Nothing Special   »   [go: up one dir, main page]

JPH1030147A - Aluminum-zinc-magnesium alloy extruded material and its production - Google Patents

Aluminum-zinc-magnesium alloy extruded material and its production

Info

Publication number
JPH1030147A
JPH1030147A JP18709796A JP18709796A JPH1030147A JP H1030147 A JPH1030147 A JP H1030147A JP 18709796 A JP18709796 A JP 18709796A JP 18709796 A JP18709796 A JP 18709796A JP H1030147 A JPH1030147 A JP H1030147A
Authority
JP
Japan
Prior art keywords
temperature
treatment
extruded
alloy
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18709796A
Other languages
Japanese (ja)
Other versions
JP3681822B2 (en
Inventor
Akira Ichinose
晃 市之瀬
Nobuaki Ohara
伸昭 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18709796A priority Critical patent/JP3681822B2/en
Publication of JPH1030147A publication Critical patent/JPH1030147A/en
Application granted granted Critical
Publication of JP3681822B2 publication Critical patent/JP3681822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit recrystallization by T6 treatment after plastic working of an Al-Zn-Mg alloy extruded material and to improve strength, toughness, and stress corrosion cracking resistance by the same. SOLUTION: The Al-Zn-Mg alloy extruded material has a composition consisting of, by weight, 4.00-6.50% Zn, 0.5-1.50% Mg, 0.1-0.5% Cu, 0.10-0.50% Zr, further either or both of 0.05-0.20% Mn and 0.05-0.20% Cr, and the balance Al with inevitable impurities. In this case, the value of (elongation)/(tensile strength) of the T6-treated material is regulated to >=0.030, and further, sectional structure is all formed into fiber structure or recrystallized structure is allowed to exist in the part not higher than the position at a depth of 300μm in the surface layer, by which toughness and stress corrosion cracking resistance can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼鈍材(0材)で
加工性に優れ、溶体化時効硬化処理材(T6材)で靱性
と耐応力腐食割れ性に優れたAl−Zn−Mg系合金押
出材とその製造方法に関するものであり、さらに詳しく
は自動車用の成形部材例えばバンパー、二輪用のメイン
フレーム、スイングアーム等、切削及び鍛造等による電
気、機械部品に使用されるAl−Zn−Mg系合金押出
材(押出形材、押出棒材)とその製造方法に関するもの
である。
The present invention relates to an Al—Zn—Mg based material which is excellent in workability with an annealed material (0 material) and excellent in toughness and stress corrosion cracking resistance in a solution age hardened material (T6 material). The present invention relates to an alloy extruded material and a method for producing the same, and more particularly to a molded member for an automobile, such as a bumper, a main frame for a two-wheeled vehicle, a swing arm, or the like, which is used for electric and mechanical parts by cutting and forging, etc. The present invention relates to an extruded Mg-based alloy (extruded bar, extruded bar) and a method for producing the same.

【0002】[0002]

【従来の技術】近年押出形材は、産業界のニーズから複
雑な断面形状で中空を有し、曲げ、スウェ−ジング、拡
管、バルジ加工等の成形加工(塑性加工)を施すのが主
流となっている。押出棒についても切削、冷間鍛造加工
等の2次加工を行って所定の形状とした後、熱処理即ち
溶体化処理後時効硬化処理(このように処理した材料を
以下T6材という)を施す。よって、Al合金素材に要
求される特性は、押出材が種々の加工性に優れることで
あり、このため押出後焼鈍処理をして軟化した材料(以
下0材という)とする必要がある。しかし、熱処理型合
金であるAl−Zn−Mg系の従来合金では、軟化させ
た押出材に塑性加工を施した後にT6処理を行うと、そ
の断面の全面もしくは大部分に再結晶を生じ、押出材表
層部にオレンジピール等の欠陥を生じると共に、応力腐
食割れを生じるため、塑性加工後のT6処理は行わない
のが一般的であり、成形加工後にT6処理して強度と靱
性に優れ、かつ応力腐食割れ性に優れた材料を得ること
ができなかった。
2. Description of the Related Art In recent years, extruded profiles have a complicated cross-sectional shape and are hollow due to the needs of the industry, and are mainly subjected to forming (plastic working) such as bending, swaging, expansion, and bulging. Has become. The extruded rod is also subjected to secondary processing such as cutting and cold forging to obtain a predetermined shape, and then subjected to a heat treatment, that is, an age hardening treatment after a solution treatment (the material thus treated is hereinafter referred to as a T6 material). Therefore, the characteristic required of the Al alloy material is that the extruded material is excellent in various workability, and therefore, it is necessary to use a material softened by annealing treatment after extrusion (hereinafter referred to as "0 material"). However, in the case of Al-Zn-Mg-based conventional alloys, which are heat-treated alloys, if the T6 treatment is performed after plasticizing the softened extruded material, recrystallization occurs on the entire surface or most of the cross-section, resulting in extrusion. In addition to the occurrence of defects such as orange peel on the surface layer of the material and the occurrence of stress corrosion cracking, it is common that T6 treatment after plastic working is not performed. T6 treatment after forming processing results in excellent strength and toughness, and A material having excellent stress corrosion cracking properties could not be obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、前記
の問題を解決することであり、具体的にはAl−Zn−
Mg系合金押出材の0材での各種の塑性加工(曲げ、ス
ウェ−ジング、バルジ、据込加工等)性を改善し、又こ
のような加工材のT6処理材の強度と靱性、金属組織及
び耐応力腐食割れ性を改善したAl−Zn−Mg系合金
押出材とその製造方法を見出すことである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems.
Improves various plastic workings (bending, swaging, bulge, upsetting, etc.) of the extruded Mg-based alloys with zero material, and the strength, toughness, and metal structure of T6 treated materials of such processed materials An Al-Zn-Mg based alloy extruded material having improved stress corrosion cracking resistance and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明は、前記の状況に
鑑み鋭意検討の結果、合金成分と押出後の0材焼鈍処理
条件の検討により加工性を改善し、さらに加工後のT6
処理条件の検討によりT6処理後の押出材の強度と靱
性、組織、耐応力腐食割れ性を改善したものである。即
ち、前記課題を解決するための請求項1の発明は、Zn
4.00〜6.50wt%、Mg0.50〜1.50w
t%、Cu0.10〜0.50wt%、Zr0.10〜
0.50wt%、Mn0.05〜0.20wt%、Cr
0.05〜0.20wt%を含み、残部がAlと不可避
的不純物とからなるAl合金押出材の成形加工材であっ
て、T6処理した材料の伸び/引張強さの比が0.03
0以上で、かつ断面組織がすべて繊維状組織か又は再結
晶組織が表層部深さ300μm以下とした靱性と耐応力
腐食割れ性に優れることを特徴とするAl−Zn−Mg
系合金押出材であり、
SUMMARY OF THE INVENTION In view of the above-mentioned situation, the present invention has made intensive studies and as a result, improved the workability by examining the alloy components and the conditions of the 0-piece annealing treatment after extrusion.
By examining the treatment conditions, the strength and toughness, structure, and stress corrosion cracking resistance of the extruded material after T6 treatment were improved. That is, the invention of claim 1 for solving the above-mentioned problem is based on Zn
4.00 to 6.50 wt%, Mg 0.50 to 1.50 w
t%, Cu 0.10 to 0.50 wt%, Zr 0.10
0.50wt%, Mn0.05 ~ 0.20wt%, Cr
An extruded Al alloy material containing 0.05 to 0.20 wt%, the balance being Al and unavoidable impurities, wherein the ratio of elongation / tensile strength of the T6 treated material is 0.03.
Al—Zn—Mg characterized by being excellent in toughness and stress corrosion cracking resistance in which the cross-sectional structure is not less than 0 and the entire cross-sectional structure is a fibrous structure or the recrystallized structure has a surface layer depth of 300 μm or less.
Extruded alloy

