shell is likely to be generated at the width end, and the lower limit of the degree of superheat is not preferable.
【0077】[0077]
【実施例】図1に示す分流板3および図2に示す鋳造ノ
ズル(底ノズル4およびサイドノズル5)を用い、双ロ
ール横注ぎ法にて、厚2.0mm×幅700mmのSU
S304ステンレス鋼薄板を鋳造し、操業の安定性およ
び鋳片の表面欠陥の有無を調査した。比較のため、分流
板を用いない鋳造も行った。DESCRIPTION OF THE PREFERRED EMBODIMENTS An SU having a thickness of 2.0 mm and a width of 700 mm was obtained by a twin-roll horizontal pouring method using a flow dividing plate 3 shown in FIG. 1 and a casting nozzle (bottom nozzle 4 and side nozzle 5) shown in FIG.
An S304 stainless steel thin plate was cast, and the operation stability and the presence or absence of a surface defect of the slab were examined. For comparison, casting without using a flow dividing plate was also performed.
【0078】分流板には水平分流板のみのもの、垂直分
流板のみのものおよび水平分流板と垂直分流板を組み合
わせたものとを用いた。鋳造ノズルの材質は、底ノズル
およびサイドノズルに溶融シリカ、分流板および上堰に
アルミナを、それぞれ用いた。As the flow dividing plate, a horizontal dividing plate only, a vertical dividing plate only, and a combination of a horizontal dividing plate and a vertical dividing plate were used. As the material of the casting nozzle, fused silica was used for the bottom nozzle and the side nozzle, and alumina was used for the flow dividing plate and the upper weir.
【0079】分流板を用いる場合、分流板の寸法は、
(流入部の幅400mm/流出部の幅600mm)×長
さ400mm×高さ250mmとした。底ノズル前方部
での湯面高さは180mmとした。When a flow dividing plate is used, the size of the current dividing plate is
(Width of the inflow portion 400 mm / width of the outflow portion 600 mm) × length 400 mm × height 250 mm. The water level at the front of the bottom nozzle was 180 mm.
【0080】上ロールの直径は、1500mm、胴長は
700mm、下ロールの直径は1500mm、胴長は1
000mmであり、上下ロールはそれぞれ内部を水冷し
た。鋳造速度は、0.85m/sとした。The diameter of the upper roll is 1500 mm and the body length is 700 mm. The diameter of the lower roll is 1500 mm and the body length is 1
000 mm, and the inside of each of the upper and lower rolls was water-cooled. The casting speed was 0.85 m / s.
【0081】溶湯は、タンディッシュ直上に配置された
溶解炉で過熱度15〜110℃に調整した後タンディッ
シュ内に供給した。表1および表2に過熱度条件、分流
板の寸法条件および鋳造結果を示す。The molten metal was supplied to the tundish after the superheat was adjusted to 15 to 110 ° C. in a melting furnace disposed immediately above the tundish. Tables 1 and 2 show the superheat conditions, the dimensional conditions of the flow dividing plate, and the casting results.
【0082】[0082]
【表1】 [Table 1]
【0083】[0083]
【表2】 [Table 2]
【0084】No.1〜2は分流板を使用していない比
較例の試験で、No.3以下が本発明例である。No.
1は溶湯過熱度が70℃の場合、操業は不安定で、 鋳片
破断が発生した。No.2は過熱度を110℃としたと
ころ操業は安定したが、鋳片に縦割れ疵が多発した。No. Nos. 1 and 2 are tests of a comparative example not using a flow dividing plate. Three or less are examples of the present invention. No.
In the case of No. 1, when the degree of superheat of the molten metal was 70 ° C., the operation was unstable and the slab was broken. No. In the case of No. 2, the operation was stabilized when the degree of superheat was set to 110 ° C., but many vertical cracks were found in the slab.
