Nothing Special   »   [go: up one dir, main page]

JP4232491B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP4232491B2
JP4232491B2 JP2003070513A JP2003070513A JP4232491B2 JP 4232491 B2 JP4232491 B2 JP 4232491B2 JP 2003070513 A JP2003070513 A JP 2003070513A JP 2003070513 A JP2003070513 A JP 2003070513A JP 4232491 B2 JP4232491 B2 JP 4232491B2
Authority
JP
Japan
Prior art keywords
mold
drainage
cooling
continuous casting
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003070513A
Other languages
Japanese (ja)
Other versions
JP2004276065A (en
Inventor
豪伸 渡邉
泰三 瀬良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003070513A priority Critical patent/JP4232491B2/en
Publication of JP2004276065A publication Critical patent/JP2004276065A/en
Application granted granted Critical
Publication of JP4232491B2 publication Critical patent/JP4232491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造用鋳型に関し、詳しくは、鋳片鋳造方向の鋳型上部と鋳型下部とで冷却強度を変えることが可能な連続鋳造用鋳型に関するものである。
【0002】
【従来の技術】
連続鋳造用鋳型の目的は、注湯された溶鋼を冷却して鋳型と接触する部位に凝固シェルを形成させ、鋳型下方への引抜きに耐える強度の凝固シェルを鋳片表層に形成させることである。この目的のため、連続鋳造用鋳型は、素材として熱伝導率に優れた銅若しくは銅合金を用い、溶鋼との接触面の反対側を強制的に冷却する水冷構造式の鋳型が採用されている。
【0003】
近年、主に生産性の向上を目的として連続鋳造操業における鋳片引抜き速度が高速化され、これによって鋳型内での滞在時間は短縮化しており、高速鋳造における安定操業の観点から、鋳型出口部で所定厚みの凝固シェルを得るために鋳型内における冷却がより一層強化されている。
【0004】
ところで、鋳型内の凝固シェルには凝固シェル自体の温度低下に伴って定常的に熱応力が作用しており、鋳型内冷却が強化された場合には、鋳型内幅方向で不均一凝固が起こりやすい上に、熱応力自体が増大するため、凝固シェルには鋳造方向に沿った亀裂や割れが発生しやすくなる。特に、割れ感受性の強い、炭素濃度が0.08〜0.2mass%の包晶反応を伴う、所謂中炭素鋼では、鋳片表面に縦割れが発生し、鋳片の無手入れ化を阻害するのみならず、縦割れ部が鋳型直下で拡大してブレークアウトに及ぶことさえも発生する。又、鋳型内冷却の強化に伴って初期凝固速度が速くなり、鋳型内溶鋼湯面位置における凝固シェルへのモールドパウダーやArガスの気泡の捕捉が起こりやすくなり、これも鋳片の品質を低下させる原因となっている。
【0005】
そのため、鋳型内の溶鋼湯面(以下、「メニスカス」と記す)では緩冷却として鋳片表面品質を高品位に維持しつつ、鋳型下部では強冷却として凝固シェル厚みを十分に確保する手段が提案されている。
【0006】
例えば、特許文献1には、鋳型自体の冷却能は変更せずに、鋳型内に緩冷却型のモールドパウダーを添加する方法が提案されている。この方法によれば、熱伝導率の低い、高融点のモールドパウダーが凝固シェルと鋳型との間に流入するため、メニスカス部分での鋳型への伝熱が抑制されて緩冷却となり、鋳片引抜き速度を低下させることなく表面品質に優れた鋳片を製造可能としている。
【0007】
又、特許文献2及び特許文献3には、モールドパウダーの特性を変更する程度の緩冷却化では不十分であるとして、メニスカス位置を含む鋳型の上部側とそれよりも鋳造方向下流側とで冷却水の流路であるスリットを分割し、分割した上下のスリット毎に独立して冷却水量を調整することで、鋳型の上部側と下部側とで冷却強度を調整可能な連続鋳造用鋳型が提案されている。特許文献2及び特許文献3によれば、鋳型の上部と下部とで任意の冷却強度を独立して選択することが可能であり、表面疵の少ない鋳片を鋳造することができるとしている。
【0008】
【特許文献1】
特開平5−277680号公報
【0009】
【特許文献2】
特開平7−51804号公報
【0010】
【特許文献3】
特開平7−124711号公報
【0011】
【発明が解決しようとする課題】
しかしながら、特許文献2及び特許文献3では、以下の問題点が発生する。即ち、スリットを上部と下部とに分割するため、境界となる分割部分の冷却能が不足し、分割部分では鋳型銅板温度が上昇して熱膨張による鋳型銅板の変形などを発生し、鋳型銅板の寿命を低下させる原因となる。又、特許文献3では、隣合うスリット同士の間隔が広くならざるを得ず、鋳型全体の冷却能が低下する。更に、2組の給排水用配管が必要であり、設備費が高くなるのみならず、配管が錯綜して保守点検が困難になる。
【0012】
