Nothing Special   »   [go: up one dir, main page]

JPH10261437A - Polymer electrolyte and lithium polymer battery using it - Google Patents

Polymer electrolyte and lithium polymer battery using it

Info

Publication number
JPH10261437A
JPH10261437A JP10003663A JP366398A JPH10261437A JP H10261437 A JPH10261437 A JP H10261437A JP 10003663 A JP10003663 A JP 10003663A JP 366398 A JP366398 A JP 366398A JP H10261437 A JPH10261437 A JP H10261437A
Authority
JP
Japan
Prior art keywords
polymer
electrolyte
lithium
battery
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10003663A
Other languages
Japanese (ja)
Inventor
Masaru Nishimura
賢 西村
Masahiko Ogawa
昌彦 小川
Tetsuhisa Sakai
哲久 酒井
Akiko Ishida
明子 石田
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10003663A priority Critical patent/JPH10261437A/en
Publication of JPH10261437A publication Critical patent/JPH10261437A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the occurrence of lithium dendrite by using the gel electrolyte of a polymer alloy, and to provide a highly reliable battery having enhanced safety. SOLUTION: A polymer alloy film comprises a slightly soluble polymer and a soluble polymer in an organic electrolysis solution. A gelled polymer electrolyte comprises an organic electrolysis solution. In this case, the phase separation size of the alloy film is restricted to less than 100nm. This polymer alloy gel restrains the occurrence of lithium dendrite so that a lithium polymer battery introducing the polymer alloy gel functions as a highly reliable battery having enhanced safety.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリマ電解質および
それを用いたリチウム・ポリマ電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte and a lithium polymer battery using the same.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、例えば正極
にLiCoO2、負極に天然黒鉛、エチレンカーボネイ
トをベースとした有機電解液により構成されており、高
エネルギー密度という特徴を持っている。この特徴を活
かして携帯用のパソコンや電話の電源などに広く利用さ
れている。そしてこの電池のさらなる高エネルギー密度
化には、金属リチウム負極の導入が有効である。
2. Description of the Related Art A lithium ion secondary battery is composed of, for example, an organic electrolyte based on LiCoO 2 for a positive electrode, natural graphite and ethylene carbonate for a negative electrode, and has a feature of high energy density. Taking advantage of this feature, it is widely used in portable personal computers and telephone power supplies. In order to further increase the energy density of this battery, the introduction of a lithium metal anode is effective.

【0003】金属リチウム負極は高い放電容量を持ち、
天然黒鉛負極と比較した場合、その理論容量は重量当た
り約10倍、体積当たり約2.5倍である。しかし容量
では優位性があるものの、金属リチウム負極には重大な
課題がある。それは充放電サイクルに伴う負極の形状変
化であり、また樹枝状リチウム(以下、デンドライトと
略す)の発生である。
[0003] A lithium metal anode has a high discharge capacity,
Compared to a natural graphite negative electrode, its theoretical capacity is about 10 times per weight and about 2.5 times per volume. However, although the capacity is superior, the lithium metal anode has a serious problem. This is a change in the shape of the negative electrode accompanying the charge / discharge cycle, and the generation of dendritic lithium (hereinafter abbreviated as dendrite).

【0004】デンドライトは基板から脱離しやすく、脱
離したものは基板との電気接触が絶たれて充放電反応に
利用されなくなる。またリチウムは強い還元剤であるた
め、電解液と反応して被膜を形成する。このため、デン
ドライトによって表面積が増大すると、被膜体積が増大
して充放電可能なリチウム量が減少する。これらの理由
から、デンドライトの発生により負極のサイクル効率は
著しく低下する。長いサイクル数を維持するには、正極
容量に対して大過剰量のリチウムを充填しなければなら
ず、結果として電池のエネルギー密度を下げることにな
る。
[0004] Dendrite is easily desorbed from the substrate, and the desorbed dendrite loses electrical contact with the substrate and is not used for the charge / discharge reaction. In addition, since lithium is a strong reducing agent, it reacts with the electrolytic solution to form a film. For this reason, when the surface area is increased by dendrites, the volume of the coating increases, and the amount of lithium that can be charged and discharged decreases. For these reasons, the generation of dendrites significantly reduces the cycle efficiency of the negative electrode. In order to maintain a long cycle number, a large excess amount of lithium must be filled with respect to the positive electrode capacity, resulting in a decrease in the energy density of the battery.

【0005】またリチウム表面積の大幅な増大は、その
ような電池を高温で使用したり保存したりすると、場合
によっては電池の発熱につながる可能性がある。Procee
dings of Seventh International Meeting on Lithium
Batteries, P.12(1994)記載のレポートによれば、充放
電により負極がデンドライト状に変化してリチウム表面
積が大幅に増大すると、自己発熱速度が急激に増大し、
極端な場合には電解液との反応により熱暴走を引き起こ
す。
[0005] Also, a significant increase in lithium surface area can lead to battery heat generation, if used or stored at high temperatures. Procee
dings of Seventh International Meeting on Lithium
According to a report described in Batteries, P.12 (1994), when the negative electrode changes into a dendrite shape due to charge and discharge and the lithium surface area increases significantly, the self-heating rate sharply increases,
In extreme cases, thermal runaway is caused by reaction with the electrolyte.

【0006】さらに、デンドライトがポリプロピレンや
ポリエチレン製の多孔質セパレータを貫通して電池の内
部短絡を招いたり、サイクル効率や安全性を低下させる
原因となる。
Furthermore, dendrites penetrate through a porous separator made of polypropylene or polyethylene, causing an internal short circuit in the battery, or reducing cycle efficiency and safety.

【0007】このデンドライトの発生を抑えるべく、従
来の有機電解液に代わる固体電解質の研究開発が推進さ
れている。中でも特に、形状フレキシブルで薄膜形成が
容易であるという点からポリマ電解質が注目されてい
る。この電解質はポリマにリチウム塩を固溶したもの
で、第32回電池討論会講演要旨集p.255(199
1)に示されるようにデンドライト析出の抑制効果も確
認されている。しかしポリマ電解質のイオン伝導度は、
ポリエチレンオキシド(以下PEOと記す)−LiCl
4複合体の場合、10-7S/cm程度である。この値
は有機電解液の10- 3〜10-2S/cmと比較して極端
に低い。そのため上記電解質を電池に組み込んだ場合、
内部抵抗が増大するため電池の放電容量を著しく損な
う。
In order to suppress the generation of the dendrite, research and development of a solid electrolyte that replaces the conventional organic electrolyte is being promoted. Above all, polymer electrolytes have attracted attention because they are flexible in shape and easy to form thin films. This electrolyte is a solid solution of a lithium salt in a polymer. 255 (199
As shown in 1), the effect of suppressing dendrite precipitation has also been confirmed. However, the ionic conductivity of the polymer electrolyte is
Polyethylene oxide (hereinafter referred to as PEO) -LiCl
In the case of the O 4 composite, it is about 10 −7 S / cm. This value is 10 for the organic electrolyte - extremely low as compared with 3 ~10 -2 S / cm. Therefore, when incorporating the above electrolyte into the battery,
Since the internal resistance increases, the discharge capacity of the battery is significantly impaired.

