Nothing Special   »   [go: up one dir, main page]

JPH10335596A - Ferroelectric element and manufacture thereof - Google Patents

Ferroelectric element and manufacture thereof

Info

Publication number
JPH10335596A
JPH10335596A JP9146315A JP14631597A JPH10335596A JP H10335596 A JPH10335596 A JP H10335596A JP 9146315 A JP9146315 A JP 9146315A JP 14631597 A JP14631597 A JP 14631597A JP H10335596 A JPH10335596 A JP H10335596A
Authority
JP
Japan
Prior art keywords
ferroelectric
ferroelectric layer
zirconium
titanium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9146315A
Other languages
Japanese (ja)
Inventor
Masahiko Hirai
匡彦 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9146315A priority Critical patent/JPH10335596A/en
Publication of JPH10335596A publication Critical patent/JPH10335596A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the polarization inversion resistance and stability of operation by providing a ferroelectric layer adjacent conductive electrodes, having a tetragonal system or such system having specified a-axis to c-axis length ratio and ferroelectric layer not adjacent thereto. SOLUTION: A ferroelectric layer has a tetragonal system having an a-axis to c-axis length ratio of less than 1.00-1.02 and is made by forming a Pt film 3 on an Si oxide film 2 formed on an Si single crystal substrate 1, and forming a ferroelectric thin film 4, using a sol-gel soln. of ferroelectric material contg. Pb, La, Zr, and Ti at a mol ratio of 1.05:0.05:0.65:0.35 at a concn. of 0.25 mol/lit. for a first and fourth steps and sol-gel soln. contg. Pb, Zr and Ti at a mol ratio of 1.1:0.65:0.35 at a concn. of 0.25 mol/lit. for a second and third steps, thereby forming a ferroelectric element superior in polarization inversion resistance and operative stably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体記憶素子に
関し、特にトランジスタと強誘電体容量からなる強誘電
体素子及びその製造方法に係るものである。
The present invention relates to a semiconductor memory device, and more particularly to a ferroelectric device comprising a transistor and a ferroelectric capacitor and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体記憶素子には、電源を投入してい
る間のみ情報を記憶することができる揮発性メモリと、
電源を断たれた状態においても情報を記憶することがで
きる不揮発性メモリとがある。そのなかで、不揮発性メ
モリとしては、マスクROM(Mask・Read・O
nly・Memory)、PROM(Programm
able・Read・Only・Memory)、EP
ROM(Erasable・Programmable
・Read・Only・Memory)、EEPROM
(Electrically・Erasable・an
d・Programmable・Read・Only・
Memory)等がある。
2. Description of the Related Art A volatile memory capable of storing information only while a power is turned on is provided in a semiconductor memory element.
There is a nonvolatile memory that can store information even when the power is turned off. Among them, a non-volatile memory is a mask ROM (Mask-Read-O).
nly Memory), PROM (Programm
able ・ Read ・ Only ・ Memory) 、 EP
ROM (Erasable / Programmable)
・ Read ・ Only ・ Memory) 、 EEPROM
(Electrically / Erasable / an
d ・ Programmable ・ Read ・ Only ・
Memory).

【0003】これらの不揮発性メモリの未来形として、
最近、動作速度が速く、面積縮小化の可能な強誘電体メ
モリが提案されている。DRAMのキャパシタを強誘電
体キャパシタに置き換えた構造をした、FRAM(Fe
rroelectric・Random・Access
・Memory)は(ラムトロン・コーポレーション特
開平2−113496号公報)、最も実現に近いものの
一つである。
[0003] As a future form of these nonvolatile memories,
Recently, a ferroelectric memory which has a high operation speed and can be reduced in area has been proposed. An FRAM (Fe) having a structure in which a DRAM capacitor is replaced with a ferroelectric capacitor
rroelectric, Random, Access
(Memory) (Ramtron Corporation, Japanese Patent Application Laid-Open No. Hei 2-113496) is one of the closest to realization.

【0004】[0004]

【発明が解決しようとする課題】一般に上記FRAMの
強誘電体容量の材料として、鉛系のPbZrTiO 3
PbLaZrTiO 3が使用されるが、PbZrTiO
3は強誘電体の製造工程で立方晶から正方晶に転移する
ため、クラックが発生しやすく、その結果疲労特性にや
や劣る。一方、PbLaZrTiO 3は、立方晶に近い
構造のため、クラック等はほとんどなく疲労特性はよい
が自発分極強度が小さい欠点がある。 本発明は、この
ような従来の技術が有する未解決の課題を解決するべく
行われたものであり、強誘電体の疲労が少なく、クラッ
クの発生によるリーク電流の少ない強誘電体素子と、そ
の製造方法を提供することを目的としている。
Generally, lead-based PbZrTiO 3 or PbLaZrTiO 3 is used as a material of the ferroelectric capacitor of the FRAM.
In No. 3 , since the transition from cubic to tetragonal occurs during the ferroelectric manufacturing process, cracks are likely to occur, and as a result, the fatigue properties are slightly inferior. On the other hand, since PbLaZrTiO 3 has a structure close to a cubic crystal, it has few cracks and the like, has good fatigue properties, but has a disadvantage of low spontaneous polarization strength. The present invention has been made in order to solve the unresolved problems of such a conventional technology, a ferroelectric element with less fatigue of the ferroelectric material, less leakage current due to the occurrence of cracks, and the like. It is intended to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る強誘電体素子は、導電性電極に挟ま
れた多層の強誘電体層を有する強誘電体素子であって、
前記導電性電極に接する層が立方晶系または結晶構造の
a軸とc軸の長さの比c/aが1.00以上1.02未
満である正方晶系の強誘電体層で、前記導電性電極に接
しない層が正方晶系の強誘電体層であることを特徴とす
るものである。また、請求項2に係る強誘電体素子は、
請求項1記載の強誘電体素子であって、前記立方晶系の
強誘電体層が鉛、ランタン、ジルコニウム、チタンを含
む強誘電体層で、前記正方晶系の強誘電体層が鉛、ジル
コニウム、チタンを含む強誘電体層であることを特徴と
するものである。また、請求項3に係る強誘電体素子の
製造方法は、導電性電極に挟まれた多層の強誘電体層を
有する強誘電体素子の製造方法であって、鉛、ジルコニ
ウム、チタンを含む液体状強誘電体原料を3回以上塗布
し、第1回目と最終回目を前記原料に加えランタンを含
む液体状強誘電体原料を用いることを特徴とするもので
ある。
According to a first aspect of the present invention, there is provided a ferroelectric element having a plurality of ferroelectric layers sandwiched between conductive electrodes. ,
The layer in contact with the conductive electrode is a cubic or tetragonal ferroelectric layer in which the ratio c / a of the length of the a-axis and the c-axis of the crystal structure is 1.00 or more and less than 1.02, The layer not in contact with the conductive electrode is a tetragonal ferroelectric layer. The ferroelectric element according to claim 2 is
The ferroelectric element according to claim 1, wherein the cubic ferroelectric layer is a ferroelectric layer containing lead, lanthanum, zirconium, and titanium, and the tetragonal ferroelectric layer is lead, It is a ferroelectric layer containing zirconium and titanium. A method of manufacturing a ferroelectric element according to claim 3 is a method of manufacturing a ferroelectric element having a multi-layered ferroelectric layer sandwiched between conductive electrodes, wherein a liquid containing lead, zirconium, and titanium is provided. The ferroelectric raw material is applied three times or more, and the first and final times are added to the raw material, and a liquid ferroelectric raw material containing lanthanum is used.

【0006】また、請求項4に係る強誘電体素子の製造
方法は、導電性電極に挟まれた多層の強誘電体層を有す
る強誘電体素子の製造方法であって、鉛、ジルコニウ
ム、チタンを含むターゲットを用いてスパッタリング法
により強誘電体層を3回以上積層して成膜し、第1回目
と最終回目を前記ターゲットに加えランタンを含むター
ゲットを用いることを特徴とするものである。また、請
求項5に係る強誘電体素子の製造方法は、導電性電極に
挟まれた多層の強誘電体層を有する強誘電体素子の製造
方法であって、鉛、ジルコニウム、チタンを含む有機原
料を用いて化学気相蒸着法により強誘電体を3回以上積
層して成膜し、第1回目と最終回目を前記有機原料に加
えランタンを含む有機原料を用いることを特徴とするも
のである。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a ferroelectric element having a multi-layered ferroelectric layer sandwiched between conductive electrodes, comprising lead, zirconium and titanium. A ferroelectric layer is formed by laminating three or more times by sputtering using a target containing, and the first and final times are added to the above target, and a target containing lanthanum is used. A method of manufacturing a ferroelectric element according to claim 5 is a method of manufacturing a ferroelectric element having a multi-layered ferroelectric layer sandwiched between conductive electrodes, the method including an organic material containing lead, zirconium, and titanium. A ferroelectric material is laminated three or more times by chemical vapor deposition using a raw material to form a film, and the first and last rounds are added to the organic raw material and an organic raw material containing lanthanum is used. is there.

【0007】[0007]

【発明の実施の形態】本発明を更に詳しく述べる。本発
明にあって、導電性電極とは、金属、酸化物などの良導
体からなる電極で、好ましくは、白金、金、イリジウ
ム、酸化イリジウム、ロジウム、パラジウム、または、
これら2種以上の混合材料、または、これら2種の積層
構造などを使用する。強誘電体は、前記導電性電極に接
する層を鉛、ランタン、ジルコニウム、チタンを含む強
誘電体とし、前記導電性電極に接しない層、すなわち、
強誘電体層の中央部分を鉛、ジルコニウム、チタンを含
む強誘電体とする。電導性電極に接する強誘電体層に加
えるランタンの量は、好ましくは、鉛1に対して0.0
1から0.1程度がよい。通常、結晶構造の結晶軸の名
称は、a、b、c等と称され、第7図に示すように、立
方晶系ではa=b、cとなり、正方晶系ではa=bとな
る。本発明におけるc/aとは、a軸(=b)長と、c
軸長との比を表す。製造法としては、ゾルゲル法、スパ
ッタリング法、化学気相蒸着法(CVD法)等を用い
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail. In the present invention, the conductive electrode is a metal, an electrode made of a good conductor such as an oxide, preferably, platinum, gold, iridium, iridium oxide, rhodium, palladium, or
A mixed material of two or more of these materials, a laminated structure of these two types, or the like is used. Ferroelectric, lead, lanthanum, zirconium, a layer in contact with the conductive electrode is a ferroelectric containing titanium, a layer not in contact with the conductive electrode, that is,
The central portion of the ferroelectric layer is a ferroelectric containing lead, zirconium, and titanium. The amount of lanthanum added to the ferroelectric layer in contact with the conductive electrode is preferably 0.0
It is preferably about 1 to 0.1. Usually, the names of the crystal axes of the crystal structure are called a, b, c, etc., and as shown in FIG. 7, a = b, c in a cubic system and a = b in a tetragonal system. In the present invention, c / a means a-axis (= b) length, c / a
Indicates the ratio to the axial length. As a manufacturing method, a sol-gel method, a sputtering method, a chemical vapor deposition method (CVD method), or the like is used.

【0008】ゾルゲル法は、強誘電体を、鉛、ジルコニ
ウム、チタンを含む液体状強誘電体原料を3回以上塗布
し、加熱処理することによって製造する工程で、第1回
目と最終回目を前記原料に加えランタンを含む液体状強
誘電体原料を用いる。この液体状強誘電体原料には、好
ましくは、有機酸塩、有機金属化合物、アルコキシド、
炭酸塩などを用いる。この強誘電体原料により、例え
ば、PZT(PbZrTiO 3)等を得ることができ
る。塗布の方法は、回転するウエハ上に上記強誘電体原
料を滴下する、あるいは、ウエハ表面に噴霧するなどし
て塗布する。加熱処理は、1回の塗布ごとに乾燥する工
程と、最終回塗布の乾燥後に、焼成加熱する工程を含
む。一般に、これらの加熱処理は、酸素を含む雰囲気中
で行われるのが好ましい。塗布工程は、3回以上行い、
第1回目と最終回目を前記原料に加え、ランタンをその
構成要素に加えた該液体状強誘電体原料を用いる。
The sol-gel method is a process in which a ferroelectric material is manufactured by applying a liquid ferroelectric material containing lead, zirconium, and titanium at least three times and performing heat treatment. A liquid ferroelectric material containing lanthanum in addition to the material is used. The liquid ferroelectric material preferably includes an organic acid salt, an organic metal compound, an alkoxide,
Use a carbonate or the like. For example, PZT (PbZrTiO 3 ) or the like can be obtained from this ferroelectric material. The application method is to apply the ferroelectric material by dripping the material onto a rotating wafer or spraying the material onto the surface of the wafer. The heat treatment includes a step of drying after each application and a step of baking and heating after drying of the final application. Generally, these heat treatments are preferably performed in an atmosphere containing oxygen. The coating process is performed three times or more,
The first and final rounds are added to the above raw materials, and the liquid ferroelectric raw material obtained by adding lanthanum to the constituent elements is used.

【0009】スパッタリング法は、導電性電極に挟まれ
た強誘電体を、鉛、ジルコニウム、チタンを含むターゲ
ットを用いて強誘電体を3回以上積層して成膜する工程
で、第1回目と最終回目を前ターゲットに加えランタン
を含むターゲットを用いる。好ましくは、2種類のター
ゲットを成膜途中に切り替えて成膜するのがよい。CV
D法は、導電性電極に挟まれた強誘電体を、鉛、ジルコ
ニウム、チタンを含む有機原料を用いて強誘電体を3回
以上積層して成膜する工程で、第1回目と最終回目を前
記有機原料に加えランタンを含む有機原料を用いる。好
ましくは、2種類の有機原料を切り替えるか、ランタン
を含む有機原料を成膜中に加える等の方法を用いる。
In the sputtering method, a ferroelectric material sandwiched between conductive electrodes is formed by laminating a ferroelectric material three or more times using a target containing lead, zirconium, and titanium. In the final round, a target containing lanthanum is used in addition to the previous target. Preferably, two types of targets are switched during film formation to form a film. CV
Method D is a process in which a ferroelectric material sandwiched between conductive electrodes is formed by stacking a ferroelectric material three or more times using an organic material containing lead, zirconium, and titanium to form a film. And an organic material containing lanthanum is used. Preferably, a method of switching between two kinds of organic materials or adding an organic material containing lanthanum during film formation is used.

【0010】これにより、下部電極と、上部電極とに隣
接する強誘電体層は、ランタンが含まれた立方晶に近い
構造(例えばPLZT)となり、クラック等の少ない膜
となる。立方晶系に近い構造は、正方晶系でc/a=
1.02未満で好ましくはc/a=1.01以下の構造
を意味する。また、膜中央部は、PZTの大きな自発分
極を得ることができる。このように、電極付近の強誘電
体をPLZTなどにすことにより、クラック、粒界の影
響などによる強誘電体の電気特性の劣化を抑えることが
でき、かつ大きな自発分極を保持することができ、特
に、反転分極回数の向上、記憶保持時間の維持に効果的
である。
As a result, the ferroelectric layer adjacent to the lower electrode and the upper electrode has a structure close to a cubic crystal containing lanthanum (for example, PLZT), and is a film with less cracks and the like. A structure close to a cubic system is a tetragonal system and c / a =
It means a structure of less than 1.02, preferably c / a = 1.01 or less. Further, a large spontaneous polarization of PZT can be obtained at the center of the film. As described above, by making the ferroelectric material near the electrodes PLZT or the like, it is possible to suppress the deterioration of the electric characteristics of the ferroelectric material due to the influence of cracks, grain boundaries, etc., and to maintain a large spontaneous polarization. In particular, it is effective in improving the number of times of inversion polarization and maintaining the memory retention time.

【0011】これらの特徴により強誘電体素子の電気的
特性の向上の実現が可能になり、信頼性の高い強誘電体
素子を得ることができる。具体的にメモリ素子に利用し
た場合を図1に示す。図1は、Si単結晶基板1の上に
SiO2 膜2があって、その上に本発明の構造を有する
強誘電体薄膜4が白金電極3と白金電極5で挟まれた構
造になっている。更に、上部電極の白金電極5はトラン
ジスタのソースまたはドレインに接続されている。
[0011] These features make it possible to improve the electrical characteristics of the ferroelectric element, and to obtain a highly reliable ferroelectric element. FIG. 1 shows a case where it is specifically used for a memory element. FIG. 1 shows a structure in which a SiO 2 film 2 is provided on a Si single crystal substrate 1, and a ferroelectric thin film 4 having the structure of the present invention is sandwiched between a platinum electrode 3 and a platinum electrode 5. I have. Further, the platinum electrode 5 of the upper electrode is connected to the source or the drain of the transistor.

【0012】[0012]

【実施例1】以下、本発明の実施例を図面に基づいて説
明する。まず、基板としてシリコン単結晶基板1の上に
形成されたシリコン酸化膜2上にスパッタリングで成膜
した白金膜3を有したものを用いる(図2)。液状強誘
電体原料を用いて4回塗布することとした。1回目と4
回目に塗布する材料として、鉛(Pb)、ランタン(L
a)、ジルコニウム(Zr)、チタン(Ti)を含むゾ
ル・ゲル溶液を用いた。溶液中のモル比は、Pb:L
a:Zr:Ti=1.05:0.05:0.65:0.
35で、濃度は、0.25モル/リットルとした。2回
目と3回目に塗布する材料として、鉛(Pb)、ジルコ
ニウム(Zr)、チタン(Ti)を含むゾル・ゲル溶液
を用いた。溶液中のモル比は、Pb:Zr:Ti=1.
1:0.65:0.35で、濃度は、0.25モル/リ
ットルとした。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, a substrate having a platinum film 3 formed by sputtering on a silicon oxide film 2 formed on a silicon single crystal substrate 1 is used (FIG. 2). The application was performed four times using a liquid ferroelectric material. 1st and 4th
As materials to be applied for the second time, lead (Pb), lanthanum (L
a) A sol-gel solution containing zirconium (Zr) and titanium (Ti) was used. The molar ratio in the solution is Pb: L
a: Zr: Ti = 1.05: 0.05: 0.65: 0.
At 35, the concentration was 0.25 mol / l. As a material to be applied for the second and third times, a sol-gel solution containing lead (Pb), zirconium (Zr), and titanium (Ti) was used. The molar ratio in the solution is Pb: Zr: Ti = 1.
1: 0.65: 0.35, the concentration was 0.25 mol / l.

【0013】この原料を、スピナーにセットした上記基
板上に滴下し、毎分3,000回転で回転させた。15
0℃のホットプレート上で10分間乾燥させ、さらに2
50℃のホットプレート上で10分間乾燥した。この作
業を1から4回目用の原料をそれぞれもちいて繰り返し
た。そして、強誘電体薄膜4を形成した(図3)。次
に、酸素中雰囲気で、赤外線ランプ加熱装置を用いて6
50℃10分間焼成し、その後、スパッタリングで、上
部電極5として白金膜を成膜した。この際、メタルマス
クを使用することで、上部電極5は直径0.5mm径の
形に成形される。
The raw material was dropped on the substrate set on a spinner and rotated at 3,000 revolutions per minute. Fifteen
Dry on a hot plate at 0 ° C for 10 minutes,
Dry on a hot plate at 50 ° C. for 10 minutes. This operation was repeated using the first to fourth materials. Then, a ferroelectric thin film 4 was formed (FIG. 3). Next, in an atmosphere of oxygen, using an infrared lamp heating device, 6
After baking at 50 ° C. for 10 minutes, a platinum film was formed as the upper electrode 5 by sputtering. At this time, the upper electrode 5 is formed into a shape having a diameter of 0.5 mm by using a metal mask.

【0014】さらに、これを酸素雰囲気中で、500℃
10分加熱処理した。このサンプルをAとする(図
4)。比較のために、4回の塗布原料を、すべてモル比
Pb:Zr:Ti=1.1:0.65:0.35の割合
で混合(濃度0.25モル/リットル)して作製したサ
ンプルを用意した。このサンプルをBとする。このA、
Bのサンプルにおいて、反転分極を繰り返した膜疲労特
性を測定した結果を第5図に示す。この結果、白金電極
3と白金電極5に接する層に、ランタンを加えた、サン
プルAの方が、膜疲労特性に優れていることが判った。
また、Pb、Zr、Tiからなる強誘電体薄膜と、P
b、La、Zr、Tiからなる強誘電体薄膜をX線回折
法によりa軸c軸長の比c/aを測定した。その結果、
前者はc/a=1.02後者はc/a=1.00であっ
た。
Further, this is placed in an oxygen atmosphere at 500 ° C.
Heat treatment was performed for 10 minutes. This sample is designated as A (FIG. 4). For comparison, a sample prepared by mixing all four coating materials in a molar ratio of Pb: Zr: Ti = 1: 0.65: 0.35 (concentration: 0.25 mol / l) Was prepared. This sample is designated as B. This A,
FIG. 5 shows the measurement results of the film fatigue characteristics of the sample B obtained by repeating the inversion polarization. As a result, it was found that the sample A in which lanthanum was added to the layers in contact with the platinum electrode 3 and the platinum electrode 5 had better film fatigue properties.
A ferroelectric thin film made of Pb, Zr, and Ti;
The ratio c / a of the a-axis and c-axis lengths of the ferroelectric thin film made of b, La, Zr, and Ti was measured by an X-ray diffraction method. as a result,
The former had c / a = 1.02 and the latter had c / a = 1.00.

【0015】[0015]

【実施例2】まず、基板として、シリコン酸化膜上にス
パッタリングで成膜したイリジウム膜を有したものを用
いる。液状強誘電体原料を用いて4回塗布することとし
た。1回目と4回目に塗布する材料として、鉛(P
b)、ランタン(La)、ジルコニウム(Zr)、チタ
ン(Ti)を含むゾル・ゲル溶液を用いた。溶液中のモ
ル比は、Pb:La:Zr:Ti=1.05:0.0
5:0.65:0.35で、濃度は、0.25モル/リ
ットルとした。2回目と3回目に塗布する材料として、
鉛(Pb)、ジルコニウム(Zr)、チタン(Ti)を
含むゾル・ゲル溶液を用いた。溶液中のモル比は、P
b:Zr:Ti=1.1:0.65:0.35で、濃度
は、0.25モル/リットルとした。
Embodiment 2 First, a substrate having an iridium film formed by sputtering on a silicon oxide film is used. The application was performed four times using a liquid ferroelectric material. As a material to be applied at the first and fourth times, lead (P
b) A sol-gel solution containing lanthanum (La), zirconium (Zr), and titanium (Ti) was used. The molar ratio in the solution is Pb: La: Zr: Ti = 1.05: 0.0
5: 0.65: 0.35 and the concentration was 0.25 mol / l. As the material to be applied for the second and third time,
A sol-gel solution containing lead (Pb), zirconium (Zr), and titanium (Ti) was used. The molar ratio in the solution is P
b: Zr: Ti = 1.1: 0.65: 0.35, and the concentration was 0.25 mol / liter.

【0016】この原料をスピナーにセットした上記基板
上に滴下し、毎分3,000回転で回転させた。150
℃のホットプレート上で10分間乾燥させ、さらに25
0℃のホットプレート上で10分間乾燥した。この作業
を1から4回目用の原料をそれぞれもちいて、繰り返し
た。次に、酸素中雰囲気で赤外線ランプ加熱装置を用い
て650℃10分間焼成し、その後、スパッタリング
で、上部電極として白金を成膜した。この際、メタルマ
スクを使用することで、上部電極は直径0.5mm径の
形に成形される。
The raw material was dropped on the substrate set on the spinner and rotated at 3,000 revolutions per minute. 150
Dried on a hot plate at 10 ° C. for 10 minutes,
Dry on a hot plate at 0 ° C. for 10 minutes. This operation was repeated using the first to fourth materials. Next, baking was performed at 650 ° C. for 10 minutes in an atmosphere of oxygen using an infrared lamp heating apparatus, and then platinum was formed as an upper electrode by sputtering. At this time, the upper electrode is formed into a shape having a diameter of 0.5 mm by using a metal mask.

【0017】さらに、これを酸素雰囲気中で、500℃
10分加熱処理した。このサンプルをCとする。比較の
ために、4回の塗布原料を、すべてモル比Pb:Zr:
Ti=1.1:0.65:0.35の割合で混合(濃度
0.25モル/リットル)して作製したサンプルを用意
した。このサンプルをDとする。このC、Dのサンプル
において、反転分極を繰り返した膜疲労特性を測定した
結果を第6図に示す。この結果、イリジウム電極に接す
る層にランタンを加えた、サンプルCの方が、膜疲労特
性に優れていることが判った。また、Pb、Zr、Ti
からなる強誘電体薄膜と、Pb、La、Zr、Tiから
なる強誘電体薄膜をX線回折法によりa軸c軸長の比c
/aを測定した。その結果、前者はc/a=1.02後
者はc/a=1.00であった。
Further, this is placed in an oxygen atmosphere at 500 ° C.
Heat treatment was performed for 10 minutes. This sample is designated as C. For comparison, four coating materials were all used in a molar ratio of Pb: Zr:
A sample was prepared by mixing (concentration: 0.25 mol / l) Ti: 1.1: 0.65: 0.35. This sample is designated as D. FIG. 6 shows the results of measuring the fatigue characteristics of the films C and D obtained by repeating the inversion polarization. As a result, it was found that Sample C, in which lanthanum was added to the layer in contact with the iridium electrode, had better film fatigue properties. Pb, Zr, Ti
A ferroelectric thin film composed of Pb, La, Zr, and Ti was subjected to X-ray diffraction to determine the ratio c of a-axis and c-axis lengths.
/ A was measured. As a result, the former was c / a = 1.02, and the latter was c / a = 1.00.

【0018】[0018]

【実施例3】他の実施例を以下に示す。まず、実施例1
と同様に基板として、シリコン酸化膜上にスパッタリン
グで成膜した白金膜を有したものを用いる。液体強誘電
体原料を用いて4回塗布することとした。1回目と4回
目に塗布する材料として、鉛(Pb)、ランタン(L
a)、ジルコニウム(Zr)、チタン(Ti)を含むゾ
ル・ゲル溶液を用いた。溶液中のモル比は、Pb:L
a:Zr:Ti=1.05:0.01:0.65:0.
35で、濃度は、0.25モル/リットルとした。2回
目と3回目に塗布する材料として、鉛(Pb)、ジルコ
ニウム(Zr)、チタン(Ti)を含むゾル・ゲル溶液
を用いた。溶液中のモル比は、Pb:Zr:Ti=1.
1:0.65:0.35で濃度は0.25モル/リット
ルとした。また、Pb、Zr、Tiからなる強誘電体薄
膜と、Pb、La、Zr、Tiからなる強誘電体薄膜を
X線回折法によりa軸c軸長の比c/aを測定した。そ
の結果、前者はc/a=1.02後者はc/a=1.0
05であった。そして、実施例3においても、実施例
1、2と同様に膜疲労特性に優れている事が判った。
Embodiment 3 Another embodiment will be described below. First, Example 1
Similarly to the above, a substrate having a platinum film formed by sputtering on a silicon oxide film is used. The application was performed four times using the liquid ferroelectric material. As materials to be applied for the first and fourth times, lead (Pb), lanthanum (L
a) A sol-gel solution containing zirconium (Zr) and titanium (Ti) was used. The molar ratio in the solution is Pb: L
a: Zr: Ti = 1.05: 0.01: 0.65: 0.
At 35, the concentration was 0.25 mol / l. As a material to be applied for the second and third times, a sol-gel solution containing lead (Pb), zirconium (Zr), and titanium (Ti) was used. The molar ratio in the solution is Pb: Zr: Ti = 1.
The concentration was 1: 0.65: 0.35 and the concentration was 0.25 mol / liter. The ratio c / a of the a-axis and c-axis lengths of the ferroelectric thin film made of Pb, Zr, and Ti and the ferroelectric thin film made of Pb, La, Zr, and Ti were measured by an X-ray diffraction method. As a result, the former was c / a = 1.02 and the latter was c / a = 1.0.
05. And it turned out that Example 3 is also excellent in film fatigue characteristics like Examples 1 and 2.

【0019】[0019]

【発明の効果】以上の説明のように、本発明によれば、
分極反転耐性に優れ、安定に動作し、信頼性の高い強誘
電体素子を提供することができる。このため、寿命の長
い、信頼性の高い高速かつ不揮発で低消費電力の少ない
強誘電体不揮発性メモリを提供することが出来るなどの
効果がある。
As described above, according to the present invention,
It is possible to provide a ferroelectric element which has excellent polarization reversal resistance, operates stably, and has high reliability. Therefore, there is an effect that a ferroelectric nonvolatile memory having a long life, high reliability, high speed, non-volatile, and low power consumption can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】セル構造全体を示す図である。FIG. 1 is a diagram showing an entire cell structure.

【図2】実施例1のSiO 2/Si基板上に下部電極と
しての白金膜を形成したところを示す図である。
FIG. 2 is a view showing a platinum film as a lower electrode formed on a SiO 2 / Si substrate of Example 1.

【図3】実施例1の第2図の白金膜の上に4層の強誘電
体層を形成したところを示す図である。
FIG. 3 is a diagram showing four ferroelectric layers formed on the platinum film of FIG. 2 in Example 1.

【図4】実施例1の第3図の強誘電体層の上に上部電極
としての白金膜を形成したところを示す図である。
FIG. 4 is a view showing that a platinum film as an upper electrode is formed on the ferroelectric layer of FIG. 3 in Example 1.

【図5】実施例1で作製したサンプルについて、分極反
転寿命を測定した結果を示すグラフである。
FIG. 5 is a graph showing the results of measuring the domain inversion life of the sample manufactured in Example 1.

【図6】実施例2で作製したサンプルについて、分極反
転寿命を測定した結果を示すグラフである。
FIG. 6 is a graph showing the results of measuring the domain inversion lifetime of the sample manufactured in Example 2.

【図7】立方晶系、正方晶系の結晶構造を示す図であ
る。
FIG. 7 is a diagram showing cubic and tetragonal crystal structures.

【符号の説明】[Explanation of symbols]

1・・・・Si単結晶基板 2・・・・SiO 2膜 3・・・・白金電極(下部電極) 4・・・・強誘電体薄膜(4層) 5・・・・白金電極(上部電極)1 .... Si single crystal substrate 2 .... SiO 2 film 3 ... platinum electrode (lower electrode) 4 ... ferroelectric thin film (4 layers) 5 ... a platinum electrode (upper electrode)

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/8247 29/788 29/792 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/8247 29/788 29/792

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性電極に挟まれた多層の強誘電体層
を有する強誘電体素子において、前記導電性電極に接す
る層が立方晶系または結晶構造のa軸とc軸の長さの比
c/aが1.00以上1.02未満である正方晶系の強
誘電体層で、前記導電性電極に接しない層が正方晶系の
強誘電体層であることを特徴とする強誘電体素子。
1. A ferroelectric element having a multi-layered ferroelectric layer sandwiched between conductive electrodes, wherein a layer in contact with the conductive electrode has a length of a-axis and c-axis of a cubic or crystalline structure. A ferroelectric layer having a ratio c / a of not less than 1.00 and less than 1.02, wherein the layer not in contact with the conductive electrode is a tetragonal ferroelectric layer. Dielectric element.
【請求項2】 請求項1記載の強誘電体素子において、
前記立方晶系の強誘電体層が鉛、ランタン、ジルコニウ
ム、チタンを含む強誘電体層で、前記正方晶系の強誘電
体層が鉛、ジルコニウム、チタンを含む強誘電体層であ
ることを特徴とする請求項1記載の強誘電体素子。
2. The ferroelectric device according to claim 1, wherein
The cubic ferroelectric layer is a ferroelectric layer containing lead, lanthanum, zirconium, and titanium, and the tetragonal ferroelectric layer is a ferroelectric layer containing lead, zirconium, and titanium. The ferroelectric element according to claim 1, wherein
【請求項3】 導電性電極に挟まれた多層の強誘電体層
を有する強誘電体素子の製造方法において、鉛、ジルコ
ニウム、チタンを含む液体状強誘電体原料を3回以上塗
布し、第1回目と最終回目を前記原料に加えランタンを
含む液体状強誘電体原料を用いることを特徴とする強誘
電体素子の製造方法。
3. A method for manufacturing a ferroelectric element having a multi-layered ferroelectric layer sandwiched between conductive electrodes, wherein a liquid ferroelectric material containing lead, zirconium, and titanium is applied three times or more. A method for manufacturing a ferroelectric element, wherein a liquid ferroelectric material containing lanthanum is used in addition to the above materials at the first time and the last time.
【請求項4】 導電性電極に挟まれた多層の強誘電体層
を有する強誘電体素子の製造方法において、鉛、ジルコ
ニウム、チタンを含むターゲットを用いてスパッタリン
グ法により強誘電体層を3回以上積層して成膜し、第1
回目と最終回目を前記ターゲットに加えランタンを含む
ターゲットを用いることを特徴とする強誘電体素子の製
造方法。
4. A method for manufacturing a ferroelectric element having a multi-layered ferroelectric layer sandwiched between conductive electrodes, wherein the ferroelectric layer is formed three times by sputtering using a target containing lead, zirconium and titanium. The film is formed by laminating the above,
A method for manufacturing a ferroelectric element, wherein a target containing lanthanum is used in addition to the target in the first and second rounds.
【請求項5】 導電性電極に挟まれた多層の強誘電体層
を有する強誘電体素子の製造方法において、鉛、ジルコ
ニウム、チタンを含む有機原料を用いて化学気相蒸着法
により強誘電体を3回以上積層して成膜し、第1回目と
最終回目を前記有機原料に加えランタンを含む有機原料
を用いることを特徴とする強誘電体素子の製造方法。
5. A method of manufacturing a ferroelectric element having a multi-layered ferroelectric layer sandwiched between conductive electrodes, wherein a ferroelectric substance is formed by a chemical vapor deposition method using an organic material containing lead, zirconium, and titanium. Are laminated three or more times to form a film, and the first and final times are used in addition to the organic material, and an organic material containing lanthanum is used.
JP9146315A 1997-06-04 1997-06-04 Ferroelectric element and manufacture thereof Withdrawn JPH10335596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9146315A JPH10335596A (en) 1997-06-04 1997-06-04 Ferroelectric element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9146315A JPH10335596A (en) 1997-06-04 1997-06-04 Ferroelectric element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10335596A true JPH10335596A (en) 1998-12-18

Family

ID=15404898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9146315A Withdrawn JPH10335596A (en) 1997-06-04 1997-06-04 Ferroelectric element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10335596A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148532B2 (en) 2005-02-04 2006-12-12 Fujitsu Limited Ferroelectric element and method of manufacturing ferroelectric element
US7456548B2 (en) 2006-05-09 2008-11-25 Canon Kabushiki Kaisha Piezoelectric element, piezoelectric actuator, and ink jet recording head
EP2645439A2 (en) 2012-03-30 2013-10-02 Mitsubishi Materials Corporation PZT-Based ferroelectric thin film and method of manufacturing the same
EP2645440A2 (en) 2012-03-30 2013-10-02 Mitsubishi Materials Corporation PZT-Based ferroelectric thin film and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148532B2 (en) 2005-02-04 2006-12-12 Fujitsu Limited Ferroelectric element and method of manufacturing ferroelectric element
US7456548B2 (en) 2006-05-09 2008-11-25 Canon Kabushiki Kaisha Piezoelectric element, piezoelectric actuator, and ink jet recording head
EP2645439A2 (en) 2012-03-30 2013-10-02 Mitsubishi Materials Corporation PZT-Based ferroelectric thin film and method of manufacturing the same
EP2645440A2 (en) 2012-03-30 2013-10-02 Mitsubishi Materials Corporation PZT-Based ferroelectric thin film and method of manufacturing the same
US9059406B2 (en) 2012-03-30 2015-06-16 Mitsubishi Materials Corporation PZT-based ferroelectric thin film and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7443649B2 (en) Ferroelectric capacitor
US6929956B2 (en) Ferroelectric random access memory device and fabrication method therefor
JP3319994B2 (en) Semiconductor storage element
JP3162718B2 (en) Integrated circuit memory
US5751540A (en) Ferroelectric capacitor with rhodium electrodes
KR100243298B1 (en) Method for forming the capacitor of a semiconductor device
JP3638518B2 (en) Structured metal oxide-containing layer and method for producing semiconductor structure element
JPH08274270A (en) Electronic component
JPH10335596A (en) Ferroelectric element and manufacture thereof
JPH09129827A (en) Ferroelectric capacitor
JP3294214B2 (en) Thin film capacitors
KR20000014388A (en) Ferroelectric memory capacitor and forming method thereof
JP3924928B2 (en) Ferroelectric material and ferroelectric memory
JP3363091B2 (en) Manufacturing method of dielectric memory
JP4074894B2 (en) Ferroelectric memory and manufacturing method thereof
JP3679814B2 (en) Storage device
JP2002324895A (en) Ferroelectric memory element and its manufacturing method
JP3937033B2 (en) Ferroelectric material, method for manufacturing the same, and ferroelectric memory
JP3496528B2 (en) Ferroelectric memory and method of manufacturing the same
JP2000068454A (en) Dielectric thin-film capacitor
JP2000164818A (en) Oxide ferroelectric thin film coating substrate and manufacture therefor
JP2001072417A (en) Dielectric film, capacitor provided with the film and random access memory provided with the capacitor
JP2007184623A (en) Dielectric capacitor
JP2007158366A (en) Dielectric capacitor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907