本発明は上記事情に鑑みてなされたもので、その目的とするところは、メニスカス部とその下方側との境界位置でも冷却能を低下させることなく、メニスカス部が緩冷却となるように、メニスカス部とその下方側とで冷却強度を変更することが可能であり、しかも、設備費用が比較的安価である連続鋳造用鋳型を提供することである。
【0013】
【課題を解決するための手段】
上記課題を解決するための第1の発明に係る連続鋳造用鋳型は、銅製鋳型に設けられた、当該銅製鋳型を冷却するための冷却水の流路に対して、一箇所の給水部と、鋳造方向に離れて少なくとも二箇所の排水部と、を具備した連続鋳造用鋳型であって、前記給水部は鋳造方向の下流側に設置され、前記排水部は当該給水部よりも鋳造方向の上流側に設置されていることを特徴とするものである。
【0014】
第2の発明に係る連続鋳造用鋳型は、第1の発明において、前記排水部は、二箇所であることを特徴とするものである。
【0015】
第3の発明に係る連続鋳造用鋳型は、第2の発明において、二箇所の排水部同士の間隔は、鋳造方向に100mm以上離れていることを特徴とするものである。
【0016】
第4の発明に係る連続鋳造用鋳型は、第2又は第3の発明において、鋳造方向下流側の排水部には、当該排水部から排出される冷却水量を調整するための流量調整手段が設置されていることを特徴とするものである。
【0018】
本発明に係る連続鋳造用鋳型では、銅製鋳型を冷却する冷却水の排水部が鋳造方向の二箇所以上に設置されているため、鋳造方向下流側から冷却水流路内に供給された冷却水は、これらの排水部からそれぞれ排出され、鋳造方向の上流側になるほど冷却水流路を通過する冷却水量が減少するため、鋳造方向の上流側即ちメニスカス側では冷却能が弱くなり、緩冷却させることができる。そして、冷却水流路は鋳型の上部から下部まで連続しているので、冷却能は冷却水流路を通過する冷却水量に応じて連続的に変化し、特許文献2及び特許文献3の境界域のような冷却能の不足する領域を形成することがない。更に、排水部を二箇所にした場合には、給水部は一箇所で足りるので、独立して2組の給排水用配管を設置した場合に比較して、その分は設備費を削減することができる。
【0019】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を説明する。図1〜図3は、本発明の実施の形態の一例を示す図であって、図1は、発明に係る連続鋳造用鋳型の給排水構造を示す概略図、図2は、本発明に係る連続鋳造用鋳型の斜視図、図3は、図1に示す鋳型長辺銅板の一部分の横断面図である。
【0020】
これらの図に示すように、スラブ連続鋳造機用の鋳型1を構成する鋳型長辺銅板2には、溶鋼と直接接触する面とは反対側の面に、冷却水の流路となる多数のスリット3が、鋳型長辺銅板2の上部から下部に亘って鋳型長辺銅板2の幅方向に並んで設けられている。そして、鋳型長辺銅板2のスリット3が設置された面には、スリット3の開口部を塞ぎ、個々のスリット3を独立した冷却水流路とするための水箱4が、図示せぬボルトやネジなどによって鋳型長辺銅板2に密着して取り付けられている。この水箱4には、その下部側に、鋳型長辺銅板2の幅方向の全てのスリット3と連通する給水孔6が設けられ、その上部側には鋳型長辺銅板2の幅方向の全てのスリット3と連通する、排水孔11並びに排水孔15が設けられている。この場合、スリット3は直線状であり、その横断面積は鋳型長辺銅板2の上部と下部とで実質的に同一であり、又、隣合うスリット3同士の間隔は、特に規定する理由はなく、操業条件に最適な任意の間隔とすることができる。
【0021】
給水孔6は、鋳型長辺銅板2の幅方向全体に亘って水箱4の背面に設置された分水管7と連通し、又、分水管7は流量調節弁9を備えた給水管8と連通している。即ち、給水孔6、分水管7、給水管8及び流量調節弁9によってスリット3への冷却水の給水部5が構成されている。この構成の給水部5においては、鋳型長辺銅板2を冷却するための冷却水は、流量調節弁9によって供給流量を制御されながら、給水管8を通って分水管7に送られ、分水管7で鋳型長辺銅板2の幅方向に分散され、給水孔6を通って各スリット3内に供給される。
【0022】
一方、排水孔11は、鋳型長辺銅板2の幅方向全体に亘って水箱4の背面に設置された集水管12と連通し、又、集水管12は排水管13と連通している。即ち、排水孔11、集水管12及び排水管13によってスリット3からの冷却水の第1の排水部10が構成されている。この構成の第1の排水部10においては、排水孔11を通って鋳型長辺銅板2の幅方向の各スリット3から排出された冷却水は集水管12で集められ、集められた冷却水は排水管13を通って系外に排出される。
【0023】
又、排水孔15は、鋳型長辺銅板2の幅方向全体に亘って水箱4の背面に設置された集水管16と連通し、又、集水管16は流量調節弁18を備えた排水管17と連通している。即ち、排水孔15、集水管16、排水管17及び流量調節弁18によってスリット3からの冷却水の第2の排水部14が構成されている。流量調節弁18は、開度制御器19によってその開度が制御されるようになっている。この構成の第2の排水部14においては、排水孔15を通って鋳型長辺銅板2の幅方向の各スリット3から排出された冷却水は集水管16で集められ、集められた冷却水は、開度制御器19によって排出される流量を制御されながら排水管17を通って系外に排出される。
【0024】
図1に示す排水孔15は、直管状で且つスリット3に対して垂直方向に設置されているが、スリット3内を高速度で流れる冷却水を排水孔15から流出させやすくするために、排水孔15のスリット3との接触面を円弧状(Rを付ける)にする、排水孔15の内径をスリット3側を大きく、集水管16側を小さくしたテーパー状にする、或いは、排水孔15をスリット3の流れの方向に沿って斜めに設置するなどの対策を講じてもよい。
【0025】