【0085】No.3〜14は垂直分流板のみを用いた
試験である。No.3〜7およびNo.10〜14の垂
直分流板を3枚で構成した。No.3〜7で過熱度の影
響を調査した。No. Tests 3 to 14 are tests using only a vertical flow dividing plate. No. Nos. 3 to 7 and Nos. 10 to 14 vertical flow dividing plates were constituted by three sheets. No. The influence of the degree of superheat was investigated in 3-7.
【0086】No.3は過熱度を20℃と本発明の下限
とした。破断の前兆が見られたが、操業はほぼ安定して
いた。鋳片の上下面に噛込み疵が散発していた。許容範
囲の品質であるが、溶湯温度の変動幅を考慮すると、垂
直分流板のみでは過熱度が不足していることがわかっ
た。No. In No. 3, the degree of superheat was 20 ° C., which was the lower limit of the present invention. The operation was almost stable, although there were signs of breakage. Biting flaws were scattered on the upper and lower surfaces of the slab. Although the quality was within an acceptable range, it was found that the degree of superheat was insufficient with only the vertical shunt plate in consideration of the fluctuation range of the molten metal temperature.
【0087】No.4は過熱度を30℃とした。操業は
安定していたが、鋳片の上下面で凝固組織の不均一が見
られた。許容範囲の品質であるが、溶湯温度の変動幅を
考慮すると、垂直分流板のみでは過熱度がやや不足気味
であることがわかった。No. In No. 4, the degree of superheat was 30 ° C. Although the operation was stable, unevenness of the solidified structure was observed on the upper and lower surfaces of the slab. Although the quality was within an acceptable range, it was found that the degree of superheating was somewhat insufficient with the vertical shunt plate alone, considering the fluctuation range of the molten metal temperature.
【0088】No.5では、過熱度を50℃としたため
操業は安定し、鋳片表面も健全であった。No.6は過
熱度を80℃とし、中央部の流路幅と幅端部の流路幅の
比を、流入側1.0、流出側1.0にしたものである。
操業安定度、表面品質とも問題なく鋳造できた。No. In No. 5, since the degree of superheat was set to 50 ° C., the operation was stable, and the slab surface was sound. No. No. 6 has a degree of superheat of 80 ° C., and the ratio of the flow path width at the center to the flow path width at the width end is 1.0 on the inflow side and 1.0 on the outflow side.
Casting was possible without any problems in operation stability and surface quality.
【0089】No.7は過熱度を本発明の限界を超えて
90℃とした。分流板の条件はNo.6と同じである。
操業は安定していたが、縦割れ疵が多発した。以下のN
o.8〜14までの試験では過熱度を50℃とした。No. In No. 7, the degree of superheat was set to 90 ° C., exceeding the limit of the present invention. The condition of the flow dividing plate is No. Same as 6.
The operation was stable, but there were many vertical cracks. N below
o. In the tests from 8 to 14, the degree of superheat was 50 ° C.
【0090】No.8は垂直分流板を2枚で構成した。
操業安定度、表面品質とも問題なく鋳造できた。No.
9は垂直分流板を5枚で構成した。操業安定度、表面品
質とも問題なく鋳造できた。No. 8 was composed of two vertical flow dividing plates.
Casting was possible without any problems in operation stability and surface quality. No.
9 was composed of five vertical flow dividing plates. Casting was possible without any problems in operation stability and surface quality.
【0091】No.10は垂直分流板の厚さの合計を流
入側流路の全幅の0.68倍とした。操業中鋳片破断が
発生し、鋳片上下面に噛込み疵が多発した。No.11
は流入側で中央部の流路幅を幅端部の1.2倍とした。
操業中鋳片破断が発生し、鋳片の下面側端部に噛込み疵
が多発した。No. In No. 10, the total thickness of the vertical flow dividing plates was set to 0.68 times the entire width of the inflow-side flow path. During operation, the slab was broken, and the upper and lower surfaces of the slab had many bite flaws. No. 11
On the inflow side, the width of the flow path at the center was 1.2 times the width end.