【0008】そこで電解液と同程度のイオン伝導度を確
保するために、ポリママトリクスの中に電解液を含浸さ
せたゲル電解質の開発が進められている。ゲルに使用さ
れるポリマはPEOのように電解液に可溶性のものが主
である。ゲルのイオン伝導はそれに含まれる液体相を介
して行われるので、電解液レベルの高いイオン伝導度が
得られる。しかしポリマが電解液に溶解してその機械強
度が弱くなるため、固体としての機能が失われる。よっ
てゲルを電池に組み込んだ場合、デンドライト成長が抑
制しきれず、それにより内部短絡を招く。よって課題は
ゲルの機械強度の向上である。
Therefore, in order to ensure the same ionic conductivity as the electrolyte, a gel electrolyte in which the electrolyte is impregnated in a polymer matrix has been developed. The polymer used for the gel is mainly soluble in the electrolyte such as PEO. Since the ionic conduction of the gel is carried out through the liquid phase contained therein, a high ionic conductivity at the level of the electrolyte can be obtained. However, since the polymer dissolves in the electrolytic solution and its mechanical strength is weakened, the function as a solid is lost. Therefore, when the gel is incorporated in the battery, dendrite growth cannot be completely suppressed, thereby causing an internal short circuit. Therefore, the problem is to improve the mechanical strength of the gel.

【0009】ゲル電解質の機械強度を向上させる手段と
して例えば特開平5−109310号公報に開示されて
いるように光架橋性モノマーと電解液の混合物を電子線
や紫外線を照射して架橋性ゲル電解質とする方法がある
が、大きな機械強度の向上は得られていない。更に、架
橋性ゲル電解質はLiCoO2のような4V級の正極に
対して不安定であり、短期間のうちにゲル電解質が分解
または変成してしまうというもある。
As a means for improving the mechanical strength of the gel electrolyte, for example, a mixture of a photocrosslinkable monomer and an electrolytic solution is irradiated with an electron beam or ultraviolet ray as disclosed in JP-A-5-109310 to form a crosslinkable gel electrolyte. However, a large improvement in mechanical strength has not been obtained. Further, the crosslinkable gel electrolyte is unstable with respect to a 4V-class positive electrode such as LiCoO 2 , and the gel electrolyte may be decomposed or denatured in a short period of time.

【0010】そこで、例えば特開昭61−183253
号公報に開示されているようにゲル電解質とポリプロピ
レン多孔膜を共存させるという方法が開発されている。
しかし、ポリプロピレン多孔膜を使用しても本質的な解
決策とはならず、上記のように多孔質セパレータを単独
で用いた場合同様、リチウムデンドライトによる内部短
絡を引き起こす。
Therefore, for example, Japanese Patent Application Laid-Open No. 61-183253
As disclosed in Japanese Unexamined Patent Publication (Kokai) No. HEI 9-205, a method of coexisting a gel electrolyte and a porous polypropylene membrane has been developed.
However, the use of a porous polypropylene membrane does not provide an essential solution, and causes an internal short circuit due to lithium dendrite as in the case where the porous separator is used alone as described above.

【0011】[0011]

【発明が解決しようとする課題】上記のようにゲル電解
質には、実用に十分なイオン伝導度、リチウムデンドラ
イトによる内部短絡を防止するための機械的強度および
4V級活物質に対する安定性が求められている。
As described above, the gel electrolyte is required to have sufficient ionic conductivity for practical use, mechanical strength for preventing internal short circuit due to lithium dendrite, and stability for 4V class active materials. ing.

【0012】本発明はゲル電解質に求められている上記
の諸特性を満足する新規ゲル電解質およびそれを用いた
電池を提供することを目的とする。
An object of the present invention is to provide a novel gel electrolyte which satisfies the above-mentioned various characteristics required for a gel electrolyte, and a battery using the same.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明のゲル状ポリマアロイ電解質は、有機電解
液に難溶性のポリマと可溶性のポリマから成るポリマア
ロイフィルムの少なくとも可溶性のポリマのミクロ相分
離のサイズを100nm未満に設定したものである。こ
の値は、デンドライトの直径よりも小さいものであるた
め、デンドライトの析出が起こらない。
In order to solve the above-mentioned problems, a gel polymer alloy electrolyte of the present invention comprises a polymer alloy film comprising a polymer which is hardly soluble in an organic electrolyte and a polymer which is soluble in an organic electrolyte. The size of the microphase separation was set to less than 100 nm. Since this value is smaller than the diameter of the dendrite, precipitation of dendrite does not occur.

【0014】さらに、電解液に難溶性のポリマには、P
VDFあるいはフッ化ビニリデンのコポリマを用いる。
また可溶性のポリマにはポリメタクリル酸メチル(PM
MA)を用いる。
Further, polymers that are hardly soluble in the electrolyte include P
VDF or vinylidene fluoride copolymer is used.
Soluble polymers include polymethyl methacrylate (PM
MA).

【0015】また、本発明のリチウム・ポリマ電池は、
負極と正極の間に上記のゲル状ポリマアロイ電解質を配
して構成したものである。本発明の電解質を使用するこ
とによりデンドライトの析出がなく、よって内部ショー
トが起こらずサイクル効率や安全性が高い電池が実現可
能となる。
Further, the lithium polymer battery of the present invention comprises:
The gel polymer alloy electrolyte is disposed between a negative electrode and a positive electrode. By using the electrolyte of the present invention, a dendrite does not precipitate, so that a battery having high cycle efficiency and safety without causing internal short circuit can be realized.

【0016】さらに、負極には金属リチウム、リチウム
合金、リチウムを吸蔵・放出可能な無機化合物、リチウ
ムを吸蔵・放出可能な炭素材の群から選ばれた少なくと
も1つを用いるものである。また、正極活物質にはリチ
ウム含有遷移金属酸化物を用いるものである。
Further, the negative electrode uses at least one selected from the group consisting of lithium metal, a lithium alloy, an inorganic compound capable of storing and releasing lithium, and a carbon material capable of storing and releasing lithium. Further, a lithium-containing transition metal oxide is used as the positive electrode active material.

【0017】[0017]

【発明の実施の形態】本発明のゲル状ポリマアロイ電解
質は、有機電解液に難溶性のポリマと可溶性のポリマか
ら成るポリマアロイフィルムと有機電解液から成り、相
分離したポリマアロイフィルムの少なくとも可溶性のポ
リマの相分離のサイズが100nm未満であるゲル状ポ
リマ電解質である。ポリマアロイフィルムの相分離のサ
イズを制御することでリチウムデンドライトの発生を抑
止するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The gel-like polymer alloy electrolyte of the present invention comprises a polymer alloy film comprising a polymer which is hardly soluble in an organic electrolyte and a polymer which is soluble in the organic electrolyte, and at least a soluble polymer alloy film which is phase-separated. It is a gelled polymer electrolyte in which the size of the polymer phase separation is less than 100 nm. By controlling the size of the phase separation of the polymer alloy film, the generation of lithium dendrite is suppressed.

【0018】また、本発明のリチウム・ポリマ電池は、
負極と正極の間に本発明のゲル状ポリマアロイ電解質を
配して構成したリチウム・ポリマ電池である。本発明の
電解質の使用により、内部ショートが起こらずサイクル
効率や安全性が高い電池が実現可能となる。
Further, the lithium polymer battery of the present invention comprises:
1 is a lithium polymer battery including a gel polymer alloy electrolyte of the present invention disposed between a negative electrode and a positive electrode. By using the electrolyte of the present invention, a battery having high cycle efficiency and high safety without causing internal short circuit can be realized.