【0005】また、請求項2の発明は、Zn4.00〜
6.50wt%、Mg0.50〜1.50wt%、Cu
0.10〜0.50wt%、Zr0.10〜0.50w
t%、Mn0.05〜0.20wt%、Cr0.05〜
0.20wt%を含み、残部がAlと不可避的不純物と
からなるAl合金鋳塊を、420〜520℃の温度で2
〜24時間の均質化熱処理をした後、430〜520℃
の温度で押出加工を行い、次にこれを300〜420℃
の温度で焼鈍処理を行い、これを30℃/hr以下の冷却
速度で室温まで冷却して成形加工性に優れた材料とする
ことを特徴とするAl−Zn−Mg系合金押出材の製造
方法であり、
[0005] The invention according to claim 2 is based on Zn 4.00.
6.50 wt%, Mg 0.50 to 1.50 wt%, Cu
0.10-0.50wt%, Zr0.10-0.50w
t%, Mn0.05 ~ 0.20wt%, Cr0.05 ~
An Al alloy ingot containing 0.20 wt%, the balance being Al and unavoidable impurities, was cast at a temperature of 420 to 520 ° C.
After performing the homogenization heat treatment for ~ 24 hours, 430-520 ° C
Extrusion at a temperature of 300-420 ° C.
A method of producing an extruded Al-Zn-Mg alloy, characterized in that an annealing treatment is performed at a temperature of 30 ° C., and the material is cooled to room temperature at a cooling rate of 30 ° C./hr or less to obtain a material excellent in formability. And

【0006】請求項3の発明は、Zn4.00〜6.5
0wt%、Mg0.50〜1.50wt%、Cu0.1
0〜0.50wt%、Zr0.10〜0.50wt%、
Mn0.05〜0.20wt%、Cr0.05〜0.2
0wt%を含み、残部がAlと不可避的不純物とからな
るAl合金鋳塊を、420〜520℃の温度で2〜24
時間の均質化熱処理をした後、430〜520℃の温度
で押出加工を行い、次にこれを300〜420℃の温度
で焼鈍処理を行い、これを30℃/hr以下の冷却速度で
室温まで冷却した後、これに成形加工を施こす、続いて
これを400〜500℃の温度で溶体化処理を行い、こ
れを50℃/hr以上の冷却速度で室温まで冷却した後、
90〜110℃の温度で2〜12時間の一段目の時効処
理、さらに120〜180℃の温度で5〜24時間二段
目の時効処理を施して、材料の伸び/引張強さの比が
0.030以上で、かつ断面組織がすべて繊維状組織か
又は再結晶組織が表層部深さ300μm以下として靱性
と耐応力腐食割れ性に優れた材料とすることを特徴とす
るAl−Zn−Mg系合金押出材の製造方法である。
A third aspect of the present invention relates to a method for manufacturing ZnO of 4.00 to 6.5.
0 wt%, Mg 0.50 to 1.50 wt%, Cu0.1
0 to 0.50 wt%, Zr 0.10 to 0.50 wt%,
Mn 0.05-0.20 wt%, Cr 0.05-0.2
An Al alloy ingot containing 0 wt% and the balance consisting of Al and unavoidable impurities was cast at a temperature of 420 to 520 ° C. for 2 to 24 hours.
After the homogenizing heat treatment for a time, extrusion is performed at a temperature of 430 to 520 ° C., and then an annealing treatment is performed at a temperature of 300 to 420 ° C., which is cooled to room temperature at a cooling rate of 30 ° C./hr or less. After cooling, this is subjected to a forming process. Subsequently, it is subjected to a solution treatment at a temperature of 400 to 500 ° C., and is cooled to room temperature at a cooling rate of 50 ° C./hr or more.
The first-stage aging treatment at a temperature of 90 to 110 ° C. for 2 to 12 hours and the second-stage aging treatment at a temperature of 120 to 180 ° C. for 5 to 24 hours give a material having a ratio of elongation / tensile strength. An Al—Zn—Mg material having a cross-sectional structure of at least 0.030 and a fibrous structure or a recrystallized structure having a surface layer depth of 300 μm or less and having excellent toughness and stress corrosion cracking resistance. This is a method for producing an extruded alloy.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
まず、請求項1の発明は、Al−Zn−Mg系合金押出
材であるが、詳細は前記のごとく所定のAl−Zn−M
g系合金押出材に成形加工を施し、これにT6処理を施
した状態の材料である。まず、本発明に係わるAl−Z
n−Mg系合金押出材の合金組成の限定理由について説
明する。Znは、機械的性質を向上させる効果がある。
その添加量が4.00wt%未満では効果がなく、一方
6.50wt%を越えて添加すると耐応力腐食割れ性
(以下耐SCC性ともいう)、成形性及び押出加工性が
劣化し、生産性も低下する。従って本発明ではZnの添
加量を4.00〜6.50wt%と限定した。Mgは、
機械的性質を向上させる元素であるが、その添加量が
0.50wt%未満ではその効果が少なく、一方1.5
0wt%を越えて添加すると耐応力腐食割れ性、成形性
及び押出加工性が劣化し、生産性も低下する。従って本
発明ではMgの添加量を0.50〜1.50wt%と限
定した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
First, the invention of claim 1 is an extruded material of an Al—Zn—Mg-based alloy.
This is a material obtained by subjecting a g-based alloy extruded material to molding and subjecting it to T6 treatment. First, the Al-Z according to the present invention
The reason for limiting the alloy composition of the extruded n-Mg alloy will be described. Zn has an effect of improving mechanical properties.
If the amount is less than 4.00% by weight, there is no effect, while if it exceeds 6.50% by weight, stress corrosion cracking resistance (hereinafter also referred to as SCC resistance), moldability and extrusion processability deteriorate, and productivity increases. Also decrease. Therefore, in the present invention, the amount of Zn added is limited to 4.00 to 6.50 wt%. Mg is
Although it is an element that improves mechanical properties, its effect is small when the amount of addition is less than 0.50 wt%.
If it is added in excess of 0 wt%, the stress corrosion cracking resistance, moldability and extrudability deteriorate, and productivity also decreases. Therefore, in the present invention, the addition amount of Mg is limited to 0.50 to 1.50 wt%.

