JPH10308523A - Solar cell device - Google Patents
Solar cell deviceInfo
- Publication number
- JPH10308523A JPH10308523A JP9117079A JP11707997A JPH10308523A JP H10308523 A JPH10308523 A JP H10308523A JP 9117079 A JP9117079 A JP 9117079A JP 11707997 A JP11707997 A JP 11707997A JP H10308523 A JPH10308523 A JP H10308523A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- cooling water
- cell element
- pump
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は太陽電池装置、特に
太陽電池装置の受光面の冷却及び洗浄を行うことができ
る太陽電池装置の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell device, and more particularly to an improvement in a solar cell device capable of cooling and cleaning a light receiving surface of the solar cell device.
【0002】[0002]
【従来の技術】太陽電池装置は、通常屋外で使用される
ため、その受光面に木の葉や砂塵等が堆積して太陽電池
装置の発電効率を低下させる場合がある。従って、受光
面の洗浄を定期的に行う必要がある。特開昭59−96
833号公報には、このような太陽電池装置の受光面の
洗浄に関する技術が開示されている。本従来例において
は、太陽電池装置の発電量が基準値よりも低下したこと
を検出し、この時太陽電池装置の受光面に水を流下さ
せ、あるいはワイパー装置により受光面の汚れを洗浄し
て、太陽電池装置の発電量を回復させるように構成した
ものである。2. Description of the Related Art Since a solar cell device is usually used outdoors, leaves, dust and the like may accumulate on the light receiving surface of the solar cell device, which may lower the power generation efficiency of the solar cell device. Therefore, it is necessary to periodically clean the light receiving surface. JP-A-59-96
Japanese Patent Application Laid-Open No. 833 discloses a technique for cleaning the light receiving surface of such a solar cell device. In this conventional example, it is detected that the power generation amount of the solar cell device has dropped below the reference value, and at this time, water is caused to flow down to the light receiving surface of the solar cell device, or dirt on the light receiving surface is washed with a wiper device. , So as to recover the amount of power generated by the solar cell device.
【0003】[0003]
【発明が解決しようとする課題】しかし、通常の太陽電
池装置は複数の太陽電池素子からなっているが、いずれ
か少数の太陽電池素子の発電量が低下した場合には、太
陽電池装置の発電量の低下を検知することが困難である
という問題があった。これは、特定の太陽電池素子の発
電量が低下した場合には、この影響を排除するためのバ
イパス回路が備えられており、ゴミ等の付着あるいは故
障等により発電量が低下した太陽電池素子は、バイパス
回路の作動により、太陽光発電を行っている太陽電池素
子列から除外される。これにより、少数の特定の太陽電
池素子の発電量が低下しても、太陽電池装置全体の発電
量が著しく低下しないように構成されている。従って、
太陽電池装置の受光面上に木の葉等による部分的な汚れ
が存在しても、発電量の低下としては反映されにくいか
らである。またこのために、付着物の的確な除去が難し
いという問題もあった。However, an ordinary solar cell device is composed of a plurality of solar cell elements. However, if the power generation amount of any of a small number of solar cell elements is reduced, the power generation of the solar cell apparatus is performed. There is a problem that it is difficult to detect a decrease in the amount. This is because, when the power generation of a specific solar cell element is reduced, a bypass circuit is provided to eliminate this effect. By the operation of the bypass circuit, it is excluded from the row of solar cell elements that are performing solar power generation. Thereby, even if the power generation amount of a small number of specific solar cell elements is reduced, the power generation amount of the entire solar cell device is not significantly reduced. Therefore,
This is because even if there is partial contamination due to leaves or the like on the light receiving surface of the solar cell device, it is difficult to reflect the decrease in power generation. For this reason, there is also a problem that it is difficult to accurately remove the deposits.
【0004】本発明は上記従来の課題に鑑みなされたも
のであり、その目的は、受光面に汚れが付着した場合
に、速やかに受光面を洗浄できる太陽電池装置を提供す
ることにある。The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a solar cell device that can quickly clean a light receiving surface when dirt adheres to the light receiving surface.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、複数の太陽電池素子からなる太陽電池装
置であって、太陽電池素子のバイパス回路の作動に応じ
て太陽電池の受光表面に流体を供給する洗浄手段を備え
ることを特徴とする。In order to achieve the above object, the present invention relates to a solar cell device comprising a plurality of solar cell elements, wherein a solar cell receives light according to the operation of a bypass circuit of the solar cell elements. It is characterized by comprising washing means for supplying a fluid to the surface.
【0006】[0006]
【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.
【0007】図1には、本発明に係る太陽電池装置の実
施形態の構成が示される。図1において、太陽電池装置
は、複数の太陽電池素子10を有しており、この太陽電
池素子10の表面側は、ガラス12で覆われて受光表面
が形成されている。また、太陽電池素子10の裏面側に
は、太陽電池素子10を冷却するための冷却水通路14
が設けられている。FIG. 1 shows a configuration of an embodiment of a solar cell device according to the present invention. In FIG. 1, the solar cell device has a plurality of solar cell elements 10, and the front side of the solar cell element 10 is covered with glass 12 to form a light receiving surface. A cooling water passage 14 for cooling the solar cell element 10 is provided on the back side of the solar cell element 10.
Is provided.
【0008】通常運転時は、冷却水のドレーン16か
ら、ポンプ18により冷却水を汲み上げ、冷却水タンク
20に冷却水を供給する。冷却水タンク20に供給され
た冷却水は、全量が冷却水通路14を通過し、太陽電池
素子10を冷却しながら、冷却水受け皿22に落ちる。
冷却水受け皿22に落ちた冷却水は、ラジエータ24で
冷却され、再びドレーン16に回収される。このよう
に、通常運転時は、上述したサイクルで冷却水が循環さ
れ、太陽電池素子10の冷却が行われる。この場合、ポ
ンプ18は、コントロールユニット26によってその動
作が制御されている。During normal operation, cooling water is pumped from a cooling water drain 16 by a pump 18 and supplied to a cooling water tank 20. The entire amount of the cooling water supplied to the cooling water tank 20 passes through the cooling water passage 14, and falls on the cooling water tray 22 while cooling the solar cell element 10.
The cooling water that has fallen into the cooling water tray 22 is cooled by the radiator 24 and collected again by the drain 16. As described above, during normal operation, the cooling water is circulated in the above-described cycle, and the solar cell element 10 is cooled. In this case, the operation of the pump 18 is controlled by the control unit 26.