【0019】さらに、正極、負極の少なくともいずれか
一方に本発明の高分子電解質を含むリチウム・ポリマ電
池である。電極中に本発明のポリマー電解質を混合する
ことで、活物質へのリチウムイオンまたは電解液の供給
を円滑にすることができる。
Further, there is provided a lithium polymer battery containing the polymer electrolyte of the present invention in at least one of a positive electrode and a negative electrode. By mixing the polymer electrolyte of the present invention in the electrode, it is possible to smoothly supply lithium ions or the electrolyte to the active material.

【0020】有機電解液に難溶性のポリマとしては、ポ
リフッ化ビニリデンあるいはフッ化ビニリデンのコポリ
マの群から選ばれた少なくとも1つが好ましい。
The polymer which is hardly soluble in the organic electrolyte is preferably at least one selected from the group consisting of polyvinylidene fluoride and a copolymer of vinylidene fluoride.

【0021】有機電解液に可溶性のポリマとしては、ポ
リメタクリル酸メチル(以下PMMAと記す)が100
nm未満のサイズに相分離するのに好ましい。
As the polymer soluble in the organic electrolyte, polymethyl methacrylate (hereinafter referred to as PMMA) is 100%.
Preferred for phase separation to a size less than nm.

【0022】また、ポリフッ化ビニリデンあるいはフッ
化ビニリデンのコポリマの群から選ばれた少なくとも1
つのポリマとポリメタクリル酸メチルが混合あるいは相
溶したポリマアロイフィルムと、有機電解液から成るゲ
ル状のポリマ電解質が好ましい組み合わせである。
Further, at least one selected from the group consisting of polyvinylidene fluoride and a copolymer of vinylidene fluoride.
A preferred combination is a polymer alloy film in which two polymers and polymethyl methacrylate are mixed or compatible with each other, and a gel polymer electrolyte made of an organic electrolyte.

【0023】さらに、負極としては、金属リチウム、リ
チウム合金、リチウムを吸蔵・放出可能な無機化合物、
リチウムを吸蔵・放出可能な炭素材の群から選ばれた少
なくとも1つを用いる。
Further, as the negative electrode, metallic lithium, a lithium alloy, an inorganic compound capable of occluding and releasing lithium,
At least one selected from the group of carbon materials capable of inserting and extracting lithium is used.

【0024】正極活物質としては、リチウム含有遷移金
属酸化物を用いる。本発明のゲル状ポリマアロイ電解質
は、ポリマアロイフィルムの相分離のサイズを制御する
ことでリチウムデンドライトの発生を抑止するものであ
る。
As a positive electrode active material, a lithium-containing transition metal oxide is used. The gelled polymer alloy electrolyte of the present invention suppresses the generation of lithium dendrite by controlling the size of the phase separation of the polymer alloy film.

【0025】ポリマアロイの構造は、ポリマの組み合わ
せにもよるが、Aポリマの海にBポリマの島が点在する
海島構造や、A、B各ポリマが連続的に絡み合った変調
構造などである。いずれにせよ、Aポリマリッチ相とB
ポリマリッチ相にミクロ相分離した構造を有し、そのサ
イズはいずれも数μm以下である。
The structure of the polymer alloy depends on the combination of the polymers, but includes a sea-island structure in which islands of the B polymer are scattered in the sea of the A polymer, and a modulation structure in which the A and B polymers are continuously intertwined. In any case, A polymer rich phase and B
It has a structure in which a micro phase is separated into a polymer rich phase, and its size is several μm or less.

【0026】上記の相分離構造により、ポリマアロイゲ
ルの機械強度の維持と高イオン伝導性を両立させる要因
となる。ポリマアロイフィルムを電解液に浸漬させる
と、電解液に可溶性のポリマに電解液が浸透し、ゲル状
になる。しかし、難溶性のポリマがミクロに絡み合って
いるため、可溶性のポリマは固定化され流動することは
ない。よって機械強度が強く高イオン伝導性のゲルとし
て機能する。
The above-mentioned phase-separated structure is a factor for maintaining both the mechanical strength of the polymer alloy gel and the high ionic conductivity. When the polymer alloy film is immersed in the electrolytic solution, the electrolytic solution penetrates into the polymer soluble in the electrolytic solution to form a gel. However, since the poorly soluble polymer is micro-entangled, the soluble polymer is immobilized and does not flow. Therefore, it functions as a gel having high mechanical strength and high ion conductivity.

【0027】一方、リチウムデンドライトは100nm
以上の直径を有している。このサイズがポリマアロイの
設計を行う基準になる。本電解質のイオン伝導は有機電
解液に可溶性のポリマ相を介して行われるので、リチウ
ム析出はこの相とリチウム負極との界面で行われる。
On the other hand, lithium dendrite has a thickness of 100 nm.
It has the above diameter. This size is the basis for designing a polymer alloy. Since the ionic conduction of the present electrolyte is performed through a polymer phase soluble in the organic electrolyte, lithium deposition is performed at the interface between this phase and the lithium negative electrode.

【0028】この時、ポリマアロイの可溶性のポリマの
相分離サイズが100nm以上だと、このポリマ相を介
してデンドライトが成長してしまう。しかし、相分離サ
イズが小さくデンドライトの直径以下であれば、リチウ
ムはデンドライト状に析出することができず、平坦に成
長する。
At this time, if the phase separation size of the soluble polymer of the polymer alloy is 100 nm or more, dendrite grows through the polymer phase. However, when the phase separation size is small and is equal to or less than the diameter of the dendrite, lithium cannot be deposited in a dendrite shape and grows flat.

【0029】よって本発明の電解質の使用により、内部
ショートが起こらずサイクル効率や安全性が高い電池が
実現可能となる。
Therefore, by using the electrolyte of the present invention, a battery having high cycle efficiency and high safety without causing internal short circuit can be realized.

【0030】この相分離のサイズを100nm未満とす
るのに好ましい有機電解液に難溶性のポリマはポリフッ
化ビニリデンあるいはフッ化ビニリデンのコポリマの群
から選ばれた少なくとも1つであり、可溶性のポリマが
ポリメタクリル酸メチルである。
The polymer which is preferably hardly soluble in the organic electrolyte to make the size of the phase separation smaller than 100 nm is at least one selected from the group consisting of polyvinylidene fluoride and a copolymer of vinylidene fluoride. Polymethyl methacrylate.

【0031】また、ポリフッ化ビニリデンとPMMAは
ともにLiCoO2などの4V級正極活物質に対して安
定であるため、前記の架橋性ゲル電解質では実現が困難
であった4V級リチウム二次電池にも適用可能となる。
Further, since both polyvinylidene fluoride and PMMA are stable with respect to a 4V-class positive electrode active material such as LiCoO 2, it is difficult to realize a 4V-class lithium secondary battery which has been difficult to realize with the above-mentioned crosslinkable gel electrolyte. Applicable.

【0032】特に、負極としてデンドライトが析出しや
すい金属リチウムを用いた場合の効果が大きい。しか
し、金属リチウムに比べデンドライトの発生・成長が改
善されている、例えばリチウム合金、リチウムの吸蔵放
出が可能な無機化合物、炭素などを用いた場合でも、本
発明の電解質を用いれば安全性や各種特性を向上するこ
とができる。
In particular, the effect is large when lithium metal on which dendrite is liable to precipitate is used as the negative electrode. However, the generation and growth of dendrites are improved compared to metallic lithium.For example, even when a lithium alloy, an inorganic compound capable of inserting and extracting lithium, and carbon are used, the safety and various properties can be improved by using the electrolyte of the present invention. Characteristics can be improved.

【0033】[0033]

【実施例】以下、本発明の実施例を図面とともに説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0034】(実施例1)本実施例では、有機溶媒に難
溶性のポリマであるPVDFと、可溶性のポリマである
PMMAとを相溶させて得たポリマアロイフィルムのゲ
ル電解質を作製した。
Example 1 In this example, a gel electrolyte of a polymer alloy film obtained by making PVDF, which is a polymer hardly soluble in an organic solvent, and PMMA, which is a soluble polymer, compatible with each other was produced.

【0035】ポリマアロイフィルムの作製方法を下記に
示す。まず、N−メチル−2−ピロリジノン(以下NM
Pと記す)にPVDFを1〜10重量%とPMMAを1
〜10重量%溶解したポリマの液体を50:50の重量
比率で混合し調整した。次に、得られた溶液を平滑な金
属板あるいはガラス板に塗布し、80℃の乾燥機中で溶
媒を蒸発除去して薄膜のポリマアロイフィルムを得た。
溶液の塗布量はフィルム厚みが20μmになるように調
整した。得られたフィルムはさらに80℃で真空乾燥し
て、残存溶媒や水分を十分に除去した。
The method for producing the polymer alloy film is described below. First, N-methyl-2-pyrrolidinone (hereinafter NM)
P), 1 to 10% by weight of PVDF and 1 of PMMA
A polymer liquid in which 10% by weight was dissolved was mixed and adjusted at a weight ratio of 50:50. Next, the obtained solution was applied to a smooth metal plate or a glass plate, and the solvent was removed by evaporation in a dryer at 80 ° C. to obtain a thin polymer alloy film.
The amount of the solution applied was adjusted so that the film thickness became 20 μm. The obtained film was further vacuum-dried at 80 ° C. to sufficiently remove the residual solvent and moisture.

【0036】得られたポリマアロイフィルムを透過型電
子顕微鏡にて観察したところ、明確な相分離構造は認め
られなかった。100nm以上の相分離構造が存在して
いるならば透過型電子顕微鏡で十分確認できることか
ら、本発明のポリマアロイフィルムは100nm未満の
相分離構造を有するものであると結論できる。
When the obtained polymer alloy film was observed with a transmission electron microscope, no clear phase separation structure was observed. If a phase separation structure of 100 nm or more exists, it can be sufficiently confirmed by a transmission electron microscope, and it can be concluded that the polymer alloy film of the present invention has a phase separation structure of less than 100 nm.

【0037】ゲル電解質は上記ポリマアロイフィルムを
有機電解液の浴槽に浸漬させることにより得た。有機電
解液としては、エチレンカーボネートとエチルメチルカ
ーボネートが25:75の体積混合溶媒に、溶質として
LiPF6を1.5モル/リットル溶解したものを使用
した。
The gel electrolyte was obtained by immersing the polymer alloy film in a bath of an organic electrolyte. As the organic electrolyte, a solution prepared by dissolving 1.5 mol / l of LiPF 6 as a solute in a 25:75 volume mixed solvent of ethylene carbonate and ethyl methyl carbonate was used.

【0038】上記のゲル電解質を直径17mmに打ち抜
き、2枚の直径15mmの金属リチウム箔で挟み、コイ
ン型電池ケース内に設置、封口してイオン伝導度測定用
セルを作製した。交流インピーダンス法によりイオン伝
導度を測定した結果、イオン伝導度は、σ=1.2×1
-3S・cm-1であった。
The above gel electrolyte was punched out to a diameter of 17 mm, sandwiched between two pieces of metallic lithium foil having a diameter of 15 mm, placed in a coin-type battery case, and sealed to prepare a cell for ion conductivity measurement. As a result of measuring the ionic conductivity by the AC impedance method, the ionic conductivity was σ = 1.2 × 1
It was 0 -3 S · cm -1 .

【0039】さらに、上記のゲル電解質を直径15mm
に打ち抜いたものを用いて図1に示すコイン型電池を作
製した。正極層4は活物質であるLiCoO2と導電材
のカーボンフラックと結着材のポリ4フッ化エチレンの
水性ディスパージョンを重量比で100:3:10の割
合で混合したものをアルミニウム箔の正極集電体5に塗
着、乾燥し、圧延したのち、直径12.5mmに打ち抜
いて作製した。負極層2は直径14mmの金属リチウム
をコイン型電池ケースの蓋3に直接圧着して作製した。
上記の正極、ポリマアロイのゲル電解質1、負極を積層
し、コイン型電池ケース6内に設置し、ガスケット7で
封口することにより本実施例1の電池を作製した。
Further, the above gel electrolyte was used for a 15 mm diameter.
The coin-shaped battery shown in FIG. The positive electrode layer 4 is made of a mixture of LiCoO 2 as an active material, an aqueous dispersion of carbon flux as a conductive material, and an aqueous dispersion of polytetrafluoroethylene as a binder at a weight ratio of 100: 3: 10. After being coated on the current collector 5, dried and rolled, it was punched out to a diameter of 12.5 mm. The negative electrode layer 2 was produced by directly pressing metal lithium having a diameter of 14 mm to the lid 3 of the coin-type battery case.
The above positive electrode, polymer alloy gel electrolyte 1, and negative electrode were laminated, placed in a coin-type battery case 6, and sealed with a gasket 7 to produce a battery of Example 1.

【0040】(比較例1)電解質として、ポリフッ化ビ
ニリデンを電解液でゲル化したものをポリプロピレン多
孔膜の多孔部に挿入してなるゲル電解質を用いて、実施
例1と同様の構成のイオン伝導度測定用セルおよびコイ
ン型電池を作製した。
(Comparative Example 1) As the electrolyte, a gel electrolyte obtained by gelling polyvinylidene fluoride with an electrolytic solution and inserting it into the porous portion of a polypropylene porous membrane was used, and an ion conductor having the same structure as in Example 1 was used. A cell for measuring the degree and a coin-type battery were produced.

【0041】イオン伝導度測定用セルは次のようにして
作製した。エチレンカーボネートとエチルメチルカーボ
ネートが25:75の体積混合溶媒に、溶質としてLi
PF 6を1.5モル/リットル溶解したもの電解液8.
5gにPVDF粉末1.5gを加え十分に分散させた。
前記PVDF分散液を直径17mmのポリプロピレン多
孔膜セパレータ(多孔度38%)に塗布した後、このセパ
レータを2枚の直径15mmの金属リチウム箔で挟み、
コイン型電池ケース内に設置、封口してイオン伝導度測
定用セルを作製した。作製したコイン型セルを90℃5
分間加熱してPVDF分散液を完全にゲル化することに
より目的の高分子ゲル電解質を作製した。加熱終了後、
コイン型セルを室温まで冷却し、交流インピーダンス法
を用いてゲル電解質のイオン伝導度を測定した。その結
果、σ=8.1×10-4S・cm -1であった。
The cell for measuring ionic conductivity is as follows.
Produced. Ethylene carbonate and ethyl methyl carbonate
Lithium as a solute in a 25:75 volumetric mixed solvent
PF 67. A solution prepared by dissolving 1.5 mol / L
1.5 g of PVDF powder was added to 5 g and sufficiently dispersed.
The PVDF dispersion was mixed with polypropylene having a diameter of 17 mm.
After coating on a porous membrane separator (porosity 38%),
Between two pieces of metallic lithium foil having a diameter of 15 mm.
Installed in a coin-type battery case, sealed and measured for ion conductivity
A regular cell was prepared. 90 ° C 5
Heating for a minute to completely gel the PVDF dispersion
A more desired polymer gel electrolyte was prepared. After heating,
Cool coin cell to room temperature and use AC impedance method
Was used to measure the ionic conductivity of the gel electrolyte. The result
Result, σ = 8.1 × 10-FourS ・ cm -1Met.

【0042】コイン型電池を実施例1と同様の構成に
し、イオン伝導度測定用セルと同様の方法で作製した。
これを比較例1の電池とする。
A coin-type battery was constructed in the same manner as in Example 1, and manufactured in the same manner as the cell for measuring ion conductivity.
This is referred to as a battery of Comparative Example 1.

【0043】(比較例2)ゲル電解質として架橋性ゲル
電解質を用いて、実施例1と同様の構成のコイン型電池
を作製した。
(Comparative Example 2) A coin-type battery having the same configuration as that of Example 1 was manufactured using a crosslinkable gel electrolyte as the gel electrolyte.

【0044】コイン型電池は次のようにして作製した。
光架橋性ポリマーであるポリエチレングリコールジアク
リレート、光重合開始剤ベンジルジメチルケタール、プ
ロピレンカーボネートとエチレンカーボネートの等体積
混合物にLiPF6を1モル/L溶解した電解液を重量
比20:0.1:80で混合した溶液を調整した。この
溶液を負極金属リチウム上に厚さ50μmで塗布し、こ
れに最大出力波長365nmの紫外線を3分間照射し
た。これにより前記モノマーが重合硬化して、非水電解
液を含有したゲル電解質が負極金属リチウム上に形成さ
れる。これに実施例1と同じ正極を積層し、電池ケース
内に配置することで比較例2の電池を得た。
The coin-type battery was manufactured as follows.
An electrolyte obtained by dissolving 1 mol / L of LiPF 6 in an equal volume mixture of polyethylene glycol diacrylate, a photocrosslinkable polymer, photopolymerization initiator benzyl dimethyl ketal, propylene carbonate and ethylene carbonate, at a weight ratio of 20: 0.1: 80. To prepare a mixed solution. This solution was applied on the negative electrode metal lithium in a thickness of 50 μm, and this was irradiated with ultraviolet rays having a maximum output wavelength of 365 nm for 3 minutes. As a result, the monomer is polymerized and hardened, and a gel electrolyte containing a non-aqueous electrolyte is formed on the negative electrode metal lithium. The same positive electrode as in Example 1 was stacked thereon and placed in a battery case to obtain a battery of Comparative Example 2.

【0045】実施例1および比較例1、2の電池の1サ
イクル目の充放電曲線を図2に示す。電池試験は0.5
6mA/cm2の定電流方式で行い、4.2V〜3.0
Vの電圧範囲で室温にて測定した。
FIG. 2 shows charge / discharge curves of the batteries of Example 1 and Comparative Examples 1 and 2 in the first cycle. Battery test is 0.5
It is performed by a constant current method of 6 mA / cm 2 , and is from 4.2 V to 3.0 V.
The measurement was performed at room temperature in a voltage range of V.

【0046】図2より、実施例1および比較例1のリチ
ウム・ポリマ電池の放電容量は2.0mA/cm2以上
の放電容量を示し、常温作動型の電池として十分な性能
を有するものである。一方、比較例2の電池は充電時の
電池電圧が4.1V付近で平坦になり、4.2Vまで充
電できなかった。これは架橋性ゲル電解質が酸化作用の
強いLiCoO2によって分解しているためであると考
えられる。
As shown in FIG. 2, the discharge capacity of the lithium polymer batteries of Example 1 and Comparative Example 1 is 2.0 mA / cm 2 or more, and has sufficient performance as a normal temperature operation type battery. . On the other hand, the battery of Comparative Example 2 became flat when the battery voltage at the time of charging was around 4.1 V, and could not be charged to 4.2 V. This is considered to be because the crosslinkable gel electrolyte was decomposed by LiCoO 2 having a strong oxidizing effect.

【0047】次に、実施例1及び比較例1の電池を充電
電流0.2C(0.56mA/cm 2)とし、放電電流
0.2C(0.56mA/cm2)、0.5C(1.4
mA/cm2),1.0C(2.8mA/cm2)、2.
0C(5.6mA/cm2)の各条件で試験を行い、そ
の放電容量を測定した。その結果を図3に示す。
Next, the batteries of Example 1 and Comparative Example 1 were charged.
Current 0.2C (0.56 mA / cm Two) And discharge current
0.2C (0.56mA / cmTwo), 0.5C (1.4
mA / cmTwo), 1.0 C (2.8 mA / cmTwo), 2.
0C (5.6 mA / cmTwoTest under each condition of
Was measured for discharge capacity. The result is shown in FIG.

【0048】図3より実施例1は比較例1と比較して、
すべての放電電流において放電特性が優れている。実施
例1の電池のゲル電解質はPVDFとPMMAが相溶化
しているため実質的に均質な高分子電解質だけでできて
おり、イオン移動がセパレータ全体で容易に行われてい
るためである。一方、比較例1ではポリプロピレン多孔
膜の多孔度が38%と低い上に、多孔膜の孔の中にゲル
電解質が詰め込まれているという構造を持つため、イオ
ン移動がセパレータ全体で容易に行われず、孔の部分だ
けで部分的に行われるためである。図3から分かるよう
に、この違いは放電電流値が高いハイレート放電になる
ほど顕著に表れる。
FIG. 3 shows that Example 1 is different from Comparative Example 1 in that
Excellent discharge characteristics at all discharge currents. This is because the gel electrolyte of the battery of Example 1 is made of only a substantially homogeneous polymer electrolyte because PVDF and PMMA are compatible with each other, and ion transfer is easily performed in the entire separator. On the other hand, Comparative Example 1 has a structure in which the porosity of the polypropylene porous membrane is as low as 38% and the gel electrolyte is packed in the pores of the porous membrane, so that ion transfer is not easily performed in the entire separator. This is because the process is partially performed only at the hole portion. As can be seen from FIG. 3, this difference becomes more pronounced as the discharge current value becomes higher and the discharge rate becomes higher.

【0049】図4に実施例1と比較例1の電池のサイク
ル特性を示す。実施例1および比較例1の電池は共に3
00サイクルまで安定に充放電した。実施例1の電池を
300サイクル目が終了したところで分解観察した結
果、リチウム負極と電解質の界面に僅かにデンドライト
が堆積していたが、デンドライトの貫通は認められなか
った。同様に比較例1の電池も分解観察した結果、デン
ドライトの貫通は認められなかったが、ポリプロピレン
多孔膜の孔中のゲル電解質で生成していた。このことか
ら実施例1の電池がリチウムデンドライトの成長を抑制
し、高い安全性と高い信頼性を有するリチウム二次電池
として機能することが明らかになった。
FIG. 4 shows the cycle characteristics of the batteries of Example 1 and Comparative Example 1. The batteries of Example 1 and Comparative Example 1 were 3
It was charged and discharged stably until 00 cycles. When the battery of Example 1 was disassembled and observed at the end of the 300th cycle, dendrites were slightly deposited at the interface between the lithium negative electrode and the electrolyte, but no penetration of dendrites was observed. Similarly, when the battery of Comparative Example 1 was disassembled and observed, no penetration of dendrite was observed, but the battery was formed by the gel electrolyte in the pores of the polypropylene porous membrane. This proved that the battery of Example 1 suppressed the growth of lithium dendrite and functioned as a lithium secondary battery having high safety and high reliability.

【0050】(実施例2)本願発明のポリマーアロイゲ
ル電解質を正極および負極中にも配合したポリマー二次
電池を作製した。
Example 2 A polymer secondary battery was prepared in which the polymer alloy gel electrolyte of the present invention was also incorporated into a positive electrode and a negative electrode.

【0051】正極は、コバルト酸リチウム5g、カーボ
ンブラック0.15g、ポリフッ化ビニリデンのN−メ
チル−2−ピロリジノン(以下NMPと記す)溶液(1
2重量%)とポリメタクリル酸メチルのNMP溶液(1
2重量%)の混合溶液4gを混合して得られたペースト
をアルミニウム集電体上に塗着、乾燥、圧延し、直径1
5mmの大きさに打ち抜いた。次に得られた正極を実施
例1と同じ電解液中に浸漬し、−50cmHgまで減圧
して注液した。
The positive electrode was made of 5 g of lithium cobaltate, 0.15 g of carbon black, and an N-methyl-2-pyrrolidinone (hereinafter referred to as NMP) solution of polyvinylidene fluoride (1).
2% by weight) and an NMP solution of polymethyl methacrylate (1
(2% by weight) was mixed, and the paste obtained was applied on an aluminum current collector, dried and rolled to obtain a paste having a diameter of 1%.
Punched to a size of 5 mm. Next, the obtained positive electrode was immersed in the same electrolytic solution as in Example 1, and the pressure was reduced to −50 cmHg and injected.

【0052】負極は、球状黒鉛10g、炭素繊維0.5
3g、ポリフッ化ビニリデンのNMP溶液(12重量
%)とポリメタクリル酸メチルのNMP溶液(12重量
%)の混合溶液8.4g、NMP4.2g、アセトニト
リル4.2gを混合して調整したペーストを銅集電体上
に塗着、乾燥、圧延し、直径15mmの大きさに打ち抜
いて作製した。次に得られた負極をを実施例1と同じ電
解液中に浸漬し、−50cmHgまで減圧して注液し
た。
The negative electrode was made of 10 g of spherical graphite, 0.5 g of carbon fiber.
3g, NMP solution of polyvinylidene fluoride (12% by weight) and NMP solution of polymethyl methacrylate (12% by weight)
%), A paste prepared by mixing 8.4 g of a mixed solution of NMP, 4.2 g of NMP, and 4.2 g of acetonitrile was applied onto a copper current collector, dried, rolled, and punched to a size of 15 mm in diameter. Next, the obtained negative electrode was immersed in the same electrolytic solution as in Example 1, and the pressure was reduced to −50 cmHg and injected.

【0053】ポリマーアロイゲル電解質は実施例1と同
様の方法で作製し、直径16mmの大きさに打ち抜い
た。
A polymer alloy gel electrolyte was prepared in the same manner as in Example 1, and was punched into a size having a diameter of 16 mm.

【0054】上記正極、ゲル電解質、負極を積層し、コ
イン型電池ケース内に設置、封口した。得られた電池を
充電電流0.2C(0.56mA/cm2)とし、放電
電流0.2C(0.56mA/cm2)、0.5C
(1.4mA/cm2),1.0C(2.8mA/c
2)、2.0C(5.6mA/cm2)の各条件で試験
を行い、その放電容量を測定した。その結果を図3に示
す。
The above positive electrode, gel electrolyte, and negative electrode were laminated, placed in a coin-type battery case, and sealed. The obtained battery was set to a charge current of 0.2 C (0.56 mA / cm 2 ), a discharge current of 0.2 C (0.56 mA / cm 2 ), and 0.5 C
(1.4 mA / cm 2 ), 1.0 C (2.8 mA / c)
m 2 ) and 2.0 C (5.6 mA / cm 2 ), and the discharge capacity was measured. The result is shown in FIG.

【0055】図3から明らかなように、本発明のゲル電
解質を正極及び負極内に配合した電池ではハイレート放
電においても非常に良好な放電特性を示している。これ
には2つの要因が考えられる。第1は、炭素負極の方が
リチウム金属負極より圧倒的に反応面積が大きいという
要因である。第2の要因は、実施例1や比較例1の極板
では圧延によって活物質間が密に詰まっているため充放
電時におけるリチウムイオンや電解液の移動がある程度
阻害されていることである。一方、電極内に配合された
実施例2の極板は活物質の周りに本発明のポリマーアロ
イが存在するため圧延された電極でも注液するとこのポ
リマーアロイが電解液を吸収し、活物質へリチウムイオ
ンや電解液をスムーズに供給することができる。このた
め実施例2の電池はハイレート放電においても良好な特
性を示すことができると考えられる。
As is apparent from FIG. 3, the battery in which the gel electrolyte of the present invention is blended in the positive electrode and the negative electrode shows very good discharge characteristics even at high rate discharge. This can be attributed to two factors. The first is that the carbon anode has an overwhelmingly larger reaction area than the lithium metal anode. The second factor is that in the electrode plates of Example 1 and Comparative Example 1, the movement of lithium ions and the electrolyte during charge / discharge is hindered to some extent because the active materials are closely packed by rolling. On the other hand, the electrode plate of Example 2 blended in the electrode has the polymer alloy of the present invention around the active material, so that even when the rolled electrode is injected, this polymer alloy absorbs the electrolytic solution, and Lithium ions and electrolyte can be supplied smoothly. Therefore, it is considered that the battery of Example 2 can exhibit good characteristics even in high-rate discharge.

【0056】なお、本実施例では、電解液に難溶性のポ
リマとしてPVDFを用いたが、これはフッ化ビニリデ
ンのコポリマやその他のポリマであってもよい。
In this embodiment, PVDF is used as the polymer which is hardly soluble in the electrolytic solution. However, it may be a copolymer of vinylidene fluoride or another polymer.

【0057】また、本実施例では、電解液に可溶性のポ
リマとしてPMMAを用いたが、これはポリアクリル酸
メチルやポリメタクリル酸エチル等、他のポリマであっ
てもよい。
In this embodiment, PMMA is used as the polymer soluble in the electrolytic solution. However, other polymers such as polymethyl acrylate and polyethyl methacrylate may be used.

【0058】なお、本実施例では、有機電解液に難溶性
のポリマとしてPVDF、可溶性のポリマとしてPMM
Aを用いたときの適切な配合比率を示したが、相分離サ
イズが小さく機械強度の強い高イオン伝導性の電解質と
して機能が発現する配合比率は物質によって異なるもの
である。
In this embodiment, PVDF is used as the polymer which is hardly soluble in the organic electrolyte, and PMM is used as the polymer which is soluble in the organic electrolyte.
Although the appropriate compounding ratio when A was used was shown, the compounding ratio at which the function as a high ion conductive electrolyte having a small phase separation size and a high mechanical strength differs depending on the substance.

【0059】また、本実施例では、有機電解液の溶質と
してLiPF6を用いたが、これはLiCF3SO3,L
iClO4,LiN(CF3SO22,LiAsF6ある
いはLiBF4など他のリチウム塩であってもよい。
In the present embodiment, LiPF 6 was used as a solute of the organic electrolyte, but this was made of LiCF 3 SO 3 , L
Other lithium salts such as iClO 4 , LiN (CF 3 SO 2 ) 2 , LiAsF 6 or LiBF 4 may be used.

【0060】また、本実施例では、有機電解液の溶媒と
してプロピレンカーボネートとエチレンカーボネートの
等体積混合溶媒を用いたが、これは他の有機溶媒や混合
溶媒でもよい。
In this embodiment, an equal volume mixed solvent of propylene carbonate and ethylene carbonate is used as the solvent for the organic electrolyte. However, this may be another organic solvent or a mixed solvent.

【0061】また、本実施例では、負極に金属リチウム
を用いたが、本発明はリチウムイオン電池系にも有効で
あり、リチウム合金、リチウムを吸蔵・放出可能な無機
化合物あるいはリチウムを吸蔵・放出可能な炭素材であ
ってもよい。
In this embodiment, metallic lithium is used for the negative electrode. However, the present invention is also effective for a lithium ion battery system, and uses a lithium alloy, an inorganic compound capable of occluding and releasing lithium, or occluding and releasing lithium. A possible carbon material may be used.

【0062】また、本実施例では、正極活物質にLiC
oO2を用いたが、これはLiNiO2,LiMn24
るいはLiMnO2など他のリチウム遷移金属酸化物で
あってもよく、リチウムを含有しないMnO2やV25
などの金属化合物であってもよい。
In this embodiment, the positive electrode active material is LiC
Although oO 2 was used, it may be another lithium transition metal oxide such as LiNiO 2 , LiMn 2 O 4, or LiMnO 2 , and lithium-free MnO 2 or V 2 O 5
And the like.

【0063】[0063]

【発明の効果】以上のように本発明によれば、ポリマア
ロイフィルムの少なくとも可溶性のポリマが100nm
未満のスケールで相分離しているゲル状のポリマアロイ
電解質を用いることにより、リチウムデンドライトの発
生を抑制することが可能となった。また、これをリチウ
ム電池用の負極と正極の間に配し構成することにより、
電池特性が良く、安全性・信頼性の高い電池が得られ
た。
As described above, according to the present invention, at least the soluble polymer of the polymer alloy film has a thickness of 100 nm.
By using a gel-like polymer alloy electrolyte that is phase-separated on a scale smaller than that, generation of lithium dendrite can be suppressed. Also, by arranging this between the negative electrode and the positive electrode for the lithium battery,
A battery with good battery characteristics and high safety and reliability was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のゲル電解質を用いたコイン型リチウム
電池の縦断面図
FIG. 1 is a longitudinal sectional view of a coin-type lithium battery using a gel electrolyte of the present invention.

【図2】本発明のゲル電解質および比較のゲル電解質を
用いたリチウム電池の充放電曲線を示す図
FIG. 2 is a diagram showing charge / discharge curves of lithium batteries using the gel electrolyte of the present invention and a comparative gel electrolyte.

【図3】本発明のゲル電解質および比較のゲル電解質を
用いたリチウム電池の放電特性を示す図
FIG. 3 is a diagram showing discharge characteristics of lithium batteries using the gel electrolyte of the present invention and a comparative gel electrolyte.

【図4】本発明のゲル電解質および比較のゲル電解質を
用いたリチウム電池のサイクル特性を示す図
FIG. 4 is a diagram showing cycle characteristics of lithium batteries using the gel electrolyte of the present invention and a comparative gel electrolyte.

【符号の説明】[Explanation of symbols]

1 ゲル電解質 2 負極層 3 蓋 4 正極層 5 正極集電体 6 電池ケース 7 ガスケット Reference Signs List 1 gel electrolyte 2 negative electrode layer 3 lid 4 positive electrode layer 5 positive electrode current collector 6 battery case 7 gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 明子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Akiko Ishida 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 有機電解液に難溶性のポリマと可溶性の
ポリマから成るポリマアロイフィルムと、有機電解液か
ら成るゲル状ポリマ電解質において、相分離しているポ
リマアロイフィルムの少なくとも可溶性のポリマの相分
離のサイズが100nm未満であるポリマ電解質。
1. A polymer alloy film comprising a polymer which is hardly soluble in an organic electrolyte and a polymer soluble therein, and a gel polymer electrolyte comprising an organic electrolyte, wherein at least a polymer phase of the polymer alloy film which is phase-separated is soluble. A polymer electrolyte having a separation size of less than 100 nm.
【請求項2】 有機電解液に難溶性のポリマがポリフッ
化ビニリデンあるいはフッ化ビニリデンのコポリマの群
から選ばれた少なくとも1つである請求項1記載のポリ
マ電解質。
2. The polymer electrolyte according to claim 1, wherein the polymer that is hardly soluble in the organic electrolyte is at least one selected from the group consisting of polyvinylidene fluoride and a copolymer of vinylidene fluoride.
【請求項3】 有機電解液に可溶性のポリマがポリメタ
クリル酸メチルである請求項1記載のポリマ電解質。
3. The polymer electrolyte according to claim 1, wherein the polymer soluble in the organic electrolyte is polymethyl methacrylate.
【請求項4】 ポリフッ化ビニリデンあるいはフッ化ビ
ニリデンのコポリマの群から選ばれた少なくとも1つの
ポリマとポリメタクリル酸メチルが混合あるいは相溶し
たポリマアロイフィルムと、有機電解液から成るゲル状
のポリマ電解質において、相分離しているポリマアロイ
フィルムの少なくとも可溶性のポリマの相分離のサイズ
が100nm未満であるポリマ電解質。
4. A gel polymer electrolyte comprising a polymer alloy film in which at least one polymer selected from the group consisting of polyvinylidene fluoride or a copolymer of vinylidene fluoride and polymethyl methacrylate is mixed or dissolved, and an organic electrolyte solution. 2. The polymer electrolyte according to claim 1, wherein at least the soluble polymer of the phase-separated polymer alloy film has a phase separation size of less than 100 nm.
【請求項5】 負極と正極の間にポリマ電解質を配した
構成のリチウム電池において、ポリマ電解質は有機電解
液に難溶性のポリマと可溶性のポリマから成るポリマア
ロイフィルムと、有機電解液から成るゲル状ポリマ電解
質であり、相分離しているポリマアロイフィルムの少な
くとも可溶性のポリマの相分離のサイズが100nm未
満であるリチウム・ポリマ電池。
5. A lithium battery having a structure in which a polymer electrolyte is disposed between a negative electrode and a positive electrode, wherein the polymer electrolyte is a polymer alloy film comprising a polymer which is hardly soluble in an organic electrolyte and a polymer which is soluble in the organic electrolyte, and a gel comprising the organic electrolyte. A lithium polymer battery which is a solid polymer electrolyte and wherein the size of at least the soluble polymer phase separation of the phase separated polymer alloy film is less than 100 nm.
【請求項6】 前記ポリマ電解質を負極または正極中に
含む請求項5に記載のリチウム・ポリマ電池。
6. The lithium polymer battery according to claim 5, wherein the polymer electrolyte is contained in a negative electrode or a positive electrode.
【請求項7】 負極が金属リチウム、リチウム合金、リ
チウムを吸蔵・放出可能な無機化合物、リチウムを吸蔵
・放出可能な炭素材の群から選ばれた少なくとも1つで
ある請求項5あるいは6に記載のリチウム・ポリマ電
池。
7. The negative electrode according to claim 5, wherein the negative electrode is at least one selected from the group consisting of lithium metal, a lithium alloy, an inorganic compound capable of storing and releasing lithium, and a carbon material capable of storing and releasing lithium. Lithium polymer battery.
【請求項8】 正極活物質がリチウム含有遷移金属酸化
物である請求項5あるいは6に記載のリチウム・ポリマ
電池。
8. The lithium polymer battery according to claim 5, wherein the positive electrode active material is a lithium-containing transition metal oxide.
【請求項9】 有機電解液に難溶性のポリマがポリフッ
化ビニリデンあるいはフッ化ビニリデンのコポリマの群
から選ばれた少なくとも1つである請求項5あるいは6
に記載のリチウム・ポリマ電池。
9. The polymer insoluble in an organic electrolyte is at least one selected from the group consisting of polyvinylidene fluoride and a copolymer of vinylidene fluoride.
4. The lithium polymer battery according to 1.
【請求項10】 有機電解液に可溶性のポリマがポリメ
タクリル酸メチルである請求項5あるいは6に記載のリ
チウム・ポリマ電池。
10. The lithium polymer battery according to claim 5, wherein the polymer soluble in the organic electrolyte is polymethyl methacrylate.
JP10003663A 1997-01-20 1998-01-12 Polymer electrolyte and lithium polymer battery using it Pending JPH10261437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10003663A JPH10261437A (en) 1997-01-20 1998-01-12 Polymer electrolyte and lithium polymer battery using it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-7285 1997-01-20
JP728597 1997-01-20
JP10003663A JPH10261437A (en) 1997-01-20 1998-01-12 Polymer electrolyte and lithium polymer battery using it

Publications (1)

Publication Number Publication Date
JPH10261437A true JPH10261437A (en) 1998-09-29

Family

ID=26337293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10003663A Pending JPH10261437A (en) 1997-01-20 1998-01-12 Polymer electrolyte and lithium polymer battery using it

Country Status (1)

Country Link
JP (1) JPH10261437A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090728A (en) * 1998-09-10 2000-03-31 Korea Advanced Inst Of Sci Technol Homogenous solid polymer-alloy electrolyte and manufacture thereof, composite electrode using electrolyte, lithium high polymer battery and lithium ion high polymer battery, and manufacture thereof
JP2001332302A (en) * 2000-05-22 2001-11-30 Toshiba Battery Co Ltd Gel electrolyte precursor, nonaqueous secondary cell and method of manufacturing nonaqueous secondary cell
WO2017199572A1 (en) * 2016-05-17 2017-11-23 ソニー株式会社 Secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
USRE47520E1 (en) 2000-04-10 2019-07-16 Celgard, Llc Separator for a high energy rechargeable lithium battery
WO2020054546A1 (en) * 2018-09-14 2020-03-19 株式会社クレハ Resin dispersion electrolyte solution, polymer gel electrolyte, production method for polymer gel electrolyte, secondary battery, and production method for secondary battery
WO2020054548A1 (en) * 2018-09-14 2020-03-19 株式会社クレハ Resin dispersion electrolyte solution, polymer gel electrolyte, production method for polymer gel electrolyte, secondary battery, and production method for secondary battery
CN117352954A (en) * 2023-12-06 2024-01-05 天津力神电池股份有限公司 Sodium-supplementing electrolyte diaphragm, preparation method and battery
CN117374515A (en) * 2023-12-06 2024-01-09 天津力神电池股份有限公司 Separator with lithium ion capacity compensation function, preparation method thereof and battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090728A (en) * 1998-09-10 2000-03-31 Korea Advanced Inst Of Sci Technol Homogenous solid polymer-alloy electrolyte and manufacture thereof, composite electrode using electrolyte, lithium high polymer battery and lithium ion high polymer battery, and manufacture thereof
USRE47520E1 (en) 2000-04-10 2019-07-16 Celgard, Llc Separator for a high energy rechargeable lithium battery
JP2001332302A (en) * 2000-05-22 2001-11-30 Toshiba Battery Co Ltd Gel electrolyte precursor, nonaqueous secondary cell and method of manufacturing nonaqueous secondary cell
WO2017199572A1 (en) * 2016-05-17 2017-11-23 ソニー株式会社 Secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
JPWO2017199572A1 (en) * 2016-05-17 2018-12-27 株式会社村田製作所 Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
US10707528B2 (en) 2016-05-17 2020-07-07 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
WO2020054548A1 (en) * 2018-09-14 2020-03-19 株式会社クレハ Resin dispersion electrolyte solution, polymer gel electrolyte, production method for polymer gel electrolyte, secondary battery, and production method for secondary battery
WO2020054546A1 (en) * 2018-09-14 2020-03-19 株式会社クレハ Resin dispersion electrolyte solution, polymer gel electrolyte, production method for polymer gel electrolyte, secondary battery, and production method for secondary battery
JPWO2020054548A1 (en) * 2018-09-14 2021-02-15 株式会社クレハ Resin dispersion electrolyte, polymer gel electrolyte and its manufacturing method, and secondary battery and its manufacturing method
JPWO2020054546A1 (en) * 2018-09-14 2021-02-15 株式会社クレハ Resin dispersion electrolyte, polymer gel electrolyte and its manufacturing method, and secondary battery and its manufacturing method
CN117352954A (en) * 2023-12-06 2024-01-05 天津力神电池股份有限公司 Sodium-supplementing electrolyte diaphragm, preparation method and battery
CN117374515A (en) * 2023-12-06 2024-01-09 天津力神电池股份有限公司 Separator with lithium ion capacity compensation function, preparation method thereof and battery
CN117352954B (en) * 2023-12-06 2024-04-19 天津力神电池股份有限公司 Sodium-supplementing electrolyte diaphragm, preparation method and battery
CN117374515B (en) * 2023-12-06 2024-04-19 天津力神电池股份有限公司 Separator with lithium ion capacity compensation function, preparation method thereof and battery

Similar Documents

Publication Publication Date Title
CA2117730C (en) Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP4109522B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
KR20040025572A (en) Separator for lithium-ion secondary battery and lithium-ion secondary battery comprising the same
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP4210440B2 (en) Gel-like electrolyte and lithium battery using the same
KR100306870B1 (en) Polymer electrolyte and lithium-polymer battery using the same
JP2001210377A (en) Polymer electrolyte composition, its manufacturing method and lithium secondary battery which utilizes it
JP2000138073A (en) Entire solid lithium secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2003331838A (en) Lithium secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP2003168427A (en) Nonaqueous electrolyte battery
JP4132945B2 (en) Nonaqueous electrolyte lithium ion battery and separator therefor
JP2000113872A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP4449269B2 (en) Lithium battery
JP2000348729A (en) Positive electrode plate for lithium secondary battery, its manufacture and lithium secondary battery manufactured by using the positive electrode plate
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3383454B2 (en) Lithium secondary battery
JP2004071244A (en) Nonaqueous electrolyte battery
JP2002158037A5 (en)
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP2002093463A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040805

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708