【0008】Cuは、機械的性質を向上させるととも
に、耐応力腐食割れ性を向上させる効果がある。その添
加量が0.10wt%未満ではその効果がなく、一方
0.50wt%を越えて添加すると耐食性に害を及ぼ
す。従って本発明ではCu添加量を0.10〜0.50
wt%と限定した。Zrは、合金中の再結晶粒の粗大化
を抑制し、結晶粒を繊維状組織として組織の安定化を図
ると共に曲げ加工、スウェ−ジング加工等の成形性を改
善する効果がある。その添加量が0.10wt%未満で
はその効果が少なく、一方0.50wt%を越えて添加
すると粗大なAl−Zr系金属間化合物が生成して靱性
等を劣化させる。従って本発明ではZrの添加量を0.
10〜0.50wt%と限定した。
[0008] Cu has the effect of improving mechanical properties and stress corrosion cracking resistance. If the amount is less than 0.10% by weight, the effect is not obtained. On the other hand, if the amount exceeds 0.50% by weight, the corrosion resistance is harmed. Therefore, in the present invention, the addition amount of Cu is 0.10 to 0.50.
wt%. Zr has the effect of suppressing the coarsening of the recrystallized grains in the alloy, stabilizing the structure with the crystal grains as a fibrous structure, and improving the formability such as bending and swaging. If the addition amount is less than 0.10 wt%, the effect is small. On the other hand, if the addition amount exceeds 0.50 wt%, a coarse Al-Zr-based intermetallic compound is formed to deteriorate toughness and the like. Therefore, in the present invention, the addition amount of Zr is set to 0.1.
It was limited to 10 to 0.50 wt%.

【0009】MnおよびCrは、その共存状態でアルミ
ニウム素地中に微細に分散した繊維状組織の再結晶化を
防止して組織を安定化し、曲げ加工、スウェ−ジング加
工等の成形加工後の押出材の表面にオレンジピール状の
肌荒れが発生することを防ぐ効果がある。その添加量が
それぞれ0.05wt%未満ではその効果が少なく、逆
にそれぞれ0.20wt%を越えて添加するとその効果
が飽和する一方で粗大な金属間化合物を生成したり、焼
き入れ感受性が増大したりするほかに、強度及び押出加
工性にも悪影響を及ぼす。従って本発明ではMnおよび
Crの添加量をそれぞれ0.05〜0.20wt%と限
定した。また、Ti、Ni、B等の不純物についてはそ
れぞれが0.05wt%以下、であれば本発明の効果に
悪影響を及ぼさないので含有しても差し支えない。
Mn and Cr coexist to prevent the recrystallization of the fibrous structure finely dispersed in the aluminum base, stabilize the structure, and extrude after forming such as bending and swaging. It has the effect of preventing orange peel-like roughening of the surface of the material. If the added amount is less than 0.05 wt%, the effect is small. Conversely, if the added amount exceeds 0.20 wt%, the effect is saturated, but a coarse intermetallic compound is formed or quenching sensitivity is increased. In addition, it has an adverse effect on strength and extrudability. Therefore, in the present invention, the addition amounts of Mn and Cr are each limited to 0.05 to 0.20 wt%. Further, impurities such as Ti, Ni, and B may be contained as long as each is 0.05 wt% or less, since the effects of the present invention are not adversely affected.

【0010】次に、本材料は、焼鈍した材料について曲
げ、スウェ−ジング等の成形加工を施し、更にT6処理
を施した材料であるが、材料の伸び/引張強さの比が
0.030以上と限定したのは、本材料は自動車用の成
形部材例えばバンパー、二輪用のメインフレーム、スイ
ングアーム等の構造部材を目的とするものであり、製品
の性質上材料にねばり強さ、即ち靱性が必要であるから
である。本発明においては、材料の伸び/引張強さの比
をこの靱性特性の目安とした。また、本発明において、
材料の断面組織がすべて繊維状組織か又は再結晶組織が
表層部深さ300μm以下と限定したのは、前記の靱性
特性と耐応力腐食割れ性を改善するためである。なお、
再結晶組織が表層部の深さ300μ以下の場合は、後の
表面加工(バフによる加工、ショットによる加工等)に
より除去できるので、最終製品では問題ない。
Next, the present material is a material obtained by subjecting an annealed material to bending, swaging or the like, and further performing a T6 treatment. The material has an elongation / tensile strength ratio of 0.030. The material limited to the above is intended for a structural member such as a molded member for an automobile, for example, a bumper, a main frame for a two-wheeled vehicle, and a swing arm. Due to the nature of the product, the material has toughness, that is, toughness. It is necessary. In the present invention, the ratio of elongation / tensile strength of the material was used as a measure of the toughness characteristics. In the present invention,
The reason why the cross-sectional structure of the material is all fibrous structure or recrystallized structure is limited to a surface layer depth of 300 μm or less is to improve the toughness characteristics and stress corrosion cracking resistance. In addition,
If the recrystallized structure has a surface layer depth of 300 μm or less, it can be removed by subsequent surface processing (processing with a buff, processing with a shot, etc.), so that there is no problem in the final product.

【0011】請求項2の発明は、成形加工性に優れたA
l−Zn−Mg系合金押出材の製造方法に関するもので
ある。前述のごとく、押出材は曲げ、スウェ−ジング等
の成形加工が施されるが、本発明においては、特に熱間
押出材の焼鈍後の冷却において、その冷却速度を非常に
遅くすることにより、成形加工性を改善したものであ
る。また、請求項3の発明は、前記の成形加工後に、T
6処理を施すもので、請求項1の発明に係わるAl−Z
n−Mg系合金押出材の製造方法に関するものである。
[0011] The invention of claim 2 is a method for producing A
The present invention relates to a method for producing an extruded l-Zn-Mg alloy. As described above, the extruded material is subjected to a forming process such as bending and swaging. In the present invention, particularly, in the cooling after annealing of the hot extruded material, the cooling rate is extremely slowed down. The moldability is improved. Further, the invention according to claim 3 is characterized in that, after the forming process, T
Al-Z according to the first aspect of the present invention.
The present invention relates to a method for producing an extruded n-Mg alloy.

【0012】ところで、Al−Zn−Mg系合金押出材
は一般に、均質化熱処理した鋳塊を熱間押出加工でプレ
ス焼入れ又は別途溶体化処理をし、その後、人工時効処
理する方法と熱間押出加工後に焼鈍処理をし、塑性加工
を行った後、T6処理を施す方法で製造される。本発明
の製造方法は、本発明に係わるAl合金を用いて、後者
の製造の各段階での温度条件や処理時間条件を限定する
ことにより、目的を達成するものである。
In general, an extruded material of an Al—Zn—Mg alloy is generally subjected to press quenching or separate solution treatment of a homogenized heat-treated ingot by hot extrusion, followed by artificial aging treatment and hot extrusion. It is manufactured by a method of performing an annealing process after working, performing plastic working, and then performing a T6 process. The production method of the present invention achieves the object by using the Al alloy according to the present invention to limit the temperature conditions and processing time conditions at each stage of the latter production.

【0013】以下、請求項2及び3の製造方法の発明に
おける各段階の製造条件について、詳細に説明する。ま
ず、本発明に係わるAl合金鋳塊に均質化熱処理を施
す。均質化熱処理はZr、Mn、Cr等の化合物を微細
均一に分散させるために比較的高温で行う。ただし52
0℃を越える温度や24時間を越えて処理すると、押出
後の断面表層の再結晶を促進し、又は析出物が粗大化し
て押出性、焼入感受性等の特性が悪化する。一方、42
0℃未満や2時間未満の処理では均質化が不充分であ
る。従って本発明において、均質化熱処理は420〜5
20℃×2〜24時間の条件で行う。
Hereinafter, the manufacturing conditions of each step in the manufacturing method of the second and third aspects will be described in detail. First, a homogenizing heat treatment is applied to the Al alloy ingot according to the present invention. The homogenizing heat treatment is performed at a relatively high temperature in order to finely and uniformly disperse compounds such as Zr, Mn, and Cr. However, 52
If the treatment is carried out at a temperature exceeding 0 ° C. or for more than 24 hours, recrystallization of the surface layer of the cross section after extrusion is promoted, or the precipitate is coarsened to deteriorate properties such as extrudability and quenching sensitivity. On the other hand, 42
If the treatment is performed at less than 0 ° C. or for less than 2 hours, homogenization is insufficient. Therefore, in the present invention, the homogenization heat treatment is performed in the range of 420 to 5 hours.
It is performed under the condition of 20 ° C. × 2 to 24 hours.

【0014】次に鋳塊を押出温度まで再加熱して熱間押
出加工を行う。押出温度については、押出加工が困難な
押出比の大きい薄肉の中空形材も加工できるように43
0〜520℃の高温で行う。従来の合金をこのような高
温で押出加工すると、再結晶が進行し、粗大な再結晶粒
が生成するため耐応力腐食割れ性が著しく低下し、また
粗大な金属間化合物が生成するため、押出加工性、成形
性、耐食性等が悪化する。しかしながら本発明に係わる
組成の合金においては、Zr添加で再結晶粒のない繊維
状組織とすること、MnとCrを微細に分散させること
により再結晶の進行を抑制し、さらにCu添加で耐SC
C性を大幅に向上させることにより、高温での押出加工
を可能としている。なお、押出温度が430℃未満では
中空形材の押出が困難であり、520℃を越えると押出
後の断面表層の再結晶を促進し、又は析出物が粗大化し
て押出性、焼入感受性等の特性が悪化する。従って押出
温度は430〜520℃とする。
Next, the ingot is reheated to an extrusion temperature to perform hot extrusion. The extrusion temperature is set so that a thin hollow member having a large extrusion ratio, which is difficult to extrude, can be processed.
Perform at a high temperature of 0-520 ° C. When a conventional alloy is extruded at such a high temperature, recrystallization progresses and coarse recrystallized grains are generated, so that stress corrosion cracking resistance is significantly reduced, and coarse intermetallic compounds are formed. Workability, formability, corrosion resistance, etc. are deteriorated. However, in the alloy having the composition according to the present invention, the addition of Zr results in a fibrous structure without recrystallized grains, the progress of recrystallization is suppressed by dispersing Mn and Cr finely, and the addition of Cu further reduces the SC resistance.
Extrusion processing at high temperature is made possible by greatly improving the C property. If the extrusion temperature is lower than 430 ° C., it is difficult to extrude the hollow profile, and if it exceeds 520 ° C., the recrystallization of the surface layer of the cross section after extrusion is promoted, or the precipitates become coarse and extrudability, quenching sensitivity, etc. Characteristics are deteriorated. Therefore, the extrusion temperature is set to 430 to 520 ° C.

【0015】次に押出材に焼鈍処理を行う。焼鈍処理
は、固溶中の溶質元素を粗大に析出させると共に粗大な
金属間化合物の生成による機械的性質及び硬度の低下に
より、焼鈍処理後の曲げ、スウェ−ジング、バルジ、据
込み加工等の塑性加工が可能となる。ただし420℃を
越える温度で焼鈍処理すると、再結晶を誘発すると共に
焼入感受性が鈍感なために強度アップを促す。一方、3
00℃未満では焼鈍処理が不充分となる。なお、焼鈍処
理後の室温までの冷却は、冷却速度を30℃/hr以下に
抑える必要がある。なぜなら、冷却速度が30℃/hrを
越えると焼入感受性が鈍感なために充分な0材硬度を得
るのが難しい。よって焼鈍処理条件は、300〜420
℃の温度で焼鈍し、30℃/hr以下の冷却速度で冷却す
る必要がある。
Next, the extruded material is subjected to an annealing treatment. Annealing is performed by bending, swaging, bulging, upsetting, etc. after annealing due to the coarse precipitation of solute elements in solid solution and the reduction of mechanical properties and hardness due to the formation of coarse intermetallic compounds. Plastic working becomes possible. However, annealing at a temperature exceeding 420 ° C. induces recrystallization and promotes an increase in strength due to insensitivity to quenching. Meanwhile, 3
If the temperature is lower than 00 ° C., the annealing treatment becomes insufficient. In addition, when cooling to room temperature after the annealing treatment, it is necessary to suppress the cooling rate to 30 ° C./hr or less. This is because if the cooling rate exceeds 30 ° C./hr, it is difficult to obtain a sufficient hardness of 0 material because the quenching sensitivity is insensitive. Therefore, the annealing conditions are 300 to 420.
It is necessary to anneal at a temperature of ° C and cool at a cooling rate of 30 ° C / hr or less.

【0016】次に焼鈍処理後は、曲げ、スウェ−ジン
グ、バルジ、据込み加工等の塑性加工を行う。塑性加工
後は、通常の熱処理型合金のようにT6処理(溶体化処
理と人工時効処理)を行い、機械的性質をアップする必
要がある。溶体化処理は、溶質元素をアルミニウム素地
に充分に固溶させた過飽和固溶体を形成する必要があ
る。ただし、溶体化処理温度が500℃を越えると共晶
溶融(バーニング)を生じて、金属組織に欠陥を生じる
と共に機械的性質が低下する。一方、400℃未満では
溶体化が不充分である。なお、溶体化処理後の冷却速度
は50℃/hr以上で行う必要がある。なぜなら、50℃
/hr未満で冷却すると強度を付与するための充分な過飽
和固溶体が得られず、さらに、押出材の全断面が再結晶
するか又は表層部に粗大な再結晶を生じる。よって溶体
化処理条件は400〜500℃の温度で行い、溶体化処
理の冷却は50℃/hr以上の冷却速度で行う必要があ
る。
Next, after the annealing, plastic working such as bending, swaging, bulging, upsetting and the like is performed. After the plastic working, it is necessary to perform T6 treatment (solution treatment and artificial aging treatment) like a normal heat treatment type alloy to improve mechanical properties. In the solution treatment, it is necessary to form a supersaturated solid solution in which a solute element is sufficiently dissolved in an aluminum base. However, if the solution treatment temperature exceeds 500 ° C., eutectic melting (burning) occurs, causing defects in the metal structure and deteriorating mechanical properties. On the other hand, if the temperature is lower than 400 ° C., the solution is insufficient. Note that the cooling rate after the solution treatment needs to be performed at 50 ° C./hr or more. Because 50 ℃
When the cooling rate is less than / hr, a supersaturated solid solution sufficient for imparting strength cannot be obtained, and further, the entire cross section of the extruded material is recrystallized, or coarse recrystallization occurs in the surface layer. Therefore, the solution treatment condition is performed at a temperature of 400 to 500 ° C., and the solution treatment needs to be cooled at a cooling rate of 50 ° C./hr or more.

【0017】次に、これらの材料は人工時効硬化処理を
行う。この人工時効処理は、溶体化処理で得られた過飽
和固溶体を低温で加熱処理することにより析出物を微細
に析出させるものである。具体的には二段時効とし、一
段目の時効でMgZn2 の微細析出物を均一に分散さ
せ、二段目の高温時効で粗大なGPゾーンあるいは中間
相へと成長させる。一段目の人工時効は、析出物の粗大
化を防ぎつつ、微細な析出物を十分に均一に分散析出さ
せるために、90〜110℃で2〜12時間の条件で行
う。二段目の時効処理は、一段目より高温で行うが、1
80℃を越える温度で処理を行うとMgZn2 が粗大に
析出し、成形性、耐食性が劣化する。一方、120℃未
満の温度で処理を行うとGPゾーンあるいは中間相への
成長が不充分となり、強度が不足する。さらに生産性を
考慮して、本発明においては二段目の時効処理は120
〜180℃で5〜24時間の条件で行う。
Next, these materials are subjected to an artificial age hardening treatment. In this artificial aging treatment, a precipitate is finely deposited by heating the supersaturated solid solution obtained by the solution treatment at a low temperature. Specifically, the second stage aging is performed, and the fine precipitate of MgZn 2 is uniformly dispersed by the first stage aging, and is grown into a coarse GP zone or an intermediate phase by the second stage aging. The first-stage artificial aging is performed at 90 to 110 ° C. for 2 to 12 hours in order to sufficiently finely precipitate and disperse and precipitate while preventing coarsening of the precipitate. The second-stage aging treatment is performed at a higher temperature than the first stage.
If the treatment is carried out at a temperature exceeding 80 ° C., MgZn 2 precipitates coarsely and the formability and corrosion resistance deteriorate. On the other hand, if the treatment is performed at a temperature lower than 120 ° C., the growth into the GP zone or the intermediate phase becomes insufficient, and the strength becomes insufficient. Further considering the productivity, in the present invention, the aging treatment in the second stage is 120
The reaction is performed at a temperature of 180 ° C. for 5 to 24 hours.

【0018】以上説明したように、本発明の製造方法に
よるAl−Zn−Mg系合金押出材は、焼鈍処理後に塑
性加工(曲げ、スウェ−ジング、バルジ、据込み加工
等)を行い、続いてT6処理を施しても、材料の断面組
織がすべて繊維状組織か又は再結晶組織を表層部の深さ
300μ以下とすることができる。なお、再結晶組織が
表層部の深さ300μ以下の場合は、後の表面加工(バ
フによる加工、ショットによる加工等)により除去でき
るので、最終製品では問題ない。また、このような材料
は、強度、靱性に優れ、耐応力腐食割れ性にも優れてい
る。
As described above, the Al—Zn—Mg based alloy extruded material according to the production method of the present invention is subjected to plastic working (bending, swaging, bulge, upsetting, etc.) after annealing, and subsequently to Even when the T6 treatment is performed, the cross-sectional structure of the material can be all a fibrous structure or the recrystallized structure can have a surface layer depth of 300 μm or less. If the recrystallized structure has a surface layer depth of 300 μm or less, it can be removed by subsequent surface processing (processing with a buff, processing with a shot, etc.), so that there is no problem in the final product. Further, such a material is excellent in strength and toughness, and also excellent in stress corrosion cracking resistance.

【0019】[0019]

【実施例】次に本発明の実施例(本発明例)を、比較
例、従来例と比較しながら、更に詳細に説明する。表1
に示す組成の本発明例(No.1〜4)、比較例(N
o.5〜7)、従来例(No.8〜10)の合金をDC
鋳造によりφ219mmの押出用鋳塊に鋳造し、均質化
熱処理をそれぞれ表1に示す条件で行った。その後、表
1に示す押出温度までそれぞれ再加熱し、中空形材(断
面:巾60mm×高さ60mm×肉厚3.0mm)及び
φ20mmの押出棒に押出加工した。押出後、表1に示
す焼鈍処理条件で焼鈍し、その後表1に示す冷却速度で
室温まで冷却して焼鈍材(0材)を作製した。焼鈍処理
後の0材形材のみ、角管スウェ−ジングにより断面が巾
40mm×高さ40mm×肉厚2.5mmの角管に塑性
加工した後、表1に示す溶体化処理条件(処理後の冷却
速度を考慮)で、溶体化処理を行った。溶体化処理後
は、表1に示す2段の人工時効処理を施して供試材を作
製した。
EXAMPLES Next, examples of the present invention (examples of the present invention) will be described in more detail in comparison with comparative examples and conventional examples. Table 1
Examples of the present invention (Nos. 1 to 4) and Comparative Examples (N
o. 5-7), and the alloy of the conventional example (No. 8-10) was DC
It was cast into an ingot for extrusion having a diameter of 219 mm by casting, and subjected to homogenization heat treatment under the conditions shown in Table 1. Thereafter, each was heated again to the extrusion temperature shown in Table 1, and was extruded into a hollow material (cross section: width 60 mm × height 60 mm × wall thickness 3.0 mm) and an extruded rod of φ20 mm. After the extrusion, annealing was performed under the annealing treatment conditions shown in Table 1, and then cooled to room temperature at a cooling rate shown in Table 1 to produce an annealed material (0 material). Only the 0-member shaped material after annealing was plastically worked into a square tube having a cross section of 40 mm wide × 40 mm high × 2.5 mm thick by square tube swaging, and then subjected to the solution treatment conditions shown in Table 1. (Considering the cooling rate). After the solution treatment, a two-stage artificial aging treatment shown in Table 1 was performed to prepare a test material.

【0020】[0020]

【表1】 [Table 1]

【0021】これらの供試材について、0材については
機械的性質、スウェ−ジング加工性、据込加工性を評価
し、T6材については機械的性質、金属組織、耐応力腐
食割れ試験(塩水噴霧試験及びクロム酸促進試験)を評
価した。0材及びT6材の機械的性質は、JIS5号引
張試験片を押出長手方向から採取し、引張試験を行い、
引張強さ、耐力、伸びにより評価した。更にT6材につ
いては、伸び/引張強さの比を求めた。この値の高いも
のは材料にねばり強さがあり、靱性の有無の目安とし
た。スウェ−ジング加工は、前述の通りに中空形材(断
面が巾60mm×高さ60mm×肉厚3.0mmの角
管)から断面が巾40mm×高さ40mm×肉厚2.5
mmの角管に塑性加工を施し、加工後の表面状態を目視
観察して評価した。据込加工は、0材押出棒を使用し、
φ20mm×高さ50mmのブランクについて、冷間で
据込加工して、割れ限界までの高さ方向の減少率を示し
た。T6後の金属組織は、前記の角管のスウェ−ジング
加工後にT6処理を施した材料について、表層部の断面
ミクロ組織を観察した。耐応力腐食割れ試験は、塩水噴
霧試験及びクロム酸促進試験の2種類の試験で評価し
た。 塩水噴霧試験は、3.5%NaCl溶液中に3点
曲げ(耐力の95%)で応力を負荷して1か月放置後に
割れの有無を観察した。クロム酸促進試験は、クロム酸
沸騰溶液中に3点曲げ(耐力の95%)で応力を負荷し
て12hr保持後に割れの有無を観察した。これらの各
特性の試験結果を表2に示す。
Of these test materials, mechanical properties, swaging workability, and upsetting workability were evaluated for the 0 material, and the mechanical properties, metal structure, stress corrosion cracking test (salt water) for the T6 material were evaluated. Spray test and chromic acid accelerated test) were evaluated. The mechanical properties of the No. 0 material and the T6 material were determined by taking a JIS No. 5 tensile test specimen from the extrusion longitudinal direction and performing a tensile test.
Evaluation was made based on tensile strength, proof stress, and elongation. Further, for the T6 material, the ratio of elongation / tensile strength was determined. The higher the value, the more the material has toughness, and was used as a measure of the presence or absence of toughness. As described above, the swaging process is performed from a hollow profile (a square tube having a cross section of width 60 mm × height 60 mm × thickness 3.0 mm) with a cross section of width 40 mm × height 40 mm × thickness 2.5.
A plastic tube was subjected to plastic working, and the surface state after the working was visually observed and evaluated. For the upsetting process, use a 0-member extrusion rod,
The blank having a diameter of 20 mm and a height of 50 mm was subjected to upsetting in a cold state, and the rate of reduction in the height direction up to the crack limit was shown. Regarding the metal structure after T6, the cross-sectional microstructure of the surface layer of the material subjected to the T6 treatment after the swaging of the square tube was observed. The stress corrosion cracking test was evaluated by two kinds of tests, a salt spray test and a chromate accelerated test. In the salt spray test, stress was applied in a 3.5% NaCl solution by three-point bending (95% of the proof stress), and after one month of standing, the presence or absence of cracks was observed. In the chromic acid accelerated test, stress was applied to the chromic acid boiling solution by three-point bending (95% of the proof stress), and after holding for 12 hours, the presence or absence of cracks was observed. Table 2 shows the test results of these characteristics.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から明らかなように、本発明例No.
1〜4は、比較例No.5〜7や従来例No.8〜10
に比べ、0材については、伸びが高いことに伴いスウェ
−ジング加工や据込加工等の加工性が優れている。ま
た、本発明例No.1〜4は、T6材についても、伸び
/引張強さの比が高く材料の靱性に優れ、金属組織、耐
応力腐食割れ性も著しく改善されているのが明瞭であ
る。
As is clear from Table 2, the present invention example No.
Nos. 1 to 4 are Comparative Example Nos. 5 to 7 and Conventional Example Nos. 8-10
Compared with No. 0, the workability such as swaging and upsetting is excellent due to the high elongation. In addition, the present invention example No. Nos. 1 to 4 also clearly show that the T6 material also has a high elongation / tensile strength ratio, excellent toughness of the material, and significantly improved metallographic structure and stress corrosion cracking resistance.

【0024】[0024]

【発明の効果】以上詳述したごとく、従来のAl−Zn
−Mg系合金押出材は、塑性加工を施した後にT6処理
を行うとその断面の全面もしくは大部分に再結晶を生
じ、押出材表層部にオレンジピール等の欠陥を生じると
共に、応力腐食割れを生じるため、塑性加工後のT6処
理は行わないのが一般的で、T6処理した高強度材を得
ることができなかったが、本発明により塑性加工後のT
6処理が可能となった。即ち本発明は、Al−Zn−M
g系合金押出材の0材での各種の塑性加工(曲げ、スウ
ェ−ジング、バルジ、据込加工等)性に優れ、又このよ
うな加工材のT6処理材は高強度で靱性に優れ、金属組
織及び耐応力腐食割れ性についても問題ないAl−Zn
−Mg系合金材が得られるもので工業上顕著な効果を奏
するものである。
As described in detail above, the conventional Al-Zn
-When extruded Mg-based alloys are subjected to T6 treatment after plastic working, recrystallization occurs on the entire surface or most of the cross-section, causing defects such as orange peel on the extruded material surface and stress corrosion cracking. Therefore, the T6 treatment after the plastic working is generally not performed, and a high-strength material subjected to the T6 treatment cannot be obtained.
6 treatments became possible. That is, the present invention relates to Al-Zn-M
It is excellent in various plastic working (bending, swaging, bulge, upsetting, etc.) of 0 g-alloy extruded material, and T6 treated material of such processed material has high strength and excellent toughness, Al-Zn with no problem in metal structure and stress corrosion cracking resistance
-An Mg-based alloy material is obtained, which has an industrially remarkable effect.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/00 630 8719−4K C22F 1/00 630K 640 8719−4K 640A 682 8719−4K 682 683 8719−4K 683 691 8719−4K 691C 8719−4K 691B 692 8719−4K 692A 694 8719−4K 694B ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C22F 1/00 630 8719-4K C22F 1/00 630K 640 8719-4K 640A 682 8719-4K 682 683 8719 -4K 683 691 8719-4K 691C 8719-4K 691B 692 8719-4K 692A 694 8719-4K 694B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Zn4.00〜6.50wt%、Mg
0.50〜1.50wt%、Cu0.10〜0.50w
t%、Zr0.10〜0.50wt%、Mn0.05〜
0.20wt%、Cr0.05〜0.20wt%を含
み、残部がAlと不可避的不純物とからなるAl合金押
出材の成形加工材であって、T6処理した材料の伸び/
引張強さの比が0.030以上で、かつ断面組織がすべ
て繊維状組織か又は再結晶組織が表層部深さ300μm
以下とした靱性と耐応力腐食割れ性に優れることを特徴
とするAl−Zn−Mg系合金押出材。
1. 4.00 to 6.50 wt% of Zn, Mg
0.50 to 1.50 wt%, Cu 0.10 to 0.50 w
t%, Zr 0.10-0.50 wt%, Mn0.05-
An extruded Al alloy material containing 0.20 wt%, Cr 0.05 to 0.20 wt%, and the balance being Al and unavoidable impurities.
The tensile strength ratio is 0.030 or more, and the cross-sectional structure is all fibrous structure or recrystallized structure has a surface layer depth of 300 μm.
An Al-Zn-Mg based alloy extruded material characterized by having the following excellent toughness and stress corrosion cracking resistance.
【請求項2】 Zn4.00〜6.50wt%、Mg
0.50〜1.50wt%、Cu0.10〜0.50w
t%、Zr0.10〜0.50wt%、Mn0.05〜
0.20wt%、Cr0.05〜0.20wt%を含
み、残部がAlと不可避的不純物とからなるAl合金鋳
塊を、420〜520℃の温度で2〜24時間の均質化
熱処理をした後、430〜520℃の温度で押出加工を
行い、次にこれを300〜420℃の温度で焼鈍処理を
行い、これを30℃/hr以下の冷却速度で室温まで冷却
して成形加工性に優れた材料とすることを特徴とするA
l−Zn−Mg系合金押出材の製造方法。
2. 4.00 to 6.50 wt% of Zn, Mg
0.50 to 1.50 wt%, Cu 0.10 to 0.50 w
t%, Zr 0.10-0.50 wt%, Mn0.05-
After subjecting an Al alloy ingot containing 0.20 wt% and Cr 0.05 to 0.20 wt%, the balance being Al and unavoidable impurities, to homogenization heat treatment at a temperature of 420 to 520 ° C. for 2 to 24 hours, Extrusion is performed at a temperature of 430 to 520 ° C., then annealed at a temperature of 300 to 420 ° C., and cooled to room temperature at a cooling rate of 30 ° C./hr or less. A characterized in that
A method for producing an extruded l-Zn-Mg alloy.
【請求項3】 Zn4.00〜6.50wt%、Mg
0.50〜1.50wt%、Cu0.10〜0.50w
t%、Zr0.10〜0.50wt%、Mn0.05〜
0.20wt%、Cr0.05〜0.20wt%を含
み、残部がAlと不可避的不純物とからなるAl合金鋳
塊を、420〜520℃の温度で2〜24時間の均質化
熱処理をした後、430〜520℃の温度で押出加工を
行い、次にこれを300〜420℃の温度で焼鈍処理を
行い、これを30℃/hr以下の冷却速度で室温まで冷却
した後、これに成形加工を施こす、続いてこれを400
〜500℃の温度で溶体化処理を行い、これを50℃/
hr以上の冷却速度で室温まで冷却した後、90〜110
℃の温度で2〜12時間の一段目の時効処理、さらに1
20〜180℃の温度で5〜24時間二段目の時効処理
を施して、材料の伸び/引張強さの比が0.030以上
で、かつ断面組織がすべて繊維状組織か又は再結晶組織
が表層部深さ300μm以下として靱性と耐応力腐食割
れ性に優れた材料とすることを特徴とするAl−Zn−
Mg系合金押出材の製造方法。
3. 4.00 to 6.50 wt% of Zn, Mg
0.50 to 1.50 wt%, Cu 0.10 to 0.50 w
t%, Zr 0.10-0.50 wt%, Mn0.05-
After subjecting an Al alloy ingot containing 0.20 wt% and Cr 0.05 to 0.20 wt%, the balance being Al and unavoidable impurities, to homogenization heat treatment at a temperature of 420 to 520 ° C. for 2 to 24 hours, Extrusion is performed at a temperature of 430 to 520 ° C., then annealed at a temperature of 300 to 420 ° C., and cooled to room temperature at a cooling rate of 30 ° C./hr or less. And then apply this to 400
A solution treatment is performed at a temperature of up to 500 ° C.
After cooling to room temperature at a cooling rate of hr or more, 90-110
First stage aging treatment for 2 to 12 hours at a temperature of ° C.
A second-stage aging treatment is performed at a temperature of 20 to 180 ° C for 5 to 24 hours, and the ratio of elongation / tensile strength of the material is 0.030 or more, and the cross-sectional structure is all a fibrous structure or a recrystallized structure. Characterized by having a surface layer having a depth of 300 μm or less and having excellent toughness and stress corrosion cracking resistance.
A method for producing an extruded Mg-based alloy.
JP18709796A 1996-07-17 1996-07-17 Al-Zn-Mg alloy extruded material and method for producing the same Expired - Fee Related JP3681822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18709796A JP3681822B2 (en) 1996-07-17 1996-07-17 Al-Zn-Mg alloy extruded material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18709796A JP3681822B2 (en) 1996-07-17 1996-07-17 Al-Zn-Mg alloy extruded material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1030147A true JPH1030147A (en) 1998-02-03
JP3681822B2 JP3681822B2 (en) 2005-08-10