During the operation, the slab was broken, and the lower surface side end of the slab had many bite flaws.
【0092】No.12は流出側で中央部の流路幅を幅
端部の0.7倍とした。操業中鋳片破断が発生し、鋳片
の下面側端部に噛込み疵が多発した。No.13は流入
側で中央部の流路幅を幅端部の0.2倍とした。操業中
鋳片破断が発生し、鋳片の上下面に噛込み疵が発生し
た。No. Reference numeral 12 denotes the outflow side, in which the flow path width at the center is 0.7 times the width end. During the operation, the slab was broken, and the lower surface side end of the slab had many bite flaws. No. Reference numeral 13 denotes the inflow side, in which the width of the flow path at the center is 0.2 times the width end. During operation, the slab was broken, and bites were generated on the upper and lower surfaces of the slab.
【0093】No.14は流出側で中央部の流路幅を幅
端部の2.5倍とした。操業中鋳片破断が発生し、鋳片
の上下面中央部に噛込み疵が発生した。No.15〜2
4は水平分流板のみで構成した。No.15〜17では
過熱度の影響を調査した。No. Reference numeral 14 denotes an outflow side, in which the width of the flow path at the center is 2.5 times the width end. During operation, the slab was broken, and a biting flaw was generated at the center of the upper and lower surfaces of the slab. No. 15-2
No. 4 was constituted only by a horizontal flow dividing plate. No. In Nos. 15 to 17, the influence of the degree of superheat was investigated.
【0094】No.15は過熱度が20℃で本発明の下
限値である。操業はほぼ安定していたが、鋳片の上下面
に噛込み疵が散発していた。許容範囲の品質であるが、
溶湯温度の変動幅を考慮すると、水平分流板のみでは過
熱度が不足していることがわかった。No. No. 15 has a superheat degree of 20 ° C., which is the lower limit of the present invention. The operation was almost stable, but biting flaws were sporadic on the upper and lower surfaces of the slab. Acceptable quality,
Considering the fluctuation range of the molten metal temperature, it was found that the degree of superheat was insufficient with only the horizontal flow dividing plate.
【0095】No.16は過熱度を30℃とした。操業
は安定していたが、鋳片の下面で凝固組織の不均一が見
られた。許容範囲の品質であるが、溶湯温度の変動幅を
考慮すると、水平分流板のみでは過熱度がやや不足気味
であることがわかった。この対策として過熱度をさらに
高くし、以下の試験では過熱度を50℃とした。No. No. 16 set the degree of superheat to 30 ° C. The operation was stable, but unevenness of the solidification structure was observed on the lower surface of the slab. Although the quality was within an acceptable range, it was found that the degree of superheat was somewhat insufficient with only the horizontal shunt plate in consideration of the fluctuation range of the molten metal temperature. As a countermeasure, the degree of superheat was further increased, and the degree of superheat was set to 50 ° C. in the following tests.
【0096】No.17では操業は安定し、鋳片表面も
健全であった。No.18は水平分流板の上下面の流路
高さの比をそれぞれ1.0とした。操業は安定し、鋳片
表面は健全であった。No.19は水平分流板の厚さを
湯面高さの0.22倍とした。操業は安定していたが、
下面に噛込み疵が発生した。No.20は水平分流板の
厚さを湯面高さの0.83倍とした。操業は安定してい
たが、下面に噛込み疵が発生した。No. In No. 17, the operation was stable and the slab surface was sound. No. In No. 18, the ratio of the height of the flow path on the upper and lower surfaces of the horizontal flow dividing plate was 1.0. The operation was stable and the slab surface was sound. No. In No. 19, the thickness of the horizontal flow dividing plate was set to 0.22 times the height of the molten metal surface. The operation was stable,
Biting flaws occurred on the lower surface. No. In No. 20, the thickness of the horizontal flow dividing plate was set to 0.83 times the height of the molten metal surface. The operation was stable, but biting flaws occurred on the lower surface.