排水孔11と排水孔15との略中間位置の鋳型長辺銅板2には、図3に示すように、鋳型長辺銅板2のメニスカス近傍位置の温度を検出するための測温素子20が配置されており、測温素子20による検出値は、流量調節弁18の開度を制御する開度制御器19に入力されている。測温素子20としては熱電対などを用いればよい。
【0026】
図1は、スラブ連続鋳造機用の鋳型1を構成する鋳型長辺銅板2の図であるが、鋳型1を構成する鋳型短辺銅板21にも、上記に準じて1つの給水部と2つの排水部とを設置することができる。図2は、このような冷却水の給排水構造を有する鋳型長辺銅板2並びに鋳型短辺銅板21を組合わせて構成した本発明に係る鋳型1の斜視図であるが、図2では、対面の鋳型長辺銅板2の給排水構造並びに鋳型短辺銅板21の給排水構造は省略している。図2中の符号22は鋳型短辺銅板21用の水箱である。尚、スラブ連続鋳造機においては、鋳型短辺銅板21と鋳型1内に注湯された溶鋼との接触面積は、鋳型長辺銅板2との接触面積に比べて著しく小さく、鋳片表面品質に及ぼす影響が少ないため、鋳型短辺銅板21には必ずしも2つの排水部を設置する必要はない。又、図1は垂直曲げ型スラブ連続鋳造機用の鋳型1を示しており、湾曲型連続鋳造機の場合には、鋳型も湾曲半径に沿った形状となる。
【0027】
鋳型1の冷却能は、冷却水の流路であるスリット3内を流れる冷却水の流量、冷却水の温度、冷却水の流速に依存する。即ち、流量が多いほど、冷却水温度が低いほど、冷却水流量が速いほど、冷却能は高くなる。上記構成の本発明に係る鋳型1では、第2の排水部14からスリット3内の冷却水を排出することができるため、第2の排水部14よりも上部のスリット3内の冷却水量を少なくすることができる。そのため、第2の排水部14よりも上部側では、スリット3内を通過する冷却水の流量が減少すると共に、流量の減少に伴って流速も低下するため、鋳型冷却能が低下する。
【0028】
第2の排水部14よりも上部側の冷却能の低下率は、第2の排水部14から排出される冷却水流量に依存するため、流量調節弁18の開度を調整して第2の排水部14から排出される冷却水流量を任意に設定することで、第2の排水部14よりも上部側の冷却能を任意に調整することができる。尚、本発明に係る鋳型1では冷却水を鋳型1の下部側から導入しており、冷却水はスリット3内を上昇中に徐々にその温度が上昇するため、本来、鋳型下部に比べて鋳型上部の方が冷却能が小さくなるようになっている。又、第2の排水部14を閉鎖すれば、鋳型冷却能は従前慣用の鋳型と同一になる。
【0029】
この場合、冷却能を低下させる部位、即ち鋳型内のメニスカス近傍の鋳型温度に目標値を設定し、測温素子20による検出値に基づき、開度制御器19を用いて当該検出値を目標値に合わせるように流量調節弁18の開度を調整することで、鋳片引抜き速度の変更などの鋳造条件の変更があっても、第2の排水部14よりも上部側の冷却能を略一定にすることができる。
【0030】
本発明に係る鋳型1を用いて連続鋳造操業を行う際には、鋳型1内のメニスカス位置を少なくとも第2の排水部14よりも上部側として鋳造する。メニスカス位置を第2の排水部14よりも下部側とした場合には、本発明に係る鋳型1が有する鋳型上部の冷却能低下効果をメニスカス部に作用させることができない。メニスカス位置を常に第2の排水部14よりも上部側としてメニスカス位置を緩冷却するために、図1に示す、排水孔11と排水孔15との鋳造方向の距離Lを100mm以上とすることが好ましい。
【0031】
尚、図1では、スリット3からの冷却水の排水部が二箇所であるが、第2の排水部14の下側に、第3の排水部、更には第4の排水部を設置してもよい。但し、追加した排水部から排出される冷却水の流量を調整するため、追加した排水部には第2の排水部14と同様に流量調節弁を設置する必要がある。又、上記説明では冷却水の流路がスリット形状であるが、銅製鋳型に貫通孔を設け、この貫通孔を冷却水流路とする鋳型においても、貫通孔の途中にバイパス孔を設置することで、本発明を適用することができる。
【0032】
本発明に係る鋳型1を用いて溶鋼を鋳造することにより、鋳型内のメニスカス部の冷却が緩冷却され、鋳片表面欠陥の内で初期凝固の段階に形成される縦割れ、並びにモールドパウダーや脱酸生成物である非金属介在物更には不活性ガス気泡の凝固シェルへの捕捉・巻込みが大幅に低減し、表面性状の良好な鋳片を安定して得ることが可能となる。又、第2の排水部14を境とする鋳型1の上部と下部とで鋳型1の冷却能は徐々に減少し、境界域において冷却能が不足することがないため、鋳型銅板表面温度の局部的な上昇が発生せず、従前慣用の鋳型と同等の鋳型寿命を達成することができる。更に、最低二箇所の排水部を設置するのみで所定の目的が達成されるため、従前慣用の鋳型に対して一箇所の排水部が追加されるだけであり、設備費は比較的安価に抑えることができる。
【0033】
尚、本発明は上記説明に限定されるものではなく、種々に変更することができる。例えば、上記説明では、スラブ連続鋳造機用の鋳型であるが、ブルーム連続鋳造機用の鋳型やビレット連続鋳造機用の鋳型にも上記説明に沿って適用することができる。又、冷却水の給排水構造も上記に限るものではなく、どのような構造としてもよい。要は、鋳型下部側から冷却水が供給される冷却水流路に対して、鋳造方向に離れて少なくとも二箇所の排水部が備えられているならば、その他の構造はどのようであってもよい。
【0034】
【発明の効果】
本発明に係る連続鋳造用鋳型によれば、鋳型内のメニスカス部の冷却が緩冷却され、鋳片表面欠陥の内で初期凝固の段階に形成される縦割れ及びモールドパウダーや脱酸生成物である非金属介在物更には不活性ガス気泡の凝固シェルへの捕捉・巻込みが大幅に低減し、表面性状の良好な鋳片を安定して得ることが可能となるのみならず、緩冷却部と通常冷却部との境界域では、鋳型冷却能は徐々に減少して鋳型冷却能の不足することがないため、従前慣用の鋳型と同等の鋳型寿命を達成することができ、工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示す図であって、発明に係る連続鋳造用鋳型の給排水構造を示す概略図である。
【図2】本発明の実施の形態の一例を示す図であって、本発明に係る連続鋳造用鋳型の斜視図である。
【図3】図1に示す鋳型長辺銅板の一部分の横断面図である。
【符号の説明】
1 鋳型
2 鋳型長辺銅板
3 スリット
4 水箱
5 給水部
6 給水孔
7 分水管
8 給水管
9 流量調節弁
10 第1の排水部
11 排水孔
12 集水管
13 排水管
14 第2の排水部
15 排水孔
16 集水管
17 排水管
18 流量調節弁
19 開度制御器
20 測温素子
21 鋳型短辺銅板
22 水箱
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting mold, and more particularly to a continuous casting mold in which the cooling strength can be changed between a mold upper part and a mold lower part in a casting slab casting direction.
[0002]
[Prior art]
The purpose of the continuous casting mold is to cool the poured molten steel to form a solidified shell at the site where it comes into contact with the mold, and to form a solidified shell on the surface of the slab that can withstand drawing down the mold. . For this purpose, the continuous casting mold uses copper or copper alloy with excellent thermal conductivity as the material, and adopts a water-cooled structural mold that forcibly cools the opposite side of the contact surface with the molten steel. .
[0003]
In recent years, the slab drawing speed in continuous casting operations has been increased mainly for the purpose of improving productivity, thereby shortening the residence time in the mold. From the viewpoint of stable operation in high-speed casting, the mold outlet section In order to obtain a solidified shell having a predetermined thickness, cooling in the mold is further strengthened.
[0004]
By the way, the solidified shell in the mold is constantly subjected to thermal stress as the temperature of the solidified shell itself decreases, and when the cooling in the mold is strengthened, nonuniform solidification occurs in the width direction of the mold. In addition, since the thermal stress itself increases, cracks and cracks along the casting direction tend to occur in the solidified shell. In particular, in the so-called medium carbon steel, which has a strong cracking sensitivity and a peritectic reaction with a carbon concentration of 0.08 to 0.2 mass%, longitudinal cracks are generated on the surface of the slab, which impairs the maintenance of the slab. Not only that, but the vertical cracks may even extend to the breakout just below the mold. In addition, the initial solidification rate increases with the strengthening of the mold cooling, and it becomes easy to trap the mold powder and Ar gas bubbles in the solidified shell at the molten steel surface in the mold, which also deteriorates the quality of the slab. It is a cause.
[0005]
For this reason, a method has been proposed to maintain a high quality slab surface as a slow cooling on the molten steel surface in the mold (hereinafter referred to as “meniscus”), while ensuring a sufficient solidified shell thickness as a strong cooling at the bottom of the mold. Has been.
[0006]
For example, Patent Document 1 proposes a method of adding a slowly cooled mold powder into a mold without changing the cooling ability of the mold itself. According to this method, since the mold powder having a low thermal conductivity and a high melting point flows between the solidified shell and the mold, heat transfer to the mold at the meniscus portion is suppressed and the cooling is performed slowly. It is possible to produce a slab excellent in surface quality without reducing the speed.
[0007]
Further, in Patent Document 2 and Patent Document 3, it is assumed that slow cooling to the extent that the properties of the mold powder are changed is not sufficient, and cooling is performed on the upper side of the mold including the meniscus position and on the downstream side in the casting direction. Proposing a continuous casting mold that can adjust the cooling strength on the upper and lower sides of the mold by dividing the slit, which is the water flow path, and adjusting the cooling water amount independently for each of the divided upper and lower slits. Has been. According to Patent Document 2 and Patent Document 3, it is possible to independently select an arbitrary cooling strength between the upper part and the lower part of the mold, and it is possible to cast a slab with less surface flaws.
[0008]
[Patent Document 1]
JP-A-5-277680 [0009]
[Patent Document 2]
JP-A-7-51804 [0010]
[Patent Document 3]
Japanese Patent Laid-Open No. 7-124711
[Problems to be solved by the invention]
However, Patent Document 2 and Patent Document 3 have the following problems. That is, since the slit is divided into an upper part and a lower part, the cooling capacity of the divided part that becomes the boundary is insufficient, the mold copper plate temperature rises in the divided part, and the deformation of the mold copper sheet due to thermal expansion occurs. It will cause a decrease in the service life. Moreover, in patent document 3, the space | interval of adjacent slits must be widened, and the cooling capability of the whole casting_mold | template falls. Furthermore, two sets of piping for water supply and drainage are required, which not only increases the equipment cost, but also complicates the piping and makes maintenance inspection difficult.
[0012]
The present invention has been made in view of the above circumstances, and the object of the present invention is to prevent the meniscus portion from being slowly cooled without degrading the cooling ability even at the boundary position between the meniscus portion and the lower side thereof. It is possible to provide a continuous casting mold in which the cooling strength can be changed between the portion and the lower side thereof, and the equipment cost is relatively low.
[0013]
[Means for Solving the Problems]
The continuous casting mold according to the first invention for solving the above problems is provided in a copper mold, with respect to a flow path of cooling water for cooling the copper mold, a single water supply unit, A continuous casting mold having at least two drainage portions separated in the casting direction, wherein the water supply portion is installed downstream in the casting direction, and the drainage portion is upstream of the water supply portion in the casting direction. It is characterized by being installed on the side.
[0014]
The continuous casting mold according to the second invention is characterized in that, in the first invention, the drainage portion is provided at two locations.
[0015]
The continuous casting mold according to the third invention is characterized in that, in the second invention, the interval between the two drainage portions is 100 mm or more away in the casting direction.
[0016]
In the continuous casting mold according to the fourth invention, in the second or third invention, a flow rate adjusting means for adjusting the amount of cooling water discharged from the drainage portion is installed in the drainage portion on the downstream side in the casting direction. It is characterized by being.
[0018]
In the continuous casting mold according to the present invention, the cooling water drainage portions for cooling the copper mold are installed at two or more locations in the casting direction, so the cooling water supplied from the downstream side in the casting direction into the cooling water flow path is The amount of cooling water discharged from each of these drainage portions and passing through the cooling water flow path decreases toward the upstream side in the casting direction. Therefore, the cooling capacity is weakened on the upstream side in the casting direction, that is, on the meniscus side, and can be slowly cooled. it can. And since a cooling water flow path is continuing from the upper part of a casting_mold | template to the lower part, a cooling capability changes continuously according to the amount of cooling water which passes a cooling water flow path, and is like the boundary area of patent document 2 and patent document 3 A region where the cooling capacity is insufficient is not formed. Furthermore, when two drainage sections are provided, one water supply section is sufficient, so compared to the case where two sets of water supply / drainage pipes are installed independently, the facility cost can be reduced accordingly. it can.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1-3 is a figure which shows an example of embodiment of this invention, Comprising: FIG. 1 is the schematic which shows the water supply / drainage structure of the casting mold for continuous casting which concerns on invention, FIG. 2 is the continuous which concerns on this invention FIG. 3 is a perspective view of a casting mold, and FIG. 3 is a cross-sectional view of a portion of the mold long-side copper plate shown in FIG.
[0020]
As shown in these figures, the long copper plate 2 constituting the mold 1 for a slab continuous casting machine has a large number of cooling water flow paths on the surface opposite to the surface in direct contact with the molten steel. The slits 3 are provided side by side in the width direction of the long mold copper plate 2 from the top to the bottom of the long mold copper plate 2. And the water box 4 for plugging the opening of the slit 3 and making each slit 3 into an independent cooling water flow path is provided on the surface of the long copper plate 2 on which the slit 3 is installed, by bolts and screws (not shown). For example, the mold long side copper plate 2 is attached in close contact. The water box 4 is provided with water supply holes 6 communicating with all the slits 3 in the width direction of the mold long side copper plate 2 on the lower side thereof, and all of the width direction of the mold long side copper plate 2 in the upper side thereof. A drain hole 11 and a drain hole 15 communicating with the slit 3 are provided. In this case, the slit 3 is linear, and the cross-sectional area thereof is substantially the same between the upper part and the lower part of the long-side copper plate 2, and there is no reason to define the interval between adjacent slits 3 in particular. , Can be any interval optimal for operating conditions.
[0021]
The water supply hole 6 communicates with a water distribution pipe 7 installed on the back surface of the water box 4 over the entire width direction of the mold long side copper plate 2, and the water distribution pipe 7 communicates with a water supply pipe 8 provided with a flow control valve 9. is doing. That is, the water supply hole 5, the water distribution pipe 7, the water supply pipe 8, and the flow rate control valve 9 constitute a water supply unit 5 for cooling water to the slit 3. In the water supply section 5 having this configuration, the cooling water for cooling the long copper plate 2 is sent to the water distribution pipe 7 through the water supply pipe 8 while the supply flow rate is controlled by the flow rate control valve 9. 7 is distributed in the width direction of the mold long-side copper plate 2 and supplied into the slits 3 through the water supply holes 6.
[0022]
On the other hand, the drain hole 11 communicates with the water collecting pipe 12 installed on the back surface of the water box 4 over the entire width direction of the long copper plate 2, and the water collecting pipe 12 communicates with the drain pipe 13. That is, the drainage hole 11, the water collection pipe 12, and the drainage pipe 13 constitute a first drainage unit 10 for cooling water from the slit 3. In the first drainage unit 10 having this configuration, the cooling water discharged from the slits 3 in the width direction of the long copper plate 2 through the drainage holes 11 is collected by the water collecting pipe 12, and the collected cooling water is It is discharged out of the system through the drain pipe 13.
[0023]
The drain hole 15 communicates with a water collecting pipe 16 installed on the back surface of the water box 4 over the entire width direction of the long copper plate 2 of the mold, and the water collecting pipe 16 has a drain pipe 17 provided with a flow control valve 18. Communicated with. That is, the drainage hole 15, the water collection pipe 16, the drainage pipe 17, and the flow rate control valve 18 constitute a second drainage unit 14 for the cooling water from the slit 3. The opening degree of the flow rate adjusting valve 18 is controlled by an opening degree controller 19. In the second drainage section 14 having this configuration, the cooling water discharged from the slits 3 in the width direction of the long copper plate 2 through the drainage holes 15 is collected by the water collecting pipe 16, and the collected cooling water is Then, it is discharged out of the system through the drain pipe 17 while the flow rate discharged by the opening controller 19 is controlled.
[0024]
The drain hole 15 shown in FIG. 1 has a straight tube shape and is installed in a direction perpendicular to the slit 3. In order to make it easier for the cooling water flowing in the slit 3 to flow out from the drain hole 15, The contact surface of the hole 15 with the slit 3 is made into an arc shape (R is attached), the inner diameter of the drain hole 15 is tapered so that the slit 3 side is larger and the water collecting pipe 16 side is smaller, or the drain hole 15 is You may take measures, such as installing diagonally along the direction of the flow of the slit 3.
[0025]
As shown in FIG. 3, a temperature measuring element 20 for detecting the temperature in the vicinity of the meniscus of the long-side copper plate 2 is disposed on the long-side copper plate 2 at a substantially intermediate position between the drain holes 11 and 15. The value detected by the temperature measuring element 20 is input to an opening controller 19 that controls the opening of the flow rate control valve 18. A thermocouple or the like may be used as the temperature measuring element 20.
[0026]
FIG. 1 is a diagram of a mold long side copper plate 2 constituting a mold 1 for a slab continuous casting machine, but a mold short side copper plate 21 constituting the mold 1 is also provided with one water supply section and two pieces according to the above. A drainage section can be installed. FIG. 2 is a perspective view of the mold 1 according to the present invention configured by combining the mold long-side copper plate 2 and the mold short-side copper plate 21 having such a cooling water supply / drainage structure. In FIG. The water supply / drainage structure of the mold long side copper plate 2 and the water supply / drainage structure of the mold short side copper plate 21 are omitted. Reference numeral 22 in FIG. 2 denotes a water box for the mold short side copper plate 21. In the slab continuous casting machine, the contact area between the mold short-side copper plate 21 and the molten steel poured into the mold 1 is significantly smaller than the contact area between the mold long-side copper plate 2 and the slab surface quality is improved. Since there is little influence, it is not necessary to install two drainage parts in the mold short side copper plate 21. FIG. 1 shows a mold 1 for a vertical bending slab continuous casting machine. In the case of a curved continuous casting machine, the mold also has a shape along a curved radius.
[0027]
The cooling capacity of the mold 1 depends on the flow rate of the cooling water flowing through the slit 3 that is the flow path of the cooling water, the temperature of the cooling water, and the flow rate of the cooling water. That is, the greater the flow rate, the lower the coolant temperature, and the faster the coolant flow rate, the higher the cooling capacity. In the mold 1 according to the present invention having the above-described configuration, the cooling water in the slit 3 can be discharged from the second drainage portion 14, so that the amount of cooling water in the slit 3 above the second drainage portion 14 is less. can do. Therefore, on the upper side of the second drainage section 14, the flow rate of the cooling water passing through the slit 3 is reduced, and the flow rate is reduced as the flow rate is reduced, so that the mold cooling ability is lowered.
[0028]
Since the rate of decrease in cooling capacity on the upper side of the second drainage portion 14 depends on the flow rate of the cooling water discharged from the second drainage portion 14, the opening degree of the flow rate adjustment valve 18 is adjusted to adjust the second By arbitrarily setting the flow rate of the cooling water discharged from the drainage part 14, the cooling capacity on the upper side of the second drainage part 14 can be arbitrarily adjusted. In the mold 1 according to the present invention, cooling water is introduced from the lower side of the mold 1, and the temperature of the cooling water gradually rises while rising in the slit 3. The upper part has a smaller cooling capacity. Moreover, if the 2nd drainage part 14 is closed, a mold cooling capability will become the same as a conventional mold.
[0029]
In this case, a target value is set for the temperature at which the cooling capacity is lowered, that is, the mold temperature in the vicinity of the meniscus in the mold, and the detected value is set to the target value using the opening controller 19 based on the detected value by the temperature measuring element 20. By adjusting the opening degree of the flow rate control valve 18 so as to match, the cooling capacity on the upper side of the second drainage portion 14 is substantially constant even if there is a change in casting conditions such as a change in the slab drawing speed. Can be.
[0030]
When the continuous casting operation is performed using the mold 1 according to the present invention, the meniscus position in the mold 1 is cast at least above the second drainage portion 14. When the meniscus position is on the lower side of the second drainage part 14, the cooling ability lowering effect on the upper part of the mold of the mold 1 according to the present invention cannot be applied to the meniscus part. In order to slowly cool the meniscus position with the meniscus position always above the second drainage part 14, the distance L in the casting direction between the drainage hole 11 and the drainage hole 15 shown in FIG. preferable.
[0031]
In FIG. 1, there are two cooling water drainage portions from the slit 3, but a third drainage portion and further a fourth drainage portion are installed below the second drainage portion 14. Also good. However, in order to adjust the flow rate of the cooling water discharged from the added drainage unit, it is necessary to install a flow rate control valve in the added drainage unit, as in the second drainage unit 14. In the above description, the flow path of the cooling water has a slit shape, but a through hole is provided in a copper mold, and even in a mold having the through hole as a cooling water flow path, a bypass hole is provided in the middle of the through hole. The present invention can be applied.
[0032]
By casting the molten steel using the mold 1 according to the present invention, the cooling of the meniscus portion in the mold is slowly cooled, and vertical cracks formed in the initial solidification stage among the slab surface defects, as well as mold powder, Capture and entrapment of non-metallic inclusions, which are deoxidation products, and inert gas bubbles in the solidified shell are greatly reduced, and it is possible to stably obtain a slab having good surface properties. In addition, the cooling capacity of the mold 1 gradually decreases between the upper and lower portions of the mold 1 with the second drainage section 14 as a boundary, and the cooling capacity does not become insufficient in the boundary region. Therefore, a mold life equivalent to that of a conventional mold can be achieved. Furthermore, since the predetermined purpose is achieved only by installing at least two drainage sections, only one drainage section is added to the conventional mold, and the equipment cost is kept relatively low. be able to.
[0033]
The present invention is not limited to the above description and can be variously modified. For example, in the above description, it is a mold for a slab continuous casting machine, but it can be applied to a mold for a bloom continuous casting machine and a mold for a billet continuous casting machine in accordance with the above description. The cooling water supply / drainage structure is not limited to the above, and any structure may be used. In short, as long as at least two drainage portions are provided apart from each other in the casting direction with respect to the cooling water flow path to which cooling water is supplied from the lower side of the mold, any other structure may be used. .
[0034]
【The invention's effect】
According to the continuous casting mold according to the present invention, the cooling of the meniscus portion in the mold is slowly cooled, and vertical cracks and mold powder and deoxidation products formed in the initial solidification stage among the slab surface defects. In addition to significantly reducing the trapping and entrainment of certain non-metallic inclusions and inert gas bubbles in the solidified shell, it is possible not only to stably obtain slabs with good surface properties, but also to slowly cool parts. In the boundary area between the normal cooling section and the normal cooling section, the mold cooling capacity gradually decreases and the mold cooling capacity does not become insufficient. Therefore, it is possible to achieve the same mold life as the conventional mold, which is industrially beneficial. The effect is brought about.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an embodiment of the present invention, and is a schematic diagram showing a water supply / drainage structure of a continuous casting mold according to the invention.
FIG. 2 is a diagram showing an example of an embodiment of the present invention, and is a perspective view of a continuous casting mold according to the present invention.
FIG. 3 is a cross-sectional view of a part of the mold long side copper plate shown in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mold 2 Mold long side copper plate 3 Slit 4 Water box 5 Water supply part 6 Water supply hole 7 Water supply pipe 8 Water supply pipe 9 Flow control valve 10 First drainage part 11 Drainage hole 12 Catchment pipe 13 Drainage pipe 14 Second drainage part 15 Drainage Hole 16 Drain pipe 17 Drain pipe 18 Flow control valve 19 Opening controller 20 Temperature measuring element 21 Mold short side copper plate 22 Water box

Claims (4)

銅製鋳型に設けられた、当該銅製鋳型を冷却するための冷却水の流路に対して、一箇所の給水部と、鋳造方向に離れて少なくとも二箇所の排水部と、を具備した連続鋳造用鋳型であって、前記給水部は鋳造方向の下流側に設置され、前記排水部は当該給水部よりも鋳造方向の上流側に設置されていることを特徴とする連続鋳造用鋳型。  For continuous casting provided with a water supply part and at least two drainage parts apart in the casting direction with respect to the flow path of the cooling water for cooling the copper mold provided in the copper mold A casting mold for continuous casting, wherein the water supply part is installed downstream in the casting direction, and the drainage part is installed upstream in the casting direction with respect to the water supply part. 前記排水部は、二箇所であることを特徴とする請求項1に記載の連続鋳造用鋳型。  The continuous casting mold according to claim 1, wherein the drainage portion is provided at two locations. 二箇所の排水部同士の間隔は、鋳造方向に100mm以上離れていることを特徴とする請求項2に記載の連続鋳造用鋳型。  The continuous casting mold according to claim 2, wherein the interval between the two drainage portions is 100 mm or more away in the casting direction. 鋳造方向下流側の排水部には、当該排水部から排出される冷却水量を調整するための流量調整手段が設置されていることを特徴とする請求項2又は請求項3に記載の連続鋳造用鋳型。  The continuous casting apparatus according to claim 2 or 3, wherein a flow rate adjusting means for adjusting the amount of cooling water discharged from the drainage portion is installed in the drainage portion on the downstream side in the casting direction. template.
JP2003070513A 2003-03-14 2003-03-14 Continuous casting mold Expired - Lifetime JP4232491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070513A JP4232491B2 (en) 2003-03-14 2003-03-14 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070513A JP4232491B2 (en) 2003-03-14 2003-03-14 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2004276065A JP2004276065A (en) 2004-10-07
JP4232491B2 true JP4232491B2 (en) 2009-03-04

Family

ID=33287249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070513A Expired - Lifetime JP4232491B2 (en) 2003-03-14 2003-03-14 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4232491B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175406B1 (en) 2009-10-29 2012-08-20 현대제철 주식회사 Cooling Panel for Continuous Casting Mold and Apparatus of Continuous Casting Mold Therewith
CN104001882B (en) * 2014-05-23 2016-01-06 安徽众源新材料股份有限公司 A kind of wide cut copper ribbon continuous strand crystallizer
CN114986810B (en) * 2022-06-28 2023-09-05 台山市世隆塑料有限公司 Environment-friendly plastic injection mold

Also Published As

Publication number Publication date
JP2004276065A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP6115735B2 (en) Steel continuous casting method
JP6358178B2 (en) Continuous casting method and mold cooling water control device
CN102941330A (en) Control method for online predication of surface crack of continuous casting sheet billet
SE523157C2 (en) Method and apparatus for controlling the metal flow during extrusion by electromagnetic fields
CN102294451B (en) Method for enhancing strip casting quality
JP4232491B2 (en) Continuous casting mold
KR100783082B1 (en) Method for continuous casting
JP4802718B2 (en) Method for predicting surface defect occurrence risk region in continuous cast slab and method for producing continuous cast slab
JP6365604B2 (en) Steel continuous casting method
JP5053227B2 (en) Tundish for continuous casting
JP4453562B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP5907334B2 (en) Continuous casting method for cast slabs
JP3988538B2 (en) Manufacturing method of continuous cast slab
JP4998705B2 (en) Steel continuous casting method
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
JPH03297541A (en) Mold for continuous casting equipment
JP2009119486A (en) Method for producing continuously cast slab
JP5012294B2 (en) Steel continuous casting method
KR100544658B1 (en) Control method for mold taper of short side plate in continuous casting of slab
JP3216476B2 (en) Continuous casting method
JP4725245B2 (en) Continuous casting tundish and slab manufacturing method
JP2010104991A (en) Continuous casting method and continuous casting machine for steel
JPH11179496A (en) Divided flow plate for continuously casting thin sheet and method for continuously casting thin sheet
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JP4735269B2 (en) Manufacturing method of continuous slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4232491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term