【0009】他方、動作中に太陽電池素子10の温度が
規定値よりも高くなったり、特定の太陽電池素子10の
バイパスダイオードが作動した場合には、コントロール
ユニット26がこれを検知し、ポンプ18の吐出量を増
加させるように制御する。これにより、ポンプ18から
の吐出量が増えるので、冷却水タンク20に供給される
冷却水量が増加する。従って、冷却水は、冷却水通路1
4だけでは流しきれなくなり、冷却水タンク20に設け
られた放出口28から一部が放出される。これにより、
太陽電池装置の受光表面に冷却水を供給でき、受光表面
の洗浄を行うことができる。なお、放出口28から放出
された冷却水は、受光表面上を流れ、冷却水受け皿22
に落ちて、この場合もラジエータ24を介してドレーン
16に回収される。On the other hand, when the temperature of the solar cell element 10 becomes higher than a specified value during operation, or when a bypass diode of a specific solar cell element 10 is activated, the control unit 26 detects this and the pump 18 Is controlled so as to increase the discharge amount. Accordingly, the discharge amount from the pump 18 increases, and the amount of cooling water supplied to the cooling water tank 20 increases. Therefore, the cooling water is supplied to the cooling water passage 1
4 alone will not be able to flow, and part will be discharged from the discharge port 28 provided in the cooling water tank 20. This allows
Cooling water can be supplied to the light receiving surface of the solar cell device, and the light receiving surface can be cleaned. Note that the cooling water discharged from the discharge port 28 flows on the light receiving surface, and the cooling water tray 22
In this case, and is collected in the drain 16 via the radiator 24 in this case as well.
【0010】図2には、太陽電池装置を構成するn個の
太陽電池素子の接続の様子が示される。図2において、
通常は各太陽電池素子10によって発生される電圧がV
0であり、これがn個直列に接続されて、全部でnV0の
電圧が発生されている。この電圧nV0が負荷32で消
費される。このとき、いずれかの太陽電池素子10に故
障が生じるか、あるいは特定の太陽電池素子10の上に
木の葉等が付着したような場合には、その太陽電池素子
10の発電能力が著しく低下する。このため、その太陽
電池素子10には電流が流れなくなって、装置全体とし
て発電量が大幅に低下してしまう。これを防ぐために、
上述したようなトラブルが発生した太陽電池素子10に
ついては、バイパス回路30により、太陽電池素子10
をバイパスし、トラブルの起こった太陽電池素子10の
影響を除去するような構成となっている。従って、図1
に示されたコントロールユニット26では、このバイパ
ス回路30の動作の有無を常に監視しており、バイパス
回路30が動作した場合には、前述したように、ポンプ
18の吐出量を増加させるような制御を実施している。FIG. 2 shows a state of connection of n solar cell elements constituting the solar cell device. In FIG.
Usually, the voltage generated by each solar cell element 10 is V
0 , n of which are connected in series to generate a total voltage of nV 0 . This voltage nV 0 is consumed by the load 32. At this time, when a failure occurs in any of the solar cell elements 10 or when a leaf or the like adheres to a specific solar cell element 10, the power generation capability of the solar cell element 10 is significantly reduced. For this reason, no current flows through the solar cell element 10, and the amount of power generation as a whole is greatly reduced. To prevent this,
With respect to the solar cell element 10 in which the above-described trouble has occurred, the solar cell element 10
Is bypassed, and the influence of the solar cell element 10 in which a trouble has occurred is removed. Therefore, FIG.
The control unit 26 shown in FIG. 2 constantly monitors the operation of the bypass circuit 30. When the bypass circuit 30 operates, the control unit 26 increases the discharge amount of the pump 18 as described above. Has been implemented.
【0011】また、太陽電池素子10の温度が上昇した
場合には、図1に示された冷却水通路14のみでは冷却
能力が不足していると考えられる。従って、コントロー
ルユニット26で太陽電池素子10の温度を常に監視
し、これが基準値よりも高くなった場合にも、前述した
ように、ポンプ18の吐出量を増加させるように制御を
行っている。When the temperature of the solar cell element 10 rises, it is considered that only the cooling water passage 14 shown in FIG. 1 has insufficient cooling capacity. Therefore, the control unit 26 constantly monitors the temperature of the solar cell element 10 and, even when the temperature becomes higher than the reference value, performs control so as to increase the discharge amount of the pump 18 as described above.
【0012】図3には、図1に示された太陽電池装置の
ポンプ18の制御動作のフローチャートが示される。図
3において、コントロールユニット26が太陽電池素子
10の温度Tsを常時監視し、この温度Tsが所定の基
準温度T0よりも高いか否かを判断する(S1)。ま
た、コントロールユニット26は、太陽電池素子10の
バイパス回路30が作動しているか否かも監視している
(S2)。FIG. 3 shows a flowchart of the control operation of the pump 18 of the solar cell device shown in FIG. 3, the control unit 26 constantly monitors the temperature Ts of the solar cell element 10, the temperature Ts is determined whether higher than a predetermined reference temperature T 0 (S1). The control unit 26 also monitors whether the bypass circuit 30 of the solar cell element 10 is operating (S2).
【0013】上記S1、S2において、温度Tsが基準
温度T0よりも低くかつバイパス回路30が作動してい
ない場合には、ポンプ18は通常運転とされ、その吐出
量が冷却水通路14で流しきれるだけの量となる(S
3)。In the above S1, S2, if the temperature Ts is and the bypass circuit 30 lower than the reference temperature T 0 is not operating, the pump 18 is a normal operation, flows the discharge amount in the cooling water passage 14 (S
3).
【0014】他方、S1、S2において、太陽電池素子
10の温度Tsが基準温度T0よりも高いかあるいはバ
イパス回路30が作動している場合には、コントロール
ユニット26がポンプ18を高出力運転に切り替える
(S4)。これにより、ポンプ18の吐出量が増加し、
冷却水が冷却水通路14だけでは流しきれなくなり、冷
却水タンク20の放出口28からも放出されるようにな
る。[0014] On the other hand, in S1, S2, is higher or the bypass circuit 30 than the temperature Ts is the reference temperature T 0 of the solar cell element 10 is in operation, the control unit 26 to the high power operation of the pump 18 Switch (S4). Thereby, the discharge amount of the pump 18 increases,
The cooling water cannot flow through the cooling water passage 14 alone, and is discharged from the discharge port 28 of the cooling water tank 20.
【0015】以上のステップにより、冷却水通路14で
の冷却能力が不足したり、あるいは受光表面に木の葉等
の汚れが付着し、特定の太陽電池素子10の発電能力が
低下した場合には、放出口28から冷却水を受光表面に
流すことにより、冷却能力の回復及びゴミ等の洗浄を行
うことが可能となる。また、本実施形態によれば、必要
な時にポンプ18の吐出量を切り替えるので、ポンプ1
8の消費電力を低く抑えることができ、その分太陽電池
素子10での発電電力を有効に使用することができる。According to the above steps, when the cooling capacity in the cooling water passage 14 is insufficient, or when dirt such as leaves adhere to the light receiving surface and the power generation capacity of the specific solar cell element 10 is reduced, the discharge is performed. By flowing the cooling water from the outlet 28 to the light receiving surface, it is possible to recover the cooling capacity and to clean dust and the like. Further, according to the present embodiment, the discharge amount of the pump 18 is switched when necessary, so that the pump 1
8, the power consumption of the solar cell element 10 can be effectively used.
【0016】なお、バイパス回路30が作動したか否か
を検出する方法としては、例えばバイパス回路30に直
列に電流計を入れこの値によってコントロールユニット
26がバイパス回路30の作動を検知する方法が考えら
れる。また、例えばバイパス回路30にフォトカプラを
接続し、これによってバイパス回路30の作動を検出す
る方法とすることもできる。更に、バイパス回路30を
構成するバイパスダイオードの両端電圧を監視してもよ
い。また、どの太陽電池素子10に異常が発生したかを
確認する方法としては、太陽電池素子10をグループに
分け、2つのグループを、上述した電流値あるいは電圧
値で比較し、トーナメント方式でトラブルの発生した太
陽電池素子10を絞り込んでいく方法をとることも可能
である。As a method for detecting whether or not the bypass circuit 30 has operated, for example, a method in which an ammeter is inserted in series with the bypass circuit 30 and the control unit 26 detects the operation of the bypass circuit 30 based on this value is considered. Can be Alternatively, for example, a method may be used in which a photocoupler is connected to the bypass circuit 30 to detect the operation of the bypass circuit 30. Further, the voltage between both ends of the bypass diode constituting the bypass circuit 30 may be monitored. In addition, as a method of confirming which solar cell element 10 has an abnormality, the solar cell elements 10 are divided into groups, and the two groups are compared with each other by the above-described current value or voltage value. It is also possible to take a method of narrowing down the generated solar cell elements 10.
【0017】以上のようにして、トラブルの発生した太
陽電池素子10がどれであるかを特定することができ
る。このため、トラブルの発生した太陽電池素子10の
部分だけ洗浄をしてやることも可能である。図4にはこ
の場合の構成例が示される。図4において、放出口28
には、電磁弁34が取り付けられている。この電磁弁3
4の開閉はコントロールユニット26によって制御され
ている。上述したように、木の葉が付着する等のトラブ
ルが発生した太陽電池素子10がどれであるかはバイパ
ス回路30(図2)の作動によりコントロールユニット
26で把握することができる。このため、トラブルが発
生した太陽電池素子10に対応する電磁弁34のみ開け
ば、その部分のみ受光表面の洗浄を行うことができる。
これにより、ポンプ18の吐出量を更に低減することが
でき、ポンプ18の消費電力を低減することができる。As described above, it is possible to specify which solar cell element 10 has a trouble. For this reason, it is also possible to clean only the portion of the solar cell element 10 where a trouble has occurred. FIG. 4 shows a configuration example in this case. In FIG.
, A solenoid valve 34 is attached. This solenoid valve 3
The opening and closing of 4 is controlled by the control unit 26. As described above, the control unit 26 can determine which of the solar cell elements 10 has a trouble such as the attachment of leaves by operating the bypass circuit 30 (FIG. 2). For this reason, if only the electromagnetic valve 34 corresponding to the solar cell element 10 in which a trouble has occurred is opened, the light receiving surface can be cleaned only in that portion.
Thus, the discharge amount of the pump 18 can be further reduced, and the power consumption of the pump 18 can be reduced.
【0018】図5には、本発明に係る太陽電池装置の他
の実施形態の構成図が示される。図5において、ドレー
ン16中の冷却水は、ラジエータ24を介してポンプ1
8により汲み上げられ、冷却水通路14を下から上に向
かって流される点が図1と異なっている。冷却水通路1
4中を流れてきた冷却水は、冷却水タンク20に入り、
バルブ36を介して再びドレーン16に戻る。FIG. 5 shows a configuration diagram of another embodiment of the solar cell device according to the present invention. In FIG. 5, the cooling water in the drain 16 is supplied to the pump 1 through the radiator 24.
1 is different from FIG. 1 in that it is pumped up by the cooling water 8 and flows upward from the bottom in the cooling water passage 14. Cooling water passage 1
The cooling water flowing in 4 enters the cooling water tank 20,
It returns to the drain 16 again via the valve 36.
【0019】本実施形態においても、コントロールユニ
ット26が太陽電池素子10の温度や、バイパス回路3
0の作動の有無を監視している。コントロールユニット
26がこのような太陽電池素子10のトラブルを検知し
た場合には、バルブ36を閉とする。バルブ36がコン
トロールユニット26によって閉じられた場合には、ポ
ンプ18によって循環される冷却水は、バルブ36から
ドレーン16に戻れなくなる。従って、冷却水タンク2
0中の水位が上昇して、放出口28から図1と同様に受
光表面に冷却水が流されることになる。受光表面を流れ
た冷却水は、冷却水受け皿22に落とされ、冷却水受け
皿22からドレーン16に戻るという構成となってい
る。Also in this embodiment, the control unit 26 controls the temperature of the solar cell element 10 and the bypass circuit 3
0 is monitored for activation. When the control unit 26 detects such a trouble of the solar cell element 10, the valve 36 is closed. When the valve 36 is closed by the control unit 26, the cooling water circulated by the pump 18 cannot return from the valve 36 to the drain 16. Therefore, the cooling water tank 2
The water level in 0 rises, and the cooling water flows from the discharge port 28 to the light receiving surface as in FIG. The cooling water flowing on the light receiving surface is dropped to the cooling water tray 22 and returns to the drain 16 from the cooling water tray 22.
【0020】図6には、図5に示された実施形態のバル
ブ36の開閉制御のフローが示される。図6において、
コントロールユニット26が、太陽電池素子10の温度
を監視しており、この温度Tsが基準温度T0よりも高
いか否かを監視している(S11)。また、コントロー
ルユニット26は、バイパス回路30の作動の有無も監
視している(S12)。FIG. 6 shows a flow of the opening / closing control of the valve 36 of the embodiment shown in FIG. In FIG.
Control unit 26 monitors whether a higher or not than the temperature monitors, the reference temperature T 0 the temperature Ts of the solar cell elements 10 (S11). Further, the control unit 26 also monitors whether or not the bypass circuit 30 is operating (S12).
【0021】S11、S12において、太陽電池素子1
0の温度Tsが基準温度T0よりも低くかつバイパス回
路30が作動していない場合には、通常運転としてバル
ブ36を開の状態としておく。In steps S11 and S12, the solar cell element 1
When the temperature Ts of 0 is lower than the reference temperature T0 and the bypass circuit 30 is not operating, the valve 36 is opened as a normal operation.
【0022】他方、S11、S12において、太陽電池
素子10の温度Tsが基準温度T0よりも高いかあるい
はバイパス回路30が作動している場合には、バルブ3
6を閉じる(S13)。[0022] On the other hand, S11, in S12, if the higher or the bypass circuit 30 than the temperature Ts is the reference temperature T 0 of the solar cell element 10 is in operation, the valve 3
6 is closed (S13).
【0023】以上のような動作により、太陽電池素子1
0にトラブルが発生するかあるいは冷却水通路14のみ
では冷却能力が不足した場合にバルブ36を閉とし、放
出口28からの冷却水の放出を行う。With the above operation, the solar cell element 1
If a trouble occurs at 0 or the cooling capacity is insufficient only with the cooling water passage 14, the valve 36 is closed and the cooling water is discharged from the discharge port 28.
【0024】本実施形態では、ポンプ18の吐出量は一
定量とされている。従って、ポンプ18の吐出量を切り
替える制御が不要となり、ポンプ18のコストを下げる
ことができる。In the present embodiment, the discharge amount of the pump 18 is fixed. Therefore, control for switching the discharge amount of the pump 18 becomes unnecessary, and the cost of the pump 18 can be reduced.
【0025】図7には、本発明に係る太陽電池装置の更
に他の実施形態が示される。図7において、ポンプ18
により汲み上げられた冷却水が、冷却水通路14を通過
しつつ太陽電池素子10を冷却し、再びドレーン16に
戻る構成は図5に示された実施形態と同様である。本実
施形態では、冷却水の循環ポンプとして、ポンプ18の
他にポンプ38が設けられている。ポンプ38によって
吐出された冷却水は、切替バルブ40を介して冷却水配
管42又は44から冷却水タンク20に供給される。冷
却水タンク20に供給された冷却水は、放出口28から
太陽電池装置の受光表面に放出され、冷却水受け皿22
に落ちた後ラジエータ46を介してドレーン16に回収
される。FIG. 7 shows still another embodiment of the solar cell device according to the present invention. In FIG. 7, the pump 18
The configuration in which the cooling water pumped by the cooling water cools the solar cell element 10 while passing through the cooling water passage 14 and returns to the drain 16 again is the same as the embodiment shown in FIG. In the present embodiment, a pump 38 is provided as a cooling water circulation pump in addition to the pump 18. The cooling water discharged by the pump 38 is supplied to the cooling water tank 20 from the cooling water pipe 42 or 44 via the switching valve 40. The cooling water supplied to the cooling water tank 20 is discharged from the discharge port 28 to the light receiving surface of the solar cell device, and the cooling water
Is collected in the drain 16 via the radiator 46.
【0026】冷却水タンク20の内部には、図8に示さ
れるような鹿おどし部48が設けられている。この鹿お
どし部48は、一端に冷却水を受ける容器50が設けら
れ、他端におもり52が取り付けられたさお54が、支
持棒56に支点58で取り付けられている。このさお5
4は、支点58を中心に回動可能に取り付けられてい
る。冷却水配管44から鹿おどし部48の容器50に冷
却水が供給されると、一定量まではおもり52によって
容器50が持ち上げられた状態を保つが、一定量を超え
ると容器50中の冷却水の重さがおもり52よりも重く
なって、図8の破線で示すように、容器50が下に傾
く。これにより、容器50中に供給された冷却水が一気
に冷却水容器20にこぼれ落ち、冷却水容器20の放出
口28からこの冷却水が一気に受光表面に流されること
になる。このように、受光表面に冷却水を一気に流すこ
とにより、受光表面上に付着した木の葉等のゴミを洗浄
する効果を大きくすることができる。なお、切替バルブ
40の切り替えは、図1及び図5に示されたコントロー
ルユニット26(図示せず)によって実施する。また、
ポンプ38の起動停止もコントロールユニット26によ
って制御される。In the cooling water tank 20, there is provided a deer playing part 48 as shown in FIG. The deer mascot 48 has a container 50 for receiving cooling water at one end, and a rod 54 having a weight 52 attached to the other end, which is attached to a support bar 56 at a fulcrum 58. This 5
4 is attached so as to be rotatable about a fulcrum 58. When the cooling water is supplied from the cooling water pipe 44 to the container 50 of the deer masquerade section 48, the container 50 is kept lifted by the weight 52 up to a certain amount. Becomes heavier than the weight 52, and the container 50 tilts downward as shown by the broken line in FIG. As a result, the cooling water supplied into the container 50 spills into the cooling water container 20 at a stretch, and the cooling water flows from the discharge port 28 of the cooling water container 20 to the light receiving surface at a stretch. As described above, by flowing the cooling water to the light receiving surface at a stretch, the effect of cleaning dusts such as leaves attached to the light receiving surface can be enhanced. The switching of the switching valve 40 is performed by the control unit 26 (not shown) shown in FIGS. Also,
The start / stop of the pump 38 is also controlled by the control unit 26.
【0027】図7には、太陽電池素子10によって構成
された受光部分の平面図と、矢印A方向から見た側面図
も併せて示される。この側面図に示されるように、受光
部の両端側に壁60が形成されている。このように、両
端に壁60が形成されることにより、受光表面に流され
る冷却水の飛散を防止することができる。FIG. 7 also shows a plan view of a light receiving portion constituted by the solar cell element 10 and a side view as viewed from the direction of arrow A. As shown in this side view, walls 60 are formed on both ends of the light receiving section. By forming the walls 60 at both ends as described above, it is possible to prevent the cooling water flowing on the light receiving surface from scattering.
【0028】図9には、図7に示された実施形態の動作
のフローが示される。図9において、まずカウンタkの
値が0に設定される(S21)。このカウンタkは、上
述した鹿おどし部48を使用して、受光表面に一気に冷
却水を流す洗浄動作の回数を示すものである。FIG. 9 shows a flow of the operation of the embodiment shown in FIG. In FIG. 9, first, the value of the counter k is set to 0 (S21). The counter k indicates the number of times of the cleaning operation in which the cooling water is applied to the light-receiving surface at once by using the above-described deer masquerade section 48.
【0029】次に、冷却水通路14中に冷却水を流すた
めのポンプ18(ポンプP1)の運転を開始する(S2
2)。Next, the operation of the pump 18 (pump P1) for flowing the cooling water through the cooling water passage 14 is started (S2).
2).
【0030】図7には図示しないコントロールユニット
26は、太陽電池素子10の温度Tsが基準温度T0よ
りも高いか否かを監視している(S23)。S23にお
いて、太陽電池素子10の温度Tsが基準温度T0より
も高い場合には、冷却水通路14による冷却能力では不
足していることを意味するので、ポンプ38(ポンプP
2)の運転を開始する(S24)。また、コントロール
ユニット26により、切替バルブ40が切り替えられ、
冷却水配管42が使用される(S25)。これにより、
ポンプ38からの冷却水は、一定流量で冷却水タンク2
0に供給され、放出口28から一定流量で受光表面に流
されることになる。このため、冷却水通路14による冷
却能力の不足を補うことができる。The control unit 26 not shown in FIG. 7 monitors whether a higher or not than the reference temperature T 0 temperature Ts of the solar cell elements 10 (S23). In S23, when the temperature Ts of the solar cell element 10 is higher than the reference temperature T 0, it means that missing in cooling capacity of the cooling water passage 14, the pump 38 (pump P
The operation of 2) is started (S24). Further, the switching valve 40 is switched by the control unit 26,
The cooling water pipe 42 is used (S25). This allows
The cooling water from the pump 38 is supplied to the cooling water tank 2 at a constant flow rate.
0, and flows from the discharge port 28 to the light receiving surface at a constant flow rate. For this reason, the shortage of the cooling capacity by the cooling water passage 14 can be compensated.
【0031】他方、S23において、太陽電池素子10
の温度Tsが基準温度T0よりも低い場合には、ポンプ
38を停止し(S26)、カウンタkが所定値k0より
も大きいか否かが確認される(S27)。On the other hand, in S23, the solar cell element 10
Of if the temperature Ts is lower than the reference temperature T 0 is, the pump 38 is stopped (S26), the counter k is is confirmed whether greater than a predetermined value k 0 (S27).
【0032】S27において、カウンタkが所定値k0
よりも小さい場合には、バイパス回路30が作動してい
るか否かが確認される(S28)。S28において、バ
イパス回路が作動していない場合には、通常運転とし、
ポンプ18による冷却水によって太陽電池素子10を冷
却しながら太陽光発電を行う。At S27, the counter k is set to a predetermined value k 0
If smaller, it is confirmed whether or not the bypass circuit 30 is operating (S28). In S28, when the bypass circuit is not operating, the normal operation is performed,
Solar power generation is performed while cooling the solar cell element 10 with cooling water by the pump 18.
【0033】また、S28において、バイパス回路が作
動している場合には、ポンプ38を起動し(S29)、
切替バルブ40を冷却水配管44側に切り替えて鹿おど
し部48の容器50に冷却水を供給する。鹿おどし部4
8により、前述したように、受光表面に一気に冷却水を
流し、受光表面の洗浄を1回行った後(S30)、ポン
プ38を停止する(S31)。If the bypass circuit is operating in S28, the pump 38 is started (S29),
The switching valve 40 is switched to the cooling water pipe 44 side to supply the cooling water to the container 50 of the deer monster unit 48. Deer Odds Club 4
According to 8, as described above, the cooling water is flushed to the light receiving surface at once, and the light receiving surface is washed once (S30), and then the pump 38 is stopped (S31).
【0034】次に、カウンタkを1だけインクリメント
し(S32)、S23からのステップを繰り返す。この
時、S27において、カウンタkが所定値k0よりも大
きくなった場合には、所定回数鹿おどし部48による洗
浄を行っても受光表面のゴミが除去されないことを意味
しているので、所定のコントロールパネルにセル異常の
表示をだす(S33)。これにより、管理者に太陽電池
装置の異常を知らせる。この状態でT時間待機した後
(S34)、再びS23からのステップを繰り返す。Next, the counter k is incremented by 1 (S32), and the steps from S23 are repeated. At this time, if the counter k has become larger than the predetermined value k 0 in S27, it means that dust on the light receiving surface is not removed even if the cleaning is performed by the deer adobe unit 48 a predetermined number of times. A cell abnormality is displayed on the control panel (S33). Thereby, the administrator is notified of the abnormality of the solar cell device. After waiting for T time in this state (S34), the steps from S23 are repeated again.
【0035】以上のステップにより、受光表面上に付着
した木の葉等のゴミを効率的に除去できる。また、冷却
能力不足の場合には、一定流量で受光表面上に冷却水を
流すこともできる。更に、コントロールパネルに異常表
示を出すことにより、管理者に対して早期修理を促すこ
ともできる。Through the above steps, dust such as leaves of a tree attached to the light receiving surface can be efficiently removed. If the cooling capacity is insufficient, cooling water can be flowed over the light receiving surface at a constant flow rate. Further, by displaying an abnormality display on the control panel, it is possible to prompt the administrator to perform early repair.
【0036】なお、以上に述べた各実施形態において
は、放出口28をスプレーとし、ここにポンプ18ある
いはポンプ38からの冷却水をつないで冷却水の噴射を
行わせることも可能である。これにより、異物の除去を
更に効率化することができる。In each of the embodiments described above, it is also possible to spray the cooling water by connecting the cooling water from the pump 18 or the pump 38 to the discharge port 28 as a spray. As a result, the efficiency of foreign matter removal can be further improved.
【0037】[0037]
【発明の効果】以上説明したように、本発明によれば、
太陽電池装置の受光表面に少数の木の葉等のゴミが付着
した場合に、これによって太陽光が遮られ、太陽電池素
子の発電量が低下し、バイパス回路が作動したことを検
出する。これにより、受光表面に水等の流体を供給し、
ゴミを効率的に除去することができる。この結果速やか
に太陽電池素子の発電量の回復を図ることができる。As described above, according to the present invention,
When dust such as leaves of a small number of trees adheres to the light receiving surface of the solar battery device, the sunlight is interrupted, the power generation amount of the solar battery element is reduced, and it is detected that the bypass circuit has been activated. Thereby, a fluid such as water is supplied to the light receiving surface,
Garbage can be efficiently removed. As a result, it is possible to quickly recover the power generation amount of the solar cell element.
【0038】また、どのバイパス回路が作動したかを確
認し、バイパス回路が作動した太陽電池素子の部分のみ
選択的に流体を流すことも可能である。It is also possible to confirm which bypass circuit has been activated, and to selectively flow the fluid only in the portion of the solar cell element where the bypass circuit has been activated.
【図1】 本発明に係る太陽電池装置の実施形態の構成
図である。FIG. 1 is a configuration diagram of an embodiment of a solar cell device according to the present invention.
【図2】 太陽電池素子の接続方法及びバイパス回路を
示す回路図である。FIG. 2 is a circuit diagram showing a connection method of a solar cell element and a bypass circuit.
【図3】 図1に示された実施形態のポンプの動作制御
のフロー図である。FIG. 3 is a flowchart of operation control of the pump of the embodiment shown in FIG. 1;
【図4】 受光表面に冷却水を流す際の変形例を示す図
である。FIG. 4 is a diagram showing a modified example when cooling water is caused to flow on a light receiving surface.
【図5】 本発明に係る太陽電池装置の他の実施形態の
構成図である。FIG. 5 is a configuration diagram of another embodiment of the solar cell device according to the present invention.
【図6】 図5に示された実施形態のバルブの開閉制御
のフロー図である。FIG. 6 is a flowchart of valve opening / closing control of the embodiment shown in FIG. 5;
【図7】 本発明に係る太陽電池装置の更に他の実施形
態の構成図である。FIG. 7 is a configuration diagram of still another embodiment of the solar cell device according to the present invention.
【図8】 図7の実施形態の鹿おどし部の構造を示す図
である。FIG. 8 is a diagram showing a structure of a deer mascot in the embodiment of FIG. 7;
【図9】 図7に示された実施形態の動作のフロー図で
ある。FIG. 9 is a flowchart of the operation of the embodiment shown in FIG. 7;
10 太陽電池素子、12 ガラス、14 冷却水通
路、16 ドレーン、18 ポンプ、20 冷却水タン
ク、22 冷却水受け皿、24 ラジエータ、26 コ
ントロールユニット、28 放出口、30 バイパス回
路、32 負荷、34 電磁弁、36 バルブ、38
ポンプ、40 切替バルブ、42,44冷却水配管、4
6 ラジエータ、48 鹿おどし部、50 容器、52
おもり、54 さお、56 支持棒、58 支点、6
0 壁。Reference Signs List 10 solar cell element, 12 glass, 14 cooling water passage, 16 drain, 18 pump, 20 cooling water tank, 22 cooling water tray, 24 radiator, 26 control unit, 28 outlet, 30 bypass circuit, 32 load, 34 solenoid valve , 36 valves, 38
Pump, 40 switching valve, 42, 44 cooling water piping, 4
6 radiators, 48 deer mascots, 50 containers, 52
Weight, 54, 56 support rod, 58 fulcrum, 6
0 wall.
Claims (1)
置であって、前記太陽電池素子のバイパス回路の作動に
応じて太陽電池の受光表面に流体を供給する洗浄手段を
備えることを特徴とする太陽電池装置。1. A solar cell device comprising a plurality of solar cell elements, comprising a washing unit for supplying a fluid to a light receiving surface of a solar cell according to an operation of a bypass circuit of the solar cell element. Solar cell device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9117079A JPH10308523A (en) | 1997-05-07 | 1997-05-07 | Solar cell device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9117079A JPH10308523A (en) | 1997-05-07 | 1997-05-07 | Solar cell device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10308523A true JPH10308523A (en) | 1998-11-17 |
Family
ID=14702881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9117079A Pending JPH10308523A (en) | 1997-05-07 | 1997-05-07 | Solar cell device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10308523A (en) |
Cited By (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005520723A (en) * | 2002-03-22 | 2005-07-14 | ヒューレット・パッカード・カンパニー | Drop-on-demand printer movable ink drop detector pickup |
JP2008133058A (en) * | 2006-11-27 | 2008-06-12 | Jfe Steel Kk | Dropped mineral flushing device |
JP2011511450A (en) * | 2008-01-30 | 2011-04-07 | アベンゴア ソーラー ニュー テクノロジーズ ソシエダ アノニマ | Low-concentration solar cell plant and method for maximizing the power generation of its photovoltaic module |
KR101044712B1 (en) | 2010-07-26 | 2011-06-28 | (주)하이레벤 | Efficiency enhancement equipment for solar photovoltaic power facilities |
KR101044713B1 (en) | 2010-07-29 | 2011-06-28 | (주)하이레벤 | Efficiency enhancement equipment for solar photovoltaic power facilities by cleaning |
KR101061881B1 (en) | 2010-05-19 | 2011-09-02 | 김희곤 | Washing apparatus of solar cell |
JP2011181711A (en) * | 2010-03-02 | 2011-09-15 | Shunnosuke Shimano | Maintenance apparatus of solar cell panel |
WO2011037347A3 (en) * | 2009-09-25 | 2011-11-03 | (주)하이레벤 | Device for improving the efficiency of solar photovoltaic equipment |
KR101083475B1 (en) | 2010-10-13 | 2011-11-16 | 나미경 | Cooling system of electric generation module using solar energy |
KR101090774B1 (en) | 2010-12-21 | 2011-12-08 | (주)하이레벤 | Concentrated jet type efficiency enhancement equipment for solar photovoltaic power facilities |
KR101106732B1 (en) | 2010-11-11 | 2012-01-18 | 주식회사 로보테크 | A cleaning apparatus for photovoltaic module |
KR101148022B1 (en) | 2010-08-13 | 2012-05-24 | (주)하이레벤 | System of remotely controlling efficiency enhancement equipment for solar photovoltaic power facilities |
KR101148020B1 (en) | 2010-07-28 | 2012-05-24 | (주)하이레벤 | Cooling system of photovoltaic module for efficiency enhancement |
EP2464465A1 (en) * | 2009-08-14 | 2012-06-20 | Newdoll Enterprises Llc. | Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems |
KR101166891B1 (en) | 2010-10-28 | 2012-07-18 | 주식회사 동양일렉트로닉스 | Cleaning method of solar cell module |
KR101239358B1 (en) * | 2011-05-20 | 2013-03-05 | 김희곤 | washing apparatus of solar cell and solar cell comprising the same |
KR101250918B1 (en) | 2011-09-02 | 2013-04-04 | (주)하이레벤 | Efficiency enhancement equipment for solar photovoltaic power facilities |
KR101311891B1 (en) * | 2012-01-12 | 2013-09-26 | (주)하이레벤 | Efficiency enhancement equipment for solar photovoltaic power facilities |
JP2013197252A (en) * | 2012-03-19 | 2013-09-30 | Chugoku Electric Power Co Inc:The | Sprinkling device for solar panel |
JP2015012800A (en) * | 2013-06-28 | 2015-01-19 | 台積太陽能股▲ふん▼有限公司 | High efficiency photovoltaic system |
JP2015211619A (en) * | 2014-04-30 | 2015-11-24 | 久明 金山 | Solar panel cooling/heating device |
US9196770B2 (en) | 2007-03-27 | 2015-11-24 | Newdoll Enterprises Llc | Pole-mounted power generation systems, structures and processes |
US9200818B2 (en) | 2009-08-14 | 2015-12-01 | Newdoll Enterprises Llc | Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems |
JP2016503284A (en) * | 2013-01-11 | 2016-02-01 | デ コルドバ サンス,フェルナンド フェルナンデス | Cooling method and system for solar power generation solar panel |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
CN107110563A (en) * | 2015-01-15 | 2017-08-29 | 沙特阿拉伯石油公司 | Including the solar energy system of the condensation, water collection and cleaning sub-component that can control oneself |
US9748896B2 (en) | 2009-05-22 | 2017-08-29 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9812859B2 (en) | 2007-03-27 | 2017-11-07 | Solaredge Technologies Ltd. | Distributed maximum power point tracking system, structure and process |
US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10061957B2 (en) | 2016-03-03 | 2018-08-28 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US10116257B2 (en) | 2009-08-14 | 2018-10-30 | Accurate Solar Power, Llc | Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems |
US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
JP2020522673A (en) * | 2017-06-02 | 2020-07-30 | ソーブルー・アーゲー | How to operate a hybrid collector solar system |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
CN117356325A (en) * | 2023-11-01 | 2024-01-09 | 宁夏大学 | Refrigerating method and system for high-light-transmittance flexible photovoltaic panel of greenhouse |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
-
1997
- 1997-05-07 JP JP9117079A patent/JPH10308523A/en active Pending
Cited By (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005520723A (en) * | 2002-03-22 | 2005-07-14 | ヒューレット・パッカード・カンパニー | Drop-on-demand printer movable ink drop detector pickup |
JP4639047B2 (en) * | 2002-03-22 | 2011-02-23 | ヒューレット・パッカード・カンパニー | Waste ink removing apparatus, method of moving ink drop sensor, and printing mechanism |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
JP2008133058A (en) * | 2006-11-27 | 2008-06-12 | Jfe Steel Kk | Dropped mineral flushing device |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US10615594B2 (en) | 2007-03-27 | 2020-04-07 | Solaredge Technologies Ltd. | Distributed maximum power point tracking system, structure and process |
US11967654B2 (en) | 2007-03-27 | 2024-04-23 | Solaredge Technologies Ltd. | Distributed maximum power point tracking system, structure and process |
US9812859B2 (en) | 2007-03-27 | 2017-11-07 | Solaredge Technologies Ltd. | Distributed maximum power point tracking system, structure and process |
US10020657B2 (en) | 2007-03-27 | 2018-07-10 | Newdoll Enterprises Llc | Pole-mounted power generation systems, structures and processes |
US9196770B2 (en) | 2007-03-27 | 2015-11-24 | Newdoll Enterprises Llc | Pole-mounted power generation systems, structures and processes |
US11557683B2 (en) | 2007-03-27 | 2023-01-17 | Solaredge Technologies Ltd. | Distributed maximum power point tracking system, structure and process |
US12074229B2 (en) | 2007-03-27 | 2024-08-27 | Solaredge Technologies Ltd. | Distributed maximum power point tracking system, structure and process |
US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
JP2011511450A (en) * | 2008-01-30 | 2011-04-07 | アベンゴア ソーラー ニュー テクノロジーズ ソシエダ アノニマ | Low-concentration solar cell plant and method for maximizing the power generation of its photovoltaic module |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11509263B2 (en) | 2009-05-22 | 2022-11-22 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US11695371B2 (en) | 2009-05-22 | 2023-07-04 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9748897B2 (en) | 2009-05-22 | 2017-08-29 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US10411644B2 (en) | 2009-05-22 | 2019-09-10 | Solaredge Technologies, Ltd. | Electrically isolated heat dissipating junction box |
US12074566B2 (en) | 2009-05-22 | 2024-08-27 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US10686402B2 (en) | 2009-05-22 | 2020-06-16 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9748896B2 (en) | 2009-05-22 | 2017-08-29 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US10879840B2 (en) | 2009-05-22 | 2020-12-29 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9200818B2 (en) | 2009-08-14 | 2015-12-01 | Newdoll Enterprises Llc | Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems |
US10250184B2 (en) | 2009-08-14 | 2019-04-02 | Accurate Solar Power, Llc | Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems |
EP2464465A4 (en) * | 2009-08-14 | 2014-05-07 | Newdoll Entpr Llc | Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems |
US10116257B2 (en) | 2009-08-14 | 2018-10-30 | Accurate Solar Power, Llc | Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems |
EP2464465A1 (en) * | 2009-08-14 | 2012-06-20 | Newdoll Enterprises Llc. | Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems |
WO2011037347A3 (en) * | 2009-09-25 | 2011-11-03 | (주)하이레벤 | Device for improving the efficiency of solar photovoltaic equipment |
JP2011181711A (en) * | 2010-03-02 | 2011-09-15 | Shunnosuke Shimano | Maintenance apparatus of solar cell panel |
KR101061881B1 (en) | 2010-05-19 | 2011-09-02 | 김희곤 | Washing apparatus of solar cell |
WO2011145906A3 (en) * | 2010-05-19 | 2012-04-19 | Kim Hee Gon | Washing apparatus for solar cell module, and solar cell module including same |
KR101044712B1 (en) | 2010-07-26 | 2011-06-28 | (주)하이레벤 | Efficiency enhancement equipment for solar photovoltaic power facilities |
KR101148020B1 (en) | 2010-07-28 | 2012-05-24 | (주)하이레벤 | Cooling system of photovoltaic module for efficiency enhancement |
KR101044713B1 (en) | 2010-07-29 | 2011-06-28 | (주)하이레벤 | Efficiency enhancement equipment for solar photovoltaic power facilities by cleaning |
KR101148022B1 (en) | 2010-08-13 | 2012-05-24 | (주)하이레벤 | System of remotely controlling efficiency enhancement equipment for solar photovoltaic power facilities |
KR101083475B1 (en) | 2010-10-13 | 2011-11-16 | 나미경 | Cooling system of electric generation module using solar energy |
KR101166891B1 (en) | 2010-10-28 | 2012-07-18 | 주식회사 동양일렉트로닉스 | Cleaning method of solar cell module |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
KR101106732B1 (en) | 2010-11-11 | 2012-01-18 | 주식회사 로보테크 | A cleaning apparatus for photovoltaic module |
US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
KR101090774B1 (en) | 2010-12-21 | 2011-12-08 | (주)하이레벤 | Concentrated jet type efficiency enhancement equipment for solar photovoltaic power facilities |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
KR101239358B1 (en) * | 2011-05-20 | 2013-03-05 | 김희곤 | washing apparatus of solar cell and solar cell comprising the same |
KR101250918B1 (en) | 2011-09-02 | 2013-04-04 | (주)하이레벤 | Efficiency enhancement equipment for solar photovoltaic power facilities |
US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
KR101311891B1 (en) * | 2012-01-12 | 2013-09-26 | (주)하이레벤 | Efficiency enhancement equipment for solar photovoltaic power facilities |
US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
JP2013197252A (en) * | 2012-03-19 | 2013-09-30 | Chugoku Electric Power Co Inc:The | Sprinkling device for solar panel |
US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
JP2016503284A (en) * | 2013-01-11 | 2016-02-01 | デ コルドバ サンス,フェルナンド フェルナンデス | Cooling method and system for solar power generation solar panel |
US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
JP2015012800A (en) * | 2013-06-28 | 2015-01-19 | 台積太陽能股▲ふん▼有限公司 | High efficiency photovoltaic system |
JP2015211619A (en) * | 2014-04-30 | 2015-11-24 | 久明 金山 | Solar panel cooling/heating device |
CN107110563A (en) * | 2015-01-15 | 2017-08-29 | 沙特阿拉伯石油公司 | Including the solar energy system of the condensation, water collection and cleaning sub-component that can control oneself |
JP2018506690A (en) * | 2015-01-15 | 2018-03-08 | サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company | Solar system with self-sustainable condensation, water recovery and cleaning subassembly |
CN107110563B (en) * | 2015-01-15 | 2020-02-04 | 沙特阿拉伯石油公司 | Solar energy system including self-contained condensation, water collection and cleaning subassembly and method of operating same |
US11538951B2 (en) | 2016-03-03 | 2022-12-27 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11824131B2 (en) | 2016-03-03 | 2023-11-21 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US10540530B2 (en) | 2016-03-03 | 2020-01-21 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
US10061957B2 (en) | 2016-03-03 | 2018-08-28 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
JP2020522673A (en) * | 2017-06-02 | 2020-07-30 | ソーブルー・アーゲー | How to operate a hybrid collector solar system |
CN117356325A (en) * | 2023-11-01 | 2024-01-09 | 宁夏大学 | Refrigerating method and system for high-light-transmittance flexible photovoltaic panel of greenhouse |
CN117356325B (en) * | 2023-11-01 | 2024-05-07 | 宁夏大学 | Refrigerating method and system for high-light-transmittance flexible photovoltaic panel of greenhouse |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10308523A (en) | Solar cell device | |
CN100486511C (en) | Tableware cleaning machine | |
JPS61502237A (en) | Waste energy recovery unit and method | |
CN101203333A (en) | Commercial kitchenware washers and related methods | |
CN201041443Y (en) | Water circulation utilization device for ice maker | |
US20120073790A1 (en) | Wastewater heat recovery device and method thereof | |
JP4872729B2 (en) | Electric dust collector | |
US20090173090A1 (en) | Down Flow Type Ice Making Machine | |
JP4951290B2 (en) | Medals supply device | |
JP6203489B2 (en) | Substrate processing apparatus and cleaning method thereof | |
JP3565508B2 (en) | Dishwasher | |
JP2017109159A (en) | Device for washing solar battery panel and method for washing solar battery array | |
KR101711133B1 (en) | Water purifier having Ice Maker for Preventing Inner Pollution | |
KR100888274B1 (en) | Impurities removing device for cooling system of cars and impurities removing method using thereof | |
JP5642854B2 (en) | Dishwasher | |
JP2003181390A (en) | Water jet type cleaning apparatus for environment observation sensor | |
GB2255709A (en) | Dishwasher apparatus | |
KR100809476B1 (en) | Bidet and control method of hotwater heating module for bidet | |
JP2008179244A (en) | Washer liquid collecting device | |
CN112899982A (en) | Filter screen cleaning control method, electronic equipment and storage medium | |
JP2021037263A (en) | Washer | |
JP2003245615A (en) | Washing apparatus and washing method | |
JP7545910B2 (en) | Ice maker | |
JP5348741B2 (en) | Dishwasher | |
JP2004069146A (en) | Ice maker |