【0097】No.21は流入側で上面の流路高さを下
面の流路の1.25倍としたた。操業は安定していた
が、下面に噛込み疵が発生した。No.22は流出側で
上面の流路高さを下面の流路の0.8倍とした。操業は
安定していたが、下面に噛込み疵が発生した。No. Reference numeral 21 denotes an inflow side in which the height of the flow path on the upper surface is set to 1.25 times that of the flow path on the lower surface. The operation was stable, but biting flaws occurred on the lower surface. No. Reference numeral 22 denotes an outflow side, in which the height of the upper channel is 0.8 times that of the lower channel. The operation was stable, but biting flaws occurred on the lower surface.
【0098】No.23は流入側で上面の流路高さを下
面の流路の0.43倍とした。操業は安定していたが、
上面に噛込み疵が発生した。No.24は流出側で上面
の流路高さが下面の流路の2.33倍とした。操業は安
定していたが、下面に噛込み疵が発生した。No. Reference numeral 23 denotes an inflow side in which the height of the upper channel is 0.43 times the height of the lower channel. The operation was stable,
Biting flaws occurred on the upper surface. No. Reference numeral 24 denotes an outflow side, in which the height of the upper channel is 2.33 times that of the lower channel. The operation was stable, but biting flaws occurred on the lower surface.
【0099】表2の試験No.25〜36は水平分流板
と垂直分流板とで構成された分流板である。No.25
〜27では過熱度の影響を調査した。No.25は過熱
度が15℃と低く、本発明の下限未満であった。操業は
不安定で、上下面に噛み込み疵が散発しているのが見ら
れた。No.26は過熱度を本発明の下限の20℃とし
た。操業は安定したが、上下面で凝固組織の不均一が見
られた。許容範囲の品質であるが、溶湯温度の変動幅を
考慮すると過熱度がやや不足気味であることがわかっ
た。Test No. 2 in Table 2 Reference numerals 25 to 36 denote flow dividing plates composed of a horizontal dividing plate and a vertical dividing plate. No. 25
In the case of -27, the influence of the degree of superheat was investigated. No. No. 25 had a superheat degree as low as 15 ° C., which was less than the lower limit of the present invention. The operation was unstable and biting flaws were scattered on the upper and lower surfaces. No. In No. 26, the degree of superheating was set to the lower limit of 20 ° C. of the present invention. The operation was stable, but unevenness of the solidified structure was observed on the upper and lower surfaces. Although the quality was within an acceptable range, the degree of superheat was found to be slightly insufficient in consideration of the fluctuation range of the molten metal temperature.
【0100】この対策として、以下の試験では過熱度を
30℃とした。No.27では操業は安定し、鋳片表面
も健全であった。No.28は水平分流板の流入側およ
び流出側において上下面の流路高さの比をそれぞれ1.
0、1.0とし、垂直分流板の流入側および流出側にお
いて幅中央部と幅端部の流路幅の比をそれぞれ1.0、
1.0とした。操業は安定し、鋳片表面も健全であっ
た。As a countermeasure, the degree of superheat was set to 30 ° C. in the following tests. No. At 27, the operation was stable and the slab surface was sound. No. Numeral 28 designates the ratio of the height of the upper and lower passages on the inflow side and the outflow side of the horizontal distribution plate to 1.
0, 1.0, and the ratio of the width of the flow channel between the width center portion and the width end portion on the inflow side and the outflow side of the vertical flow dividing plate is 1.0, respectively.
1.0. The operation was stable and the slab surface was sound.
【0101】No.29は垂直分流板の流入側で幅中央
部の流路幅を幅端部の1.2倍とした。操業は安定して
いたが、鋳片の下面側幅端部に噛込み疵が多発した。N
o.30は垂直分流板の流出側で幅中央部の流路幅を幅
端部の0.7倍とした。操業は安定していたが、鋳片の
下面側幅端部に噛込み疵が多発した。No. Reference numeral 29 denotes the inflow side of the vertical flow dividing plate, in which the width of the flow path at the center of the width is 1.2 times the width end. Although the operation was stable, biting flaws occurred frequently at the lower end of the slab on the lower side. N
o. Reference numeral 30 denotes the outflow side of the vertical flow dividing plate, in which the flow path width at the center of the width is 0.7 times the width end. Although the operation was stable, biting flaws occurred frequently at the lower end of the slab on the lower side.
【0102】No.31は水平分流板の厚さを湯面高さ
の0.22倍とした。操業は安定していたが、鋳片の下
面に噛込み疵が多発した。No.32は水平分流板の厚
さを湯面高さの0.83倍とした。操業は安定していた
が、鋳片の上面に噛込み疵が多発した。No. In No. 31, the thickness of the horizontal flow dividing plate was set to 0.22 times the height of the molten metal surface. Although the operation was stable, biting flaws frequently occurred on the lower surface of the slab. No. In No. 32, the thickness of the horizontal flow dividing plate was set to 0.83 times the height of the molten metal surface. Although the operation was stable, biting flaws occurred frequently on the upper surface of the slab.
【0103】No.33は水平分流板の流入側で上面の
流路高さを下面の1.25倍とした。操業は安定してい
たが、下面に噛込み疵が発生した。No.34は水平分
流板の流出側で上面の流路高さを下面の0.8倍とし
た。操業は安定していたが、上面に噛込み疵が発生し
た。No. Reference numeral 33 denotes the inflow side of the horizontal flow dividing plate, and the flow path height on the upper surface is 1.25 times the lower surface. The operation was stable, but biting flaws occurred on the lower surface. No. Reference numeral 34 denotes an outflow side of the horizontal flow dividing plate, and the height of the flow path on the upper surface is set to 0.8 times the lower surface. The operation was stable, but biting flaws occurred on the upper surface.
【0104】No.35は水平分流板の流入側で上面の
流路高さを下面の0.43倍とした。操業は安定してい
たが、上下面に噛込み疵が発生した。No.36は水平
分流板の流出側で上面の流路高さが下面の2.33倍と
した。操業は安定していたが、上下面に噛込み疵が発生
した。No. Reference numeral 35 denotes an inflow side of the horizontal flow dividing plate, and the height of the flow path on the upper surface is set to 0.43 times the lower surface. The operation was stable, but biting flaws occurred on the upper and lower surfaces. No. Reference numeral 36 denotes an outflow side of the horizontal flow dividing plate, and the flow path height on the upper surface is 2.33 times the lower surface. The operation was stable, but biting flaws occurred on the upper and lower surfaces.
【0105】以上の試験結果から、ステンレス鋼の鋳造
で、分流板の寸法諸元を適切に選べば、過熱度について
は、垂直分流板のみ、または水平分流板のみの分流板の
場合は30℃以上の過熱度が好ましく、水平分流板と垂
直分流板で構成された分流板の場合は20℃以上の過熱
度が必要であることがわかった。一方、縦割れ疵を防止
するためには過熱度の上限は80℃とする必要がある。
何れの場合にも過熱度の好ましい範囲は30〜70℃で
あることがわかった。From the above test results, if the dimensions of the flow dividing plate were properly selected in the casting of stainless steel, the degree of superheat was 30 ° C. for the vertical dividing plate only or the horizontal dividing plate only. The above degree of superheat is preferable, and it has been found that a superheat degree of 20 ° C. or more is necessary in the case of a flow dividing plate composed of a horizontal distribution plate and a vertical distribution plate. On the other hand, in order to prevent vertical cracks, the upper limit of the degree of superheat must be 80 ° C.
In each case, it was found that the preferable range of the degree of superheat was 30 to 70 ° C.
【0106】[0106]
【発明の効果】本発明の分流板を用いれば、固着シェル
の発生を防止するとともに、上下面の品質が均等な鋳片
を安定して製造することができる。By using the flow dividing plate of the present invention, it is possible to prevent the occurrence of a fixed shell and to stably produce a slab having uniform upper and lower surfaces.
【図1】本発明の薄板連続鋳造用分流板の透視図であ
り、同図(a) は垂直分流板のみの構成、同図(b) は水平
分流板のみの構成、同図(c) は水平分流板と垂直分流板
とを備えた構成である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a flow dividing plate for continuous casting of a thin plate according to the present invention, wherein FIG. 1 (a) is a configuration having only a vertical distribution plate, FIG. 1 (b) is a configuration having only a horizontal distribution plate, and FIG. Is a configuration provided with a horizontal distribution plate and a vertical distribution plate.
【図2】本発明の分流板を用いた鋳造ノズルの構成図で
ある。FIG. 2 is a configuration diagram of a casting nozzle using the flow dividing plate of the present invention.
【図3】本発明の分流板を用いた薄板連続鋳造装置の概
要図であり、同図(a) は縦断面図、同図(b) は平面図で
ある。FIG. 3 is a schematic view of a continuous sheet casting apparatus using a flow dividing plate of the present invention, wherein FIG. 3 (a) is a longitudinal sectional view and FIG. 3 (b) is a plan view.
【図4】本発明の分流板の垂直分流板の寸法の説明図で
ある。FIG. 4 is an explanatory diagram of dimensions of a vertical flow dividing plate of the current dividing plate of the present invention.
【図5】本発明の分流板の垂直分流板の配置例を示す平
面図であり、同図(a) は3枚の垂直分流板で流路幅の比
が流入側0.7、流出側1.2の例である。同図(b) お
よび(c) は垂直分流板の枚数がそれぞれ2枚、5枚の例
で、流路幅の比が流入側で約0.7、流出側で約1.5
の例である。FIG. 5 is a plan view showing an example of the arrangement of vertical flow dividing plates of the flow dividing plate of the present invention. FIG. 1.2 is an example. FIGS. 7B and 7C show examples in which the number of vertical flow dividing plates is 2 and 5, respectively, and the ratio of the flow channel width is about 0.7 on the inflow side and about 1.5 on the outflow side.
This is an example.
【図6】本発明の水平分流板の各種の形状の断面図であ
り、同図(a) は流入出側の断面をテーパ形状とし、水平
分流板の厚さが湯面高さの0.5倍の例、同図(b) は流
入出側の断面を流線形状とし、水平分流板の厚さが湯面
高さの0.5倍の例、同図(c) および(d) は水平分流板
1の厚さを湯面高さのそれぞれ0.75倍、0.25倍
とした例である。FIG. 6 is a cross-sectional view of various shapes of the horizontal flow dividing plate of the present invention. FIG. 6 (a) has a tapered cross section on the inflow / outflow side, and the thickness of the horizontal flow distribution plate is 0. Fig. 5 (b) shows an example in which the cross section on the inflow / outflow side has a streamlined shape, and the thickness of the horizontal shunt plate is 0.5 times the height of the molten metal, and Figs. Are examples in which the thickness of the horizontal flow dividing plate 1 is 0.75 times and 0.25 times the height of the molten metal, respectively.
【図7】本発明の分流板を用いた場合の溶湯流動の模式
図であり、同図(a) は縦断面図、同図(b) は平面図であ
る。FIGS. 7A and 7B are schematic views of the flow of molten metal when the flow dividing plate of the present invention is used, wherein FIG. 7A is a longitudinal sectional view and FIG. 7B is a plan view.
【図8】従来技術の鋳造ノズルを用いた場合の溶湯流動
の模式図であり、同図(a) は縦断面図、同図(b) は平面
図である。8A and 8B are schematic diagrams of the flow of molten metal when a casting nozzle according to the related art is used, wherein FIG. 8A is a longitudinal sectional view and FIG. 8B is a plan view.
1 水平分流板 2 垂直分流板 3 分流板 4 底ノズル 5 サイドノズル 6 上堰 7 タンディッシュ 8 上ロール 9 下ロール 10 溶湯 11 鋳片 12 湯面 13 底ノズル側壁 14 固着シェル A、B、C 垂直分流板 R1、R4 幅端部の流路 R2、R3 中央部の流路 T 垂直分流板の厚さ Wci 幅中央部の流入口の流路幅 Wco 幅中央部の流出口の流路幅 Wei 幅端部の流路の流入幅 Weo 幅端部の流路の流出幅 Wni 底ノズルの流入幅 Wno 底ノズルの流出幅 Pi 垂直分流板の流入部での間隔 Po 垂直分流板の流出部での間隔 DESCRIPTION OF SYMBOLS 1 Horizontal distribution plate 2 Vertical distribution plate 3 Distribution plate 4 Bottom nozzle 5 Side nozzle 6 Upper weir 7 Tundish 8 Upper roll 9 Lower roll 10 Melt 11 Cast piece 12 Hot surface 13 Bottom nozzle side wall 14 Adhesive shell A, B, C Vertical Divider plates R1, R4 Channels at the width end R2, R3 Channels at the center T Thickness of vertical divider plate Wci Channel width at the inlet at the center of the Wci width Wco Channel width at the outlet at the center at the width Wei Width Inflow width of the end flow path Weo width Outflow width of the end flow path Wni Inflow width of the bottom nozzle Wno Outflow width of the bottom nozzle Pi Distance at the inflow part of the vertical flow dividing plate Po Distance at the flow part of the vertical flow dividing plate
Claims (6)
幅方向に3つ以上に区画する垂直分流板を備えたことを
特徴とする薄板連続鋳造用分流板。1. A flow dividing plate for continuous casting of a thin plate, comprising a vertical flow dividing plate for dividing a molten metal flow path into three or more in a width direction in a twin-roll horizontal pouring method.
の0.5倍以下であって、幅中央部のいずれかの流路の
流路幅と幅端部の流路の流路幅の比が流入側で0.25
〜1.0、流出側で1.0〜3.0であることを特徴と
する請求項1に記載の薄板連続鋳造用分流板。2. The flow path width of one of the flow paths at the center of the width and the flow path at the end of the width, wherein the sum of the thicknesses of the plurality of vertical flow dividing plates is 0.5 times or less the flow path width. Ratio of 0.25 on the inflow side
The split plate for continuous casting of a thin sheet according to claim 1, wherein the split plate is 1.0 to 1.0 and 1.0 to 3.0 on an outflow side.
上下2つに区画する水平分流板を備えたことを特徴とす
る薄板連続鋳造用分流板。3. A flow dividing plate for continuous casting of a thin plate, comprising a horizontal flow dividing plate for dividing a molten metal flow path into upper and lower two parts in a twin-roll horizontal pouring method.
〜0.75倍であって、上面の流路の高さと下面の流路
の高さの比が流入側で0.5〜1.0、流出側で1.0
〜2.0であることを特徴とする請求項3に記載の薄板
連続鋳造用分流板。4. The thickness of the horizontal flow dividing plate is 0.25 of the molten metal level.
0.75 times, and the ratio of the height of the upper channel to the lower channel is 0.5 to 1.0 on the inflow side and 1.0 on the outflow side.
The flow dividing plate for continuous casting of a thin plate according to claim 3, wherein the ratio is 2.0 to 2.0.
板と、溶湯流路を幅方向に3つ以上に区画する垂直分流
板とを備えたことを特徴とする請求項1〜4のいずれか
に記載の薄板連続鋳造用分流板。5. A horizontal flow dividing plate for dividing a molten metal flow path into two upper and lower parts, and a vertical flow dividing plate for dividing a molten metal flow path into three or more in a width direction. The flow dividing plate for continuous casting of a thin plate according to any one of the above.
続鋳造用分流板を用い、溶湯の過熱度を20〜80℃で
鋳造することを特徴とする薄板連続鋳造方法。6. A continuous casting method for a thin plate, comprising casting the molten metal at a superheat degree of 20 to 80 ° C. using the flow dividing plate for continuous casting of a thin plate according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35561497A JPH11179496A (en) | 1997-12-24 | 1997-12-24 | Divided flow plate for continuously casting thin sheet and method for continuously casting thin sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35561497A JPH11179496A (en) | 1997-12-24 | 1997-12-24 | Divided flow plate for continuously casting thin sheet and method for continuously casting thin sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11179496A true JPH11179496A (en) | 1999-07-06 |
Family
ID=18444892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35561497A Withdrawn JPH11179496A (en) | 1997-12-24 | 1997-12-24 | Divided flow plate for continuously casting thin sheet and method for continuously casting thin sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11179496A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006013654A1 (en) * | 2004-08-06 | 2006-02-09 | Central Motor Wheel Co., Ltd. | Molten metal direct rolling apparatus |
JP2011511882A (en) * | 2007-11-19 | 2011-04-14 | エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト | Casting equipment with apparatus for coating on slabs |
CN110035843A (en) * | 2016-11-29 | 2019-07-19 | Sms集团有限公司 | Casting nozzle |
-
1997
- 1997-12-24 JP JP35561497A patent/JPH11179496A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006013654A1 (en) * | 2004-08-06 | 2006-02-09 | Central Motor Wheel Co., Ltd. | Molten metal direct rolling apparatus |
JP2011511882A (en) * | 2007-11-19 | 2011-04-14 | エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト | Casting equipment with apparatus for coating on slabs |
CN110035843A (en) * | 2016-11-29 | 2019-07-19 | Sms集团有限公司 | Casting nozzle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018192530A (en) | Casting mold for continuous casting and continuous casting method of steel | |
JP7284403B2 (en) | Twin roll continuous casting apparatus and twin roll continuous casting method | |
US6152209A (en) | Method and device for measuring and regulating the temperature and quantity of cooling water for water-coolable walls of a continuous casting mold | |
JP6003851B2 (en) | Continuous casting mold and steel continuous casting method | |
KR102245010B1 (en) | Method for continuous casting of steel | |
JPH11179496A (en) | Divided flow plate for continuously casting thin sheet and method for continuously casting thin sheet | |
CN109475930B (en) | Continuous casting mold and method for continuous casting of steel | |
JP6365604B2 (en) | Steel continuous casting method | |
JP6428721B2 (en) | Continuous casting mold and steel continuous casting method | |
JP3099157B2 (en) | Continuous casting method | |
JPH0342144A (en) | Method for cooling mold for continuous casting and mold thereof | |
JP5443203B2 (en) | Continuous casting method using a cooling method for rolls arranged in an air cooling zone | |
EP0780176A2 (en) | Apparatus for and process of continuous casting | |
JP4232491B2 (en) | Continuous casting mold | |
EP3530373B1 (en) | Continuous casting mold and method for continuous casting of steel | |
US6176298B1 (en) | Continuous casting mould | |
JP7230597B2 (en) | Pouring nozzle, twin roll type continuous casting apparatus, and method for producing thin cast slab | |
KR100805043B1 (en) | Submerged nozzle for continuous casting | |
KR200188747Y1 (en) | Device of continuous thin slab casting for twin roll type | |
JP2000312952A (en) | Dipping nozzle for continuous casting | |
JP2005211924A (en) | Method for continuously casting steel | |
JPH0890178A (en) | Method for reducing defect just below surface skin of continuously cast slab | |
JP3039821B2 (en) | Immersion nozzle for continuous casting and method of pouring molten steel | |
JP3724235B2 (en) | Continuous casting method and continuous casting mold | |
JP2023141391A (en) | Continuous casting method for steal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050301 |