Family

ID=16200060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18709796A Expired - Fee Related JP3681822B2 (en) 1996-07-17 1996-07-17 Al-Zn-Mg alloy extruded material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3681822B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316303A (en) * 2005-05-11 2006-11-24 Furukawa Sky Kk Aluminum alloy extruded material for high temperature forming, and high temperature formed product
KR100793697B1 (en) 2006-02-24 2008-01-10 보원경금속(주) Aluminum Alloy with Workability of Bending and Manufacturing Method Thereof and Headrest Frame for Vehicle Producted Thereby
KR101118740B1 (en) 2011-08-31 2012-03-12 신양금속공업 주식회사 With a direct hot extrusion process 7000 series aluminum alloy extrusion shape method of manufacturing
CN103255326A (en) * 2012-02-16 2013-08-21 株式会社神户制钢所 Aluminum alloy extruded material for electro-magnetic forming
JP2014142175A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
JP5588170B2 (en) * 2007-03-26 2014-09-10 アイシン軽金属株式会社 7000 series aluminum alloy extruded material and method for producing the same
JP2015137377A (en) * 2014-01-21 2015-07-30 株式会社Uacj押出加工 Under bracket for motorcycle and tricycle and method of producing the same
WO2015111437A1 (en) * 2014-01-21 2015-07-30 株式会社Uacj押出加工 Underbracket for two-wheeled vehicle and three-wheeled vehicle, and production method for same
CN107849648A (en) * 2015-10-06 2018-03-27 昭和电工株式会社 Aluminium alloy extruded product
CN115386817A (en) * 2022-08-01 2022-11-25 中车工业研究院有限公司 Method for improving comprehensive performance of 7B05 alloy
WO2023276504A1 (en) 2021-06-28 2023-01-05 株式会社神戸製鋼所 Aluminum alloy extruded material and method for manufacturing same
CN115948666A (en) * 2022-09-30 2023-04-11 佛山市三水凤铝铝业有限公司 Preparation method of Al-Zn-Mg series aluminum alloy containing Zr
CN116377297A (en) * 2023-04-13 2023-07-04 肇庆市大正铝业有限公司 Hard aluminum alloy and preparation method thereof
CN117987705A (en) * 2024-01-12 2024-05-07 广东金铝轻合金股份有限公司 Aluminum alloy material, preparation method thereof and unmanned aerial vehicle bracket tube

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316303A (en) * 2005-05-11 2006-11-24 Furukawa Sky Kk Aluminum alloy extruded material for high temperature forming, and high temperature formed product
KR100793697B1 (en) 2006-02-24 2008-01-10 보원경금속(주) Aluminum Alloy with Workability of Bending and Manufacturing Method Thereof and Headrest Frame for Vehicle Producted Thereby
JP5588170B2 (en) * 2007-03-26 2014-09-10 アイシン軽金属株式会社 7000 series aluminum alloy extruded material and method for producing the same
KR101118740B1 (en) 2011-08-31 2012-03-12 신양금속공업 주식회사 With a direct hot extrusion process 7000 series aluminum alloy extrusion shape method of manufacturing
CN103255326A (en) * 2012-02-16 2013-08-21 株式会社神户制钢所 Aluminum alloy extruded material for electro-magnetic forming
CN103255326B (en) * 2012-02-16 2015-07-29 株式会社神户制钢所 Electromagnetic forming aluminium alloy hollow squeeze wood
US9206496B2 (en) 2012-02-16 2015-12-08 Kobe Steel, Ltd. Aluminum alloy extruded material for electro-magnetic forming
JP2014142175A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
JP2015137376A (en) * 2014-01-21 2015-07-30 株式会社Uacj押出加工 Under bracket for motorcycle and tricycle and method of producing the same
WO2015111438A1 (en) * 2014-01-21 2015-07-30 株式会社Uacj押出加工 Underbracket for two-wheeled vehicle and three-wheeled vehicle, and production method for same
WO2015111437A1 (en) * 2014-01-21 2015-07-30 株式会社Uacj押出加工 Underbracket for two-wheeled vehicle and three-wheeled vehicle, and production method for same
JP2015137377A (en) * 2014-01-21 2015-07-30 株式会社Uacj押出加工 Under bracket for motorcycle and tricycle and method of producing the same
TWI629200B (en) * 2014-01-21 2018-07-11 日商Uacj押出加工股份有限公司 Lower bracket for two-wheeled vehicle and tricycle and manufacturing method thereof
CN107849648A (en) * 2015-10-06 2018-03-27 昭和电工株式会社 Aluminium alloy extruded product
WO2023276504A1 (en) 2021-06-28 2023-01-05 株式会社神戸製鋼所 Aluminum alloy extruded material and method for manufacturing same
KR20240022570A (en) 2021-06-28 2024-02-20 가부시키가이샤 고베 세이코쇼 Aluminum alloy extrusion material and manufacturing method thereof
CN115386817A (en) * 2022-08-01 2022-11-25 中车工业研究院有限公司 Method for improving comprehensive performance of 7B05 alloy
CN115948666A (en) * 2022-09-30 2023-04-11 佛山市三水凤铝铝业有限公司 Preparation method of Al-Zn-Mg series aluminum alloy containing Zr
CN116377297A (en) * 2023-04-13 2023-07-04 肇庆市大正铝业有限公司 Hard aluminum alloy and preparation method thereof
CN116377297B (en) * 2023-04-13 2023-11-14 肇庆市大正铝业有限公司 Hard aluminum alloy and preparation method thereof
CN117987705A (en) * 2024-01-12 2024-05-07 广东金铝轻合金股份有限公司 Aluminum alloy material, preparation method thereof and unmanned aerial vehicle bracket tube

Also Published As

Publication number Publication date
JP3681822B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
US20110017366A1 (en) 7000-series aluminum alloy extruded product and method of producing the same
WO1995022634A1 (en) Method of manufacturing aluminum alloy plate for molding
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH1030147A (en) Aluminum-zinc-magnesium alloy extruded material and its production
US5123973A (en) Aluminum alloy extrusion and method of producing
JP2016222958A (en) High strength aluminum alloy sheet
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JPH08225874A (en) Aluminum alloy extruded material for automobile structural member and its production
JPH10152762A (en) Production of hard aluminum alloy sheet excellent in di workability
JP3540316B2 (en) Improvement of mechanical properties of aluminum-lithium alloy
JP3710249B2 (en) Aluminum extruded profile and method for producing extruded profile and structural member
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JPS61163233A (en) Non-heat treatment type free-cutting aluminum alloy
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP2663078B2 (en) Aluminum alloy for T6 treatment with stable artificial aging
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH06212338A (en) Al-zn-mg alloy hollow shape excellent in strength and formability and its production
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
EP2006404A1 (en) 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
JP2678404B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JPH0247234A (en) High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture
JPH0696756B2 (en) Of heat-treating Al-Cu based aluminum alloy ingot for processing and method of manufacturing extruded material using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees