JPH0247234A - High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture - Google Patents
High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufactureInfo
- Publication number
- JPH0247234A JPH0247234A JP19717488A JP19717488A JPH0247234A JP H0247234 A JPH0247234 A JP H0247234A JP 19717488 A JP19717488 A JP 19717488A JP 19717488 A JP19717488 A JP 19717488A JP H0247234 A JPH0247234 A JP H0247234A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- aluminum alloy
- subjected
- room temperature
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000011282 treatment Methods 0.000 claims abstract description 34
- 238000005096 rolling process Methods 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 15
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 238000005482 strain hardening Methods 0.000 claims abstract description 4
- 238000000265 homogenisation Methods 0.000 claims description 16
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims 3
- 238000003483 aging Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- 229910017818 Cu—Mg Inorganic materials 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000009864 tensile test Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 229910017518 Cu Zn Inorganic materials 0.000 description 4
- 229910017752 Cu-Zn Inorganic materials 0.000 description 4
- 229910017943 Cu—Zn Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 230000018199 S phase Effects 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、成形性に優れたAl−Mg−Cu−Zn系
合金とその製造方法に関するもので、特に室温時効硬化
を抑制し、かつ、焼付は塗装後の強度低下を防止したア
ルミニウム合金とその製造方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an Al-Mg-Cu-Zn alloy with excellent formability and a method for producing the same, and particularly to an Al-Mg-Cu-Zn alloy that suppresses room temperature age hardening and Baking relates to an aluminum alloy that prevents strength loss after painting and its manufacturing method.
[従来の技術]
自動車車体材料は、従来軟鋼板が多用されているが、車
体の軽量化のためにアルミニウム合金板が使用されるよ
うになった。このアルミニウム合金としては、5182
、X5085等の非熱処理型合金や、AU2G、203
6.2002.6009.6010等の熱処理型の合金
が実用化されている。これらの合金の強度は、従来の自
動車用に使用されている冷延鋼板とほぼ同程度であるが
、プレス成形性については劣るという欠点があり、これ
までこの欠点を解消するため種々の提案がなされている
。強度と成形性を兼備したA I −Mg−Cu−Zn
系合金およびこれにMn、Cr、Zr、およびVを含有
させた(特公昭5B−31858号、特公昭5B−3i
880号)、強度と成形性および曲げ加工性を改善した
ものとして、Al −Mg−Cu−Zn系にBeを含有
させた合金(特公昭80−50854号)さらに、上記
性能の外にストレッチャーストレインマークの発生を防
止したものとして(特願昭6l−IH519号)が提案
されている。[Prior Art] Conventionally, mild steel plates have been widely used as automobile body materials, but aluminum alloy plates have come to be used to reduce the weight of car bodies. This aluminum alloy is 5182
, X5085, etc., AU2G, 203
Heat-treated alloys such as 6.2002.6009.6010 have been put into practical use. The strength of these alloys is approximately the same as that of conventional cold-rolled steel sheets used for automobiles, but they have the disadvantage of poor press formability, and various proposals have been made to overcome this disadvantage. being done. AI-Mg-Cu-Zn with both strength and formability
system alloy and its containing Mn, Cr, Zr, and V (Special Publication No. 5B-31858, Japanese Patent Publication No. 5B-3i)
No. 880), an alloy containing Be in the Al-Mg-Cu-Zn system (Japanese Patent Publication No. 80-50854) with improved strength, formability, and bending workability. A method for preventing the occurrence of strain marks (Japanese Patent Application No. 61-IH519) has been proposed.
[発明が解決しようとする課題]
しかし、これらは成形性が優れているというものの、い
ずれもZnSCuを含有させて時効硬化によって強度を
高めたものであり、プレス成形加工前には室温時効硬化
によって出荷時よりも強度が高くなっており、成形性は
相対的に悪くなっていることは否定きない。近年、プレ
ス成形の条件は、かなり苛酷なものとなっており、従来
に増してプレス成形性の良好な板材が要求されるように
なった。[Problems to be Solved by the Invention] However, although these materials are said to have excellent formability, they all contain ZnSCu to increase their strength through age hardening, and before press forming, they must be age hardened at room temperature. It is undeniable that the strength is higher than when shipped, and the moldability is relatively poor. In recent years, press forming conditions have become quite severe, and plate materials with better press formability are required more than ever before.
そこで本発明の目的は、プレス成形前には強度が低く、
プレス成形後の塗装焼付けによっても強度が低下しない
ような材料を提供するものである。Therefore, the purpose of the present invention is to have low strength before press forming.
The purpose of the present invention is to provide a material whose strength does not decrease even when the paint is baked after press forming.
[課題を解決するための手段]
上記目的を達成するためのこの発明の構成を要約すると
、重量基準でMg:4〜6%、Cu:0.2〜1.2%
、 Mg+5Cu:く10%、Zn : 0.04〜
0.50%、Ti:0.01〜0.05%、
Be:0.0001〜0.0100%を含有し、残部は
Alと不可避不純物とからなる、室温時効硬化性を抑制
した高強度成形用アルミニウム合金、または、この合金
の成分しとて更に、M n % Cr SZ r s
Vのうち、いずれか1種以上を各0602〜0.20%
含有する上記アルミニウム合金、ならびに、上記何れか
の金属組成を有するアルミニウム合金を400〜550
℃で2〜48時間の一段またはた多段の均質化処理を行
った後、熱間加工前に溶体化処理を行い、または行わず
、440℃以下の析出温度域で熱間加工を行い、その後
、所定の板厚まで冷間加工し、480〜550℃に急冷
した後、ローラー矯正またはスキンパス圧延等の弱加工
を行うストレッチャーストレインマークの発生の防止と
、室温時効硬化性を抑制した高強度成形用アルミニウム
合金の製造方法である。[Means for Solving the Problems] To summarize the structure of the present invention for achieving the above object, Mg: 4 to 6%, Cu: 0.2 to 1.2% on a weight basis.
, Mg+5Cu: 10%, Zn: 0.04~
0.50%, Ti: 0.01-0.05%, Be: 0.0001-0.0100%, and the remainder consists of Al and unavoidable impurities. High-strength molding with suppressed room temperature age hardenability. Aluminum alloy for use, or the components of this alloy further include M n % Cr SZ r s
0602 to 0.20% of any one or more of V
The above aluminum alloy containing the aluminum alloy and the aluminum alloy having any of the above metal compositions are 400 to 550%
After single-stage or multi-stage homogenization treatment at 2 to 48 hours at ℃, hot working is performed in a precipitation temperature range of 440 ℃ or less with or without solution treatment before hot working, and then , after cold working to a predetermined thickness and quenching to 480-550°C, gentle processing such as roller straightening or skin pass rolling is performed to prevent the occurrence of stretcher strain marks and to achieve high strength with suppressed room temperature age hardenability. This is a method for producing an aluminum alloy for forming.
つぎにこれらの合金成分を限定した理由を述べる。Next, the reason for limiting these alloy components will be described.
Mg;Mgは主として強度と延性を高めるために不可欠
な元素であり、4〜6%の範囲とする。4%未満では強
度と成形性が十分でなく、6%を越えると熱間加工性が
悪くなり、圧延割れなどを生じ易くなる。Mg: Mg is an essential element mainly for increasing strength and ductility, and is in the range of 4 to 6%. If it is less than 4%, strength and formability are insufficient, and if it exceeds 6%, hot workability deteriorates and rolling cracks are likely to occur.
Cu;Cuは時硬性を与え、強度を増加させ、特に塗装
焼付は後の強度の向上とストレッチャーストレインマー
クの発生を抑制させる元素であり、0.2〜1.2%の
範囲とする。0,2%未満ではその効果が少なく、1.
2%を越えると強度は著しく高くなるが、熱間加工性お
よび成形性に問題が生じ、また、素材の耐食性を低下さ
せる原因となる。Cu: Cu is an element that imparts hardness and increases strength, and particularly improves strength after paint baking and suppresses the occurrence of stretcher strain marks, and should be in the range of 0.2 to 1.2%. If it is less than 0.2%, the effect is small; 1.
If it exceeds 2%, the strength will be significantly increased, but problems will arise in hot workability and formability, and it will also cause a decrease in the corrosion resistance of the material.
M g + 5 Cu ; M g + 5 Cuが1
0%以上となると、熱間加工割れが発生しやすくなる。M g + 5 Cu; M g + 5 Cu is 1
If it exceeds 0%, hot working cracks are likely to occur.
Zn;Znは熱間加工性を改良し、強度向上とストレッ
チャーストレインマークの発生を防止する元素であり、
これを0.04〜0.50%の範囲とする。このように
微量含有させることにより、室温時効硬化を抑制し、約
半年後においても時効硬化が起らない範囲とした。0.
04%未満では、Cuを0.2%含有したとしても焼付
は塗装後の強度低下が起り、0.5%を越えると室温時
効硬化がし品くなり、成形性に問題が生じる。Zn: Zn is an element that improves hot workability, increases strength and prevents stretcher strain marks.
This is set to be in the range of 0.04 to 0.50%. By containing such a small amount, room temperature age hardening is suppressed, and the range is set such that age hardening does not occur even after about half a year. 0.
If the Cu content is less than 0.04%, baking will cause a decrease in strength after coating, and if it exceeds 0.5%, the product will age harden at room temperature, causing problems in formability.
Ti ;Tiは鋳塊の結晶粒の微細化に効果があり、0
.01〜0.05%とする。Ti; Ti is effective in refining the crystal grains of the ingot, and 0
.. 01 to 0.05%.
0.01%未満ではその効果が少なく、0.05%を越
えると巨大な晶出物を生ずるので好ましくない。If it is less than 0.01%, the effect will be small, and if it exceeds 0.05%, huge crystallized substances will be produced, which is not preferable.
Be;Beは溶解鋳造時の溶湯の酸化防止に効果があり
、特に、Mg含有量が高くなるほど必要不可欠である。Be: Be is effective in preventing oxidation of the molten metal during melting and casting, and is particularly essential as the Mg content increases.
0.0001%未満ではその効果が少なく、0.010
0%を越えるとその毒性が問題になる。If it is less than 0.0001%, the effect is small, and 0.010%
If it exceeds 0%, its toxicity becomes a problem.
Mn、Cr、Zr、V;
Mn、Cr、Z r、Vは必要により含有させるもので
、再結晶粒の微細化と強度向上に有効であり、0.02
〜0.2%の範囲とする。しかし、いずれも0,02%
未満ではこれらの効果がなく、062%を越えると再結
晶が微細化しすぎてストレッチャーストレインマークが
発生し品くなる。また、巨大な金属間化合物を生じる欠
点がある。Mn, Cr, Zr, V; Mn, Cr, Zr, and V are included as necessary, and are effective for refining recrystallized grains and improving strength, and are 0.02
-0.2% range. However, both are 0.02%
If it is less than 0.062%, these effects will not be obtained, and if it exceeds 0.62%, recrystallization will become too fine and stretcher strain marks will occur, resulting in poor quality. It also has the disadvantage of producing large intermetallic compounds.
つぎにこれらの製造条件を限定した理由について述べる
。Next, the reason for limiting these manufacturing conditions will be described.
(1)鋳塊の均質化処理;
鋳塊の均質化処理は、鋳造時に偏析しやす1i’Mg1
Cu、Znを均質にする効果と、再結晶微細化のためM
n、Cr5Zr、V等の遷移元素を十分に析出させる効
果がある。このために、400〜500℃で2〜48時
間加熱保持する。これらの効果を十分発揮させるために
は、多段の熱処理を行うこともある。加熱温度が、40
0℃未満では鋳塊の均質化の効果が少なく、550℃を
越えると鋳塊の表面がが酸化され易く、また、偏析相の
一部が共晶融解する可能性がある。また、2時間以下で
は鋳塊の均質化の効果が少なく、48時間以上では均質
化の効果が飽和し、工業上意味がない。(1) Homogenization treatment of the ingot; Homogenization treatment of the ingot can easily segregate during casting.
M for the effect of making Cu and Zn homogeneous and for finer recrystallization
This has the effect of sufficiently precipitating transition elements such as n, Cr5Zr, and V. For this purpose, it is heated and held at 400-500°C for 2-48 hours. In order to fully exhibit these effects, multi-stage heat treatment may be performed. The heating temperature is 40
If it is below 0°C, the effect of homogenizing the ingot is small, and if it exceeds 550°C, the surface of the ingot is likely to be oxidized, and there is a possibility that a part of the segregated phase may undergo eutectic melting. In addition, if it is less than 2 hours, the effect of homogenizing the ingot is small, and if it is more than 48 hours, the homogenizing effect is saturated and is industrially meaningless.
(2)溶体化処理:
溶体化処理は、均質化処理後熱間圧延前の加熱時に行う
もので、後述する理由で行わなくともよい。鋳塊の均質
化処理と熱間圧延前の加熱は通常別々に行われる。均質
化処理後冷却時にA I −M g −Cu系化合物(
S相)が析出することが多く、これらの析出物は、通常
粒界に析出し易く、圧延時に熱間割れの原因となり易い
。また、析出物が粗大であると、最終の溶体化処理で溶
体化しに<<、強度が低下する原因となる。このため均
質化処理後冷却中に析出した化合物を再固溶させる目的
で、450℃以上の溶体化処理温度にまで加熱するのが
好ましい。450℃未満ではこの効果が得られず、また
、550℃を越えると共晶融解が起るので好ましくない
。また、溶体化処理を行わなくとも圧延温度が低ければ
、圧延することが可能である。但し、この場合には、S
相が一部析出しているため最終溶体化処理での保持時間
を長くすることが好ましい。(2) Solution treatment: Solution treatment is performed during heating after homogenization treatment and before hot rolling, and may not be performed for the reasons described below. Homogenization of the ingot and heating before hot rolling are usually performed separately. A I -M g -Cu-based compound (
S phase) is often precipitated, and these precipitates usually tend to precipitate at grain boundaries and easily cause hot cracking during rolling. Moreover, if the precipitates are coarse, they become a cause of a decrease in strength during solution treatment in the final solution treatment. For this reason, it is preferable to heat to a solution treatment temperature of 450° C. or higher in order to re-dissolve the compound precipitated during cooling after the homogenization treatment. If it is less than 450°C, this effect cannot be obtained, and if it exceeds 550°C, eutectic melting will occur, which is not preferable. Further, it is possible to perform rolling without performing solution treatment as long as the rolling temperature is low. However, in this case, S
Since some of the phases have precipitated, it is preferable to lengthen the holding time in the final solution treatment.
(3)圧延温度;
前記溶体化処理後、440℃以下まで冷却し、S相の析
出する温度範囲で熱間加工を開始する。440℃を越え
た温度で圧延すると再結晶し易く、圧延速度が速くなる
と粒界析出をともない熱間割れの原因となり易い。この
ため熱間加工温度を440℃以下とする必要がある。(3) Rolling temperature: After the solution treatment, it is cooled to 440° C. or lower, and hot working is started in the temperature range where the S phase precipitates. If rolled at a temperature exceeding 440° C., recrystallization tends to occur, and if the rolling speed is increased, grain boundary precipitation is likely to occur, causing hot cracking. For this reason, it is necessary to keep the hot working temperature to 440° C. or lower.
200℃以下となると変型抵抗が高くなるので好ましく
ない。If the temperature is below 200°C, the deformation resistance becomes high, which is not preferable.
(4)最終調質;
最終調質は、工業的には連続焼鈍加熱炉を用いて溶体化
焼入処理をする。この場合、般に高温短時間であること
が多い。このため480〜550℃の温度にまで加熱し
て短時間熱処理して焼入する。加熱温度が、480℃未
満では再結晶しに< < 、550℃を越えると共晶融
解を生じ易いため、好ましくない。(4) Final thermal refining; Industrially, the final thermal refining is a solution quenching treatment using a continuous annealing heating furnace. In this case, the temperature is generally high and short. For this purpose, the material is heated to a temperature of 480 to 550 DEG C. for a short period of time to be quenched. If the heating temperature is less than 480°C, recrystallization may not occur, and if it exceeds 550°C, eutectic melting tends to occur, which is not preferable.
(5)冷間弱加工;
焼入れ後は、ストレッチャーストレインマークを防!ト
するために、ローラーレベリングかスキンパス圧延の弱
加工を行う。(5) Mild cold processing; Prevents stretcher strain marks after quenching! To achieve this, gentle processing such as roller leveling or skin pass rolling is performed.
[実施例] 以下、実施例によって本発明を説明する。[Example] The present invention will be explained below with reference to Examples.
実施例1
下記第1表に示す成分の合金を通常の溶製法で造塊した
。均質化処理は420℃で2時間保持と500℃8時間
保持した後、炉冷した。なお、Zrを添加したNo、5
.8,9,10,11゜21は、さらに550℃で24
時間の均質化処理を追加した。熱間加工前に500℃で
1時間の再加熱した後、420℃まで空冷して、溶体処
理した後熱間加工を開始した。その後冷間圧延工程を経
て厚さIIIIIRの板とした。最終溶体化処理は、ソ
ルトバス中で540℃で30秒間保持後、ファン冷却し
た。その後1%のスキンパンを付加して引張試験を行い
、0.2%耐力の測定と、圧延方向に引張試験した途中
の伸びが326となった時点の表面状態(肌荒れ、スト
レッチャーストレインマークの有無)を調べた。また、
3ケ月間室温で放置した後の室温時効硬化性、および塗
装焼付けに相当する170℃で30分間の加熱をした時
の時効硬化性を、引張試験の0.2%耐力の変化で調べ
た。室温時効硬化性と塗装焼付は硬化性とは、スキンパ
ス圧延した後の耐力値を基準にその増減を+、−で示し
、これらの結果を第1表に示す。熱間圧延で割れが発生
したものは、その後の試験を中断した。Example 1 An alloy having the components shown in Table 1 below was formed into an ingot by a normal melting method. The homogenization treatment was performed by holding at 420°C for 2 hours and at 500°C for 8 hours, followed by furnace cooling. In addition, No. 5 to which Zr was added
.. 8, 9, 10, 11°21 further becomes 24 at 550°C.
Added time homogenization process. Before hot working, it was reheated at 500°C for 1 hour, air cooled to 420°C, and after solution treatment, hot working was started. Thereafter, a plate having a thickness of IIIR was obtained through a cold rolling process. In the final solution treatment, the temperature was maintained at 540° C. for 30 seconds in a salt bath, followed by cooling with a fan. After that, a 1% skin pan was added and a tensile test was performed, and the 0.2% yield strength was measured and the surface condition (rough skin, stretcher strain marks) at the point when the elongation reached 326 during the tensile test in the rolling direction. The presence or absence) was investigated. Also,
The room temperature age hardenability after being left at room temperature for 3 months, and the age hardenability when heated at 170°C for 30 minutes, which corresponds to painting baking, were investigated by changes in 0.2% proof stress in a tensile test. Room temperature age hardenability and paint baking hardenability are expressed as + and - decreases based on the yield strength after skin pass rolling, and the results are shown in Table 1. If a crack occurred during hot rolling, further testing was discontinued.
評価として、熱間加工が可能で、引張試験した途中の伸
びが3%となった時点の表面に肌荒れや、ストレッチャ
ーストレインマークの発生がなく、スキンパス後3ケ月
後の耐力変化が0.5kg/mm2以下であり、スキン
パス後170℃30分間の加熱後の耐力の増加が1.0
k g / m m2以上であるものを、本発明とした
。As an evaluation, hot processing is possible, there is no surface roughness or stretcher strain marks when the elongation reaches 3% during the tensile test, and the yield strength change is 0.5 kg 3 months after skin pass. /mm2 or less, and the increase in yield strength after heating at 170°C for 30 minutes after skin pass is 1.0
The present invention includes those having a weight ratio of kg/m m2 or more.
Nα14は、Znが高く、スキンパス後3ケ月後の耐力
の変化が1.6kg/mm’と高くなっている。Nα14 has a high Zn content, and the change in yield strength 3 months after skin pass is as high as 1.6 kg/mm'.
No、 15は、Cu; Znが添加されていないの
で、引張試験した途中の伸びが3%となった時点の表面
に結晶粒粗大化による肌荒れが発生し、表面状況が悪い
。In No. 15, Cu; Zn was not added, so when the elongation reached 3% during the tensile test, roughness occurred on the surface due to coarsening of crystal grains, and the surface condition was poor.
No、16は、CuおよびM g + 5 Cuが高く
、No、 17は、MgおよびM g + 5 Cuが
高く、No、 18は、Mg、CuおよびM g +
5 Cuが高く、いずれも熱間圧延割れか発生し、試験
を中断した。No. 16 is high in Cu and M g + 5 Cu, No. 17 is high in Mg and M g + 5 Cu, and No. 18 is high in Mg, Cu and M g +
5 Cu was high, hot rolling cracking occurred in all cases, and the test was discontinued.
No、 19はMnが高(、No、 20はCrが高く
、いずれも引張試験した途中の伸びが396となった時
点の表面に、ストレッチャーストレインマークによる肌
荒れが発生し、表面状況が悪い。No. 19 has a high Mn content (No. 20 has a high Cr content), and in both cases, roughness due to stretcher strain marks occurred on the surface when the elongation reached 396 during the tensile test, and the surface condition was poor.
N(L21はZrが高(、No、22は■が高く、いず
れも均質化処理により晶出物が粗大化して圧延が不可能
となり、試験を中断した。N (L21 had high Zr (, No. 22 had high ■), and in both cases, the homogenization treatment coarsened the crystallized substances, making rolling impossible, and the test was discontinued.
No、 23は、Cuが低く、スキンパス後【70°C
で30分間の加熱で耐力の増加が少ない。No. 23 has low Cu and after skin pass [70°C
There is little increase in yield strength after heating for 30 minutes.
No、 24は、Mg+5CLJ、、が10.596と
高く、圧延割れを生じる。No. 24 has a high Mg+5CLJ of 10.596 and causes rolling cracks.
Nα25は、Tiが添加されていないので、鋳造組成が
緻密化されず圧延割れか生じる。Since Ti is not added to Nα25, the casting composition is not densified and rolling cracks occur.
No、 26は、TiおよびBeが添加されないので、
鋳塊の鋳肌が悪く、かつ、鋳造組織が緻密化されず圧延
割れが生じる。No. 26 has no Ti and Be added, so
The casting surface of the ingot is poor, and the casting structure is not densified, causing rolling cracks.
実施例2
第1表に示す材料の一部を用い、均質化処理、溶体化処
理、熱間圧延、冷間圧延、最終溶体化処理および弱加工
の条件を種々変えた製造を行い、第1表と同様な試験を
行った結果を第2表に示した。Example 2 Using some of the materials shown in Table 1, manufacturing was carried out with various conditions for homogenization treatment, solution treatment, hot rolling, cold rolling, final solution treatment, and weak working. Table 2 shows the results of tests similar to those shown in the table.
Nα31からNα38までは、本発明の範囲であり、熱
間加1−が可能で、引張試験をして途中の伸びが3%と
なった時点の表面に肌荒れや、ストレッチャーストレイ
ンマークの発生がなく、スキンパス後3ケ月の耐力の変
化が 0.5k g / m m ’以下であり、スキ
ンパス後170℃30分間加熱後の耐力の増加が1.0
kg/mm’以上であり、評価範囲内である。Nα31 to Nα38 are within the scope of the present invention, and hot heating is possible, and when the elongation reaches 3% in the tensile test, rough skin and stretcher strain marks will not occur on the surface. 3 months after skin pass, the change in yield strength is less than 0.5 kg/mm', and the increase in yield strength after heating at 170℃ for 30 minutes after skin pass is 1.0.
kg/mm' or more, which is within the evaluation range.
Nα39は、均質化処理温度が低く、耳割れ発生のため
試験を中断した。For Nα39, the test was discontinued due to the low homogenization temperature and the occurrence of edge cracks.
Nα40は、均質化処理温度が高く、均質化処理後共晶
融解がみられた。For Nα40, the homogenization temperature was high, and eutectic melting was observed after the homogenization treatment.
Nα41は、均質化処理時間が短く、耳割れ発生のため
試験を中断した。For Nα41, the homogenization treatment time was short and the test was discontinued due to the occurrence of edge cracking.
No、42は、最終溶体化処理温度が低く、ストレッチ
ャーストレインマークが発生した。In No. 42, the final solution treatment temperature was low and stretcher strain marks occurred.
Nα43は、最終溶体化処理温度が高く、一部共品融解
がみられた。For Nα43, the final solution treatment temperature was high, and some melting was observed.
Nα44は、最終溶体化処理後の弱加工を行わなかった
ため、ストレッチャーストレインマークが発生した。Since Nα44 was not subjected to mild processing after the final solution treatment, stretcher strain marks were generated.
[発明の効果]
以上説明したように、この発明は、Al−M g −C
u系合金にZnを微量含有させ、さらに低温圧延を行う
ことにより、成形性に優れ、室温時効効果を抑制し、か
つ、焼付は塗装後の強度低下を防止したアルミニウム合
金とその製造方法を提1共することができた。[Effect of the invention] As explained above, the present invention provides Al-M g -C
We present an aluminum alloy that has excellent formability, suppresses the aging effect at room temperature, and prevents the strength from decreasing after painting by incorporating a small amount of Zn into a u-based alloy and further performing low-temperature rolling, and a method for producing the same. I was able to share one with you.
特許出願人 住友軽金属工業株式会社
代理人 弁理士 小 松 秀 岳代理人 弁理士
旭 宏
代理人 弁理士 加 々 美 紀 雄Patent Applicant Sumitomo Light Metal Industries Co., Ltd. Agent Patent Attorney Hidetake Komatsu Agent Patent Attorney Hiroshi Asahi Agent Patent Attorney Mikio Kaga
Claims (4)
徴とする室温時効硬化性を抑制した高強度成形用アルミ
ニウム合金。(1) In weight%, Mg: 4-6% Cu: 0.2-1.2% Mg+5Cu: <10% Zn: 0.04-0.50% Ti: 0.01-0.05% Be: A high-strength forming aluminum alloy with suppressed room temperature age hardenability, characterized by containing 0.0001 to 0.0100% and the remainder consisting of Al and unavoidable impurities.
不純物とからなること特徴とする室温時効硬化性を抑制
した高強度成形用アルミニウム合金。(2) In weight%, Mg: 4-6% Cu: 0.2-1.2% Mg+5Cu: <10% Zn: 0.04-0.50% Ti: 0.01-0.05% Be: 0.0001 to 0.0100%, and further includes Mn: 0.02 to 0.20% Cr: 0.02 to 0.20% Zr: 0.02 to 0.20% V: 0.02 to 0 A high-strength forming aluminum alloy with suppressed room-temperature age hardenability, characterized by containing at least one of the above .20% and the remainder consisting of Al and unavoidable impurities.
〜48時間の一段または多段の均質化処理を行った後、
熱間加工前に溶体化処理を行ない、または行なわず、4
40℃以下の析出温度域で熱間加工を行ない、その後、
所定の板厚まで冷間加工し、480〜550℃に急速加
熱し、最終溶体化処理を行ない、急冷した後、ローラー
矯正またはスキンパス圧延等の弱加工を行なうことを特
徴とするストレッチャーストレインマークの発生の防止
と、室温時効硬化性を抑制した高強度成形用アルミニウ
ム合金の製造方法。(3) In weight%, Mg: 4-6% Cu: 0.2-1.2% Mg+5Cu: <10% Zn: 0.04-0.50% Ti: 0.01-0.05% Be: An aluminum alloy containing 0.0001 to 0.0100% was heated at 400 to 550°C for 2
After single or multi-stage homogenization treatment for ~48 hours,
With or without solution treatment before hot working, 4
Hot working is performed in a precipitation temperature range of 40°C or less, and then
Stretcher strain marks characterized by cold working to a predetermined thickness, rapid heating to 480 to 550°C, final solution treatment, rapid cooling, and then mild processing such as roller straightening or skin pass rolling. A method for producing a high-strength forming aluminum alloy that prevents the occurrence of and suppresses room temperature age hardenability.
不純物とからなるアメミニウム合金を、400〜550
℃で2〜48時間の一段または多段の均質化処理を行っ
た後、熱間加工前に溶体化処理を行ない、または行なわ
ず、440℃以下の析出温度域で熱間加工を行ない、そ
の後、所定の板厚まで冷間加工し、480〜550℃に
急速加熱し、最終溶体化処理を行ない、急冷した後、ロ
ーラー矯正またはスキンパス圧延等の弱加工を行なうこ
とを特徴とするストレッチャーストレインマークの発生
の防止と、室温時効硬化性を抑制した高強度成形用アル
ミニウム合金の製造方法。(4) In weight%, Mg: 4-6% Cu: 0.2-1.2% Mg+5Cu: <10% Zn: 0.04-0.50% Ti: 0.01-0.05% Be: 0.0001 to 0.0100%, and further includes Mn: 0.02 to 0.20% Cr: 0.02 to 0.20% Zr: 0.02 to 0.20% V: 0.02 to 0 Ameminium alloy containing at least one of .20% and the remainder consisting of Al and unavoidable impurities,
After single-stage or multi-stage homogenization treatment at 2 to 48 hours at °C, hot working is performed in a precipitation temperature range of 440 °C or less, with or without solution treatment before hot working, and then, Stretcher strain marks characterized by cold working to a predetermined thickness, rapid heating to 480 to 550°C, final solution treatment, rapid cooling, and then mild processing such as roller straightening or skin pass rolling. A method for producing a high-strength forming aluminum alloy that prevents the occurrence of and suppresses room temperature age hardenability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19717488A JPH0247234A (en) | 1988-08-09 | 1988-08-09 | High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19717488A JPH0247234A (en) | 1988-08-09 | 1988-08-09 | High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0247234A true JPH0247234A (en) | 1990-02-16 |
JPH0469220B2 JPH0469220B2 (en) | 1992-11-05 |
Family
ID=16370030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19717488A Granted JPH0247234A (en) | 1988-08-09 | 1988-08-09 | High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0247234A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04304339A (en) * | 1991-03-30 | 1992-10-27 | Nkk Corp | Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production |
US5441582A (en) * | 1993-09-30 | 1995-08-15 | Nkk Corporation | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability |
US5460666A (en) * | 1993-03-03 | 1995-10-24 | Nkk Corporation | Method of manufacturing natural aging-retardated aluminum alloy sheet |
US5580402A (en) * | 1993-03-03 | 1996-12-03 | Nkk Corporation | Low baking temperature hardenable aluminum alloy sheet for press-forming |
KR100270603B1 (en) * | 1997-06-09 | 2000-11-01 | 정문선 | Earth amchor |
CN110331351A (en) * | 2019-08-21 | 2019-10-15 | 中南大学 | A kind of preparation method of Al-Cu-Li system aluminium lithium alloy plate |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5631859A (en) * | 1979-08-22 | 1981-03-31 | Japan National Railway | Toilet device railway rolling stock with washing circuit of two system |
JPS57210944A (en) * | 1981-06-18 | 1982-12-24 | Sukai Alum Kk | Aluminum alloy for butt resistance welding with superior stress corrosion cracking resistance at joint |
JPS60174845A (en) * | 1984-02-18 | 1985-09-09 | Kobe Steel Ltd | Aluminum alloy for forging having superior strength and cold forgeability |
JPS62207850A (en) * | 1986-03-10 | 1987-09-12 | Sky Alum Co Ltd | Rolled aluminum alloy sheet for forming and its production |
JPS6369952A (en) * | 1986-09-09 | 1988-03-30 | Sky Alum Co Ltd | Manufacture of aluminum-alloy rolled sheet |
JPS6389649A (en) * | 1986-10-03 | 1988-04-20 | Kobe Steel Ltd | Manufacture of al-mg-zn alloy material having superior formability |
JPS63179043A (en) * | 1987-01-21 | 1988-07-23 | Furukawa Alum Co Ltd | Aluminum alloy for forming |
JPH01219139A (en) * | 1988-02-26 | 1989-09-01 | Kobe Steel Ltd | Aluminum alloy for baking finish having excellent stringy rust resistance |
-
1988
- 1988-08-09 JP JP19717488A patent/JPH0247234A/en active Granted
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5631859A (en) * | 1979-08-22 | 1981-03-31 | Japan National Railway | Toilet device railway rolling stock with washing circuit of two system |
JPS57210944A (en) * | 1981-06-18 | 1982-12-24 | Sukai Alum Kk | Aluminum alloy for butt resistance welding with superior stress corrosion cracking resistance at joint |
JPS60174845A (en) * | 1984-02-18 | 1985-09-09 | Kobe Steel Ltd | Aluminum alloy for forging having superior strength and cold forgeability |
JPS62207850A (en) * | 1986-03-10 | 1987-09-12 | Sky Alum Co Ltd | Rolled aluminum alloy sheet for forming and its production |
JPS6369952A (en) * | 1986-09-09 | 1988-03-30 | Sky Alum Co Ltd | Manufacture of aluminum-alloy rolled sheet |
JPS6389649A (en) * | 1986-10-03 | 1988-04-20 | Kobe Steel Ltd | Manufacture of al-mg-zn alloy material having superior formability |
JPS63179043A (en) * | 1987-01-21 | 1988-07-23 | Furukawa Alum Co Ltd | Aluminum alloy for forming |
JPH01219139A (en) * | 1988-02-26 | 1989-09-01 | Kobe Steel Ltd | Aluminum alloy for baking finish having excellent stringy rust resistance |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04304339A (en) * | 1991-03-30 | 1992-10-27 | Nkk Corp | Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production |
US5460666A (en) * | 1993-03-03 | 1995-10-24 | Nkk Corporation | Method of manufacturing natural aging-retardated aluminum alloy sheet |
US5580402A (en) * | 1993-03-03 | 1996-12-03 | Nkk Corporation | Low baking temperature hardenable aluminum alloy sheet for press-forming |
US5441582A (en) * | 1993-09-30 | 1995-08-15 | Nkk Corporation | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability |
KR100270603B1 (en) * | 1997-06-09 | 2000-11-01 | 정문선 | Earth amchor |
CN110331351A (en) * | 2019-08-21 | 2019-10-15 | 中南大学 | A kind of preparation method of Al-Cu-Li system aluminium lithium alloy plate |
Also Published As
Publication number | Publication date |
---|---|
JPH0469220B2 (en) | 1992-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3819263B2 (en) | Aluminum alloy material with excellent room temperature aging control and low temperature age hardening | |
JP3194742B2 (en) | Improved lithium aluminum alloy system | |
EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
WO2014132925A1 (en) | Aluminum alloy having excellent characteristic after room temperature aging | |
WO2016190408A1 (en) | High-strength aluminum alloy sheet | |
JPH05263203A (en) | Production of rolled sheet of aluminum alloy for forming | |
JP3681822B2 (en) | Al-Zn-Mg alloy extruded material and method for producing the same | |
JP2000212673A (en) | Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production | |
JPH0257655A (en) | Foamable aluminum alloy having excellent surface treating characteristics and its manufacture | |
JPH06340940A (en) | Aluminum alloy sheet excellent in press formability and baking hardenability and its production | |
JPH0247234A (en) | High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture | |
JP4633994B2 (en) | Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method | |
JP2004124213A (en) | Aluminum alloy sheet for panel forming, and its manufacturing method | |
JP2003277869A (en) | Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof | |
JP2004238657A (en) | Method of manufacturing aluminum alloy plate for outer panel | |
JP2678404B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
JPH0138866B2 (en) | ||
JP3207413B2 (en) | Manufacturing method of aluminum alloy material for forming process excellent in formability, shape freezing property and paint baking hardenability | |
WO2017170835A1 (en) | Aluminum alloy sheet and aluminum alloy sheet manufacturing method | |
JPH10259464A (en) | Production of aluminum alloy sheet for forming | |
JP2000160272A (en) | Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY | |
JP2006241548A (en) | Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET | |
JPH0480979B2 (en) | ||
JP3103122B2 (en) | Aluminum alloy sheet for forming process with high formability and method for producing the same | |
JP2003328095A (en) | Production method for aluminum alloy plate for forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |