Nothing Special   »   [go: up one dir, main page]

JP4109522B2 - Lithium ion secondary battery separator and lithium ion secondary battery using the same - Google Patents

Lithium ion secondary battery separator and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP4109522B2
JP4109522B2 JP2002270620A JP2002270620A JP4109522B2 JP 4109522 B2 JP4109522 B2 JP 4109522B2 JP 2002270620 A JP2002270620 A JP 2002270620A JP 2002270620 A JP2002270620 A JP 2002270620A JP 4109522 B2 JP4109522 B2 JP 4109522B2
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
separator
lithium ion
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002270620A
Other languages
Japanese (ja)
Other versions
JP2004111160A (en
Inventor
仁英 杉山
博己 戸塚
修司 三谷
正則 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2002270620A priority Critical patent/JP4109522B2/en
Priority to KR1020030063151A priority patent/KR100573358B1/en
Priority to US10/659,358 priority patent/US7311994B2/en
Priority to EP03020464A priority patent/EP1401037B1/en
Priority to CNB031255019A priority patent/CN1240147C/en
Priority to DE60331622T priority patent/DE60331622D1/en
Publication of JP2004111160A publication Critical patent/JP2004111160A/en
Application granted granted Critical
Publication of JP4109522B2 publication Critical patent/JP4109522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池用セパレーターおよびそれを用いたリチウムイオン二次電池に関する。
【0002】
【従来の技術】
近年、ノートパソコン、携帯電話、ビデオカメラなどの各種情報端末機器の急激な小型化、軽量化、薄型化とそれらの普及や、ハイブリッド自動車、燃料電池自動車などの普及および実用化を目指し、それらの電源として高エネルギー密度の二次電池の要求が高まっている。特に、非水電解質を使用したリチウムイオン二次電池は、作動電圧が高く、高エネルギー密度を有する電池であり、既に実用化されている。このリチウムイオン二次電池は、一般に、正極と負極の間に電気絶縁性と保液性を備えたセパレーターを介装して成る電極群を負極端子も兼ねる電池缶の中に所定の非水電解液と一緒に収容し、前記電池缶の開口部を、正極端子を備えた封口板で絶縁性のガスケットを介して密閉した構造になっている。ところで、この非水電解液を使用したリチウムイオン電池においては、有機電解液を使用しているために電解液が漏れやすいという問題を有しており、電池の密閉方法などの製造方法が複雑であった。そればかりでなく、揮発性有機溶媒であるため過充電時に発火する危険性があり、安全性の点で他の電池に比べて不利であり、自動車用途等には使用が限られていた。また、さらなる高エネルギー密度化と充放電サイクル寿命の長期化の要望も強まっている。
【0003】
ところで、このようなリチウムイオン二次電池におけるセパレーターとしては、有機溶媒との反応性が低いポリオレフィン系樹脂の多孔膜が用いられている。ポリオレフィン系樹脂の例としては、ポリエチレン、ポリプロピレンなどがある。これらポリオレフィン系樹脂の多孔膜は、過充電および異常短絡状態における電池内部の加熱状態において、熱溶融により多孔質構造が無孔質構造に変化することで、電極間反応を停止させ、有機溶剤の発火を防ぐ、いわゆる、シャットダウン特性を有しており、リチウムイオン電池の安全性確保の重要な特性を有している。しかし、これら多孔膜は、電解液との親和性が低いために、電解液を保持した場合、電解液が空孔内部に充填しているだけに過ぎず、電解液の保持性が低いという問題があった。これは、電池の容量低下、サイクル特性の悪化、使用温度の制限等の問題を生ずる原因となっていた。さらに、ポリオレフィン系樹脂は、他樹脂や他材料との接着性が乏しいために、電極との界面に隙間を生じ易く、これは、電池の容量低下、充放電特性の悪化につながっていた。
【0004】
一方、このような問題を解決するために、ポリオレフィン系樹脂セパレーターの代わりに、フッ化ビニリデン樹脂化合物を用いたセパレーターが検討されている。フッ化ビニリデン樹脂化合物は、電解液との親和性が向上するため電解液の保液性に優れ、且つ、電極との密着性に優れる利点を有している。反面、電解液を保持したフッ化ビニリデン樹脂化合物は膨潤状態にあるため、寸法変化を生じ易く、さらには、イオン伝導度を低下させる重要な要因となる。そこで、他のセパレータとして、フッ化ビニリデン樹脂化合物をポリオレフィン系樹脂不織布又はポリオレフィン系樹脂多孔膜を補強材層に用い、これら、補強材層中にフッ化ビニリデン樹脂化合物を充填した複合樹脂膜が提案されている(例えば、特許文献1参照)。このような例では、ポリフッ化ビニリデン樹脂の電解液による膨潤から生ずる寸法変化は抑制されるものの、充填されたフッ化ビニリデン樹脂化合物が均一に膨潤するため、電解液の流動性が著しく低下し、よってイオン伝導性が低下するため、電池容量の低下につながる。さらに、多孔膜の有するシャットダウン特性は、充填されたフッ化ビニリデン樹脂化合物によって阻害され、十分な安全性の確保が難しくなる。このようなことから、この例に見られるセパレーターにあたっては、電池用セパレーターとしてその使用が制限されてしまう。また、ポリオレフィン系樹脂多孔膜の膜表面の少なくとも片面に、ポリマー層が50%以下の表面被覆率で点在させることが提案されている(例えば、特許文献2参照)。このような例においては、先述のシャットダウン特性を損なう恐れはなく、高いイオン伝導性を有することも可能であるが、ポリマー層が均一に表面を被覆していないために、イオン伝導性が局部的に高い部分と低い部分を生じる。実際の電池では、イオン伝導度の差が生じると、イオンの移動はイオン伝導度の低い部分に集中するため、局所的な電極デンドライトの発生、ならびに、内部短絡につながり問題となっていた。
【0005】
【特許文献1】
特開2001−176482号公報
【特許文献2】
特開2001−118558号公報
【0006】
【発明が解決しようとする課題】
したがって、本発明の目的は、リチウムイオン二次電池に用いられるセパレーターおける上記のような問題を解決し、電解液保持性、寸法安定性、耐熱性、電極との密着性・接着性、ひいてはイオン伝導性の向上、界面抵抗の低減に優れたリチウムイオン二次電池用セパレーターを提供することにある。本発明の他の目的は、該セパレーターを用いて得られる容量特性、充放電特性、サイクル特性、安全性に優れたリチウムイオン二次電池を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、透気度が1000sec/100cc以下であるポリオレフィン多孔膜の両面に、フッ化ビニリデン樹脂化合物を主成分とする多孔質層を積層してなり、且つ前記多孔質層が、重量平均分子量が15万〜50万であるフッ化ビニリデンのホモポリマーを全フッ化ビニリデン樹脂化合物中に50重量%以上含有し、六フッ化プロピレンとフッ化ビニリデンのコポリマーまたは重量平均分子量が15万未満の低分子量フッ化ビニリデン樹脂化合物を含有するセパレーターであり、前記セパレーターの透気度が500sec/100cc以下であることを特徴とするリチウムイオン二次電池用セパレーターである。
【0008】
前記ポリオレフィン多孔膜の膜厚が5〜50μmであれば、リチウムイオン電池を薄型化する場合に好ましい。
【0009】
前記フッ化ビニリデン樹脂化合物が、フッ化ビニリデンのホモポリマー、又は四フッ化エチレン、六フッ化プロピレン、エチレンのいずれか1種類以上とフッ化ビニリデンとからなるコポリマー、又は前記ホモポリマーとコポリマーとの混合物であることは、本発明におけるリチウムイオン二次電池用セパレーターの特性を十分に発揮させることができ、電解液保持性、耐熱性等の観点から好適に用いられる。
【0010】
前記フッ化ビニリデン樹脂化合物からなる多孔質層の層厚が0.1〜5μmであることは、イオン伝導度の観点から好ましく、リチウムイオン電池を薄型化する場合に好ましい。
【0011】
更に、本発明のリチウムイオン二次電池用セパレーターを、正極活物質を正極集電体に接合してなる正極と、負極活物質を負極集電体に接合してなる負極との間に配置し接合させ、リチウムイオンを含む電解液を該セパレーター中に保持させることにより得られるリチウムイオン二次電池は容量特性、充放電特性、サイクル特性、安全性に優れる。
【0012】
前記本発明のリチウムイオン二次電池用セパレーターは、ポリオレフィン多孔膜の膜表面の少なくとも片面に、フッ化ビニリデン樹脂化合物を主成分とする多孔質層を有する。この点において、ポリオレフィン多孔膜内部にフッ化ビニリデン樹脂化合物を充填するとした前記の公開特許公報2001−176482とは、本質的に異なる。ポリオレフィン多孔膜内部にフッ化ビニリデン樹脂化合物が充填されていないことは、ポリオレフィン多孔膜が有するシャットダウン性能を阻害させないために重要なことである。一方、本発明のフッ化ビニリデン樹脂化合物からなる多孔質層は、ポリオレフィン多孔膜の膜表面を均一に被覆しているため、前記の公開特許公報2001−118558に記載の点在するポリマー層を形成したセパレーターが有する問題点も回避できる。また、表面に設けられたフッ化ビニリデン樹脂化合物層が多孔質構造をとることで、容易に電解液をポリオレフィン多孔膜およびフッ化ビニリデン樹脂化合物層内部に取り込み、電解液保持性を発現するために重要であるばかりか、イオン伝導度を向上することが可能となる。さらに、正極基材又は負極基材と密着性、接着性が良好なフッ化ビニリデン樹脂化合物の存在は、イオン伝導度の向上、内部抵抗の低減のみならず、電池内部でのガス発生等の際の電極間剥離に対してこれを防止し、リチウムイオン二次電池のサイクル寿命を向上させることが可能である。
【0013】
【発明の実施の形態】
以下、本発明のセパレーターおよび二次電池の実施の形態について詳述する。本発明に用いられるポリオレフィン多孔膜としては、電気化学的に安定な素材であり、リチウムイオン二次電池に使用可能な高分子であれば良いが、ポリエチレン、ポリプロピレン、又はそれらの共重合体、もしくはそれらを組み合わせた混合物よりなるものが好ましい。これら素材を用いた多孔膜の製造方法に特に制限はないが、例えば、ポリエチレンに可塑剤あるいは必要に応じて有機または無機微粒子を含有させ混合し、膜状に成形後、抽出および乾燥、更に延伸等を行うことにより微細な空隙構造を有する多孔膜を製造することができる。
【0014】
本発明に用いられるポリオレフィン多孔膜の膜厚に特に制限はなく、200μm以下であれば用いることが可能である。200μm以上の膜厚の場合、電極間距離が大きくなりすぎるため、内部抵抗の増大につながるため好ましくない。特に、5〜50μmであることが好ましい。50μm以下の薄膜であることはリチウムイオン電池を薄型化する場合に好ましいが、5μm未満では膜強度が低下するため、本発明のセパレーターの生産性およびリチウムイオン二次電池の生産性が低下し、さらには安全性も十分でなくなる。電池の安全性やシャットダウン性が良好である15〜25μmが最も好適である。
【0015】
また、このようなポリオレフィン多孔膜の物性を示す項目として、ガーレ透気度測定機を用いて測定した透気度がある。この透気度の測定値が低いほど、通液性が良好であるため電解液の移動が容易となりイオン伝導性が向上する。本発明において用いられるポリオレフィン多孔膜の透気度の測定値に特に制限はないが、1000sec/100cc以下であれば、問題なく用いることが可能である。本発明のフッ化ビニリデン樹脂化合物からなる層は、多孔質層でなおかつ薄層であるため、上記ポリオレフィン多孔膜の有する優れた通気度を損なうことがないため、イオン伝導性が良好で、リチウムイオン二次電池用セパレーターとして好適となる。一方、このような通気度を有するポリオレフィン多孔膜の空孔率は、20〜80体積%が好ましい。
【0016】
本発明において、フッ化ビニリデン樹脂化合物を主成分とする多孔質層は前記ポリオレフィン多孔膜の膜表面の両面に形成されている。特に、本発明のセパレーターは、正極基材、負極基材の何れにおいても接着性が良好であるため、両面に形成した場合において、イオン伝導性を最も向上することができる。
【0017】
本発明を構成するフッ化ビニリデン樹脂化合物としては、重量分平均子量が15万〜50万である1種類以上のフッ化ビニリデン樹脂化合物を含有することが必要である。フッ化ビニリデン樹脂化合物の分子量の規定は、本発明を実施するにあたり重要である。それは、フッ化ビニリデン樹脂化合物の分子量は、後述するリチウムイオン二次電池に用いられる電解液に対する溶解性、膨潤性に影響を与えるばかりか、耐熱性に影響を与えるからである。重量平均分子量が15万未満の場合には、電解液に対する耐溶剤性が低いため部分的に溶解を生じ、電池内でのイオン伝導性の差が生じることから、局所的な電極デンドライトの発生、ならびに、内部短絡につながる。さらに、過充電状態などによる加熱された状態において、樹脂の電解液に対する耐溶解性を維持するためには、重量平均分子量が30万〜50万であることが最も好ましい。重量平均分子量が50万より大きい場合には、フッ化ビニリデン樹脂化合物と電解液との親和性が低下し、樹脂化合物がほとんど膨潤しないため、ポリオレフィン系樹脂多孔膜と同様に、電解液が空孔内部に充填しているだけに過ぎず、電解液の保持性が低く、サイクル特性が低下する。つまり、電解液を充填されたフッ化ビニリデン樹脂化合物は、電解液と接する最表面のみが膨潤状態にあることが好ましく、このような膨潤状態を得るためには、重量平均分子量が15万〜50万のフッ化ビニリデン樹脂化合物が50重量%以上含有する必要がある。重量平均分子量が15万〜50万のフッ化ビニリデン樹脂化合物が50重量%未満の場合には、存在する15万未満の分子量の樹脂により耐溶解性が低下し、又は、存在する50万より大きい分子量の樹脂により、電解液の保持性が低下する。
前記重量平均分子量は、ゲル浸透クロマトグラフ(GPC)測定法により求めることができる。ポリマーの溶解する溶媒、本発明においては、例えば、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン等の溶媒にフッ化ビニリデン樹脂化合物を溶解させ試料とし、分子量既知の標準ポリスチレン混合溶液を標準試料として用い較正曲線を作成した後、前記試料を測定し、ポリスチレンに対する相対分子量(ポリスチレン換算分子量)により求める。
【0018】
本発明で用いられるフッ化ビニリデン樹脂化合物は、フッ化ビニリデンのホモポリマー、又は四フッ化エチレン、六フッ化プロピレン、エチレンのいずれか1種類以上とフッ化ビニリデンとからなるコポリマー、又は上記ホモポリマーとコポリマーとの混合物が好ましい。これらのポリマーは電気化学的に安定であり、リチウムイオン二次電池が有する電極電位の間で、十分な電位窓を有している。したがって、これらホモポリマー又はコポリマーはそれぞれ単独で用いても差支えなく、また、2種類以上の混合物であっても好適に本発明を実施することができる。特に、フッ化ビニリデンのホモポリマーは、耐熱性が高く、電解液保持状態における耐熱性が高くなり好ましい。一方、六フッ化プロピレンとフッ化ビニリデンのコポリマーはフッ化ビニリデンのホモポリマーと比較して融点が低いため、本発明のリチウムイオン二次電池用セパレーターを用いて電池を作成する場合の正極又は負極との接合熱プレス工程において、熱溶融が容易になり、各電極との接着性が強固になるという利点を生じる。さらにこの場合、フッ化ビニリデンのホモポリマーと六フッ化プロピレンとフッ化ビニリデンのコポリマーを併用することが好ましく、電解液保持状態における耐熱性の低下を防止することができる。コポリマーを用いる場合の共重合比率に特に制限はないが、耐電解液性、耐熱性を考慮して、フッ化ビニリデン化合物モノマー比率が50重量%以上であるコポリマーであることが好ましい。重量平均分子量が15万未満の低分子量なフッ化ビニリデン樹脂化合物は、電解液との親和性が高く、電解液保持性を向上するため、全フッ化ビニリデン樹脂化合物に対し50重量%未満の範囲で併用することが可能である。
【0019】
本発明で用いられる前記フッ化ビニリデン樹脂化合物のホモポリマー又はコポリマーの製造方法を以下に説明する。これらフッ化ビニリデン樹脂化合物は、通常、乳化重合法、懸濁重合法等の不均一重合系で行われる。一般的には、乳化重合法が経済性、生産性の点で優れているとされ、好適に用いられている。この乳化重合反応は、過硫酸アンモニウム等の水溶性無機過酸化物またはそれと還元剤とのレドックス系を触媒として、パーフルオロオクタン酸アンモニウム、パーフルオロヘプタン酸アンモニウム、パーフルオロノナン酸アンモニウム等を乳化剤に用いて、加圧加熱下の条件の下で行われる。本発明において重合法には何ら制限はなく、重合方法、重合条件は適宜選択すれば良い。
【0020】
また、フッ化ビニリデン樹脂化合物からなる多孔質層の層厚に特に制限はないが、イオン伝導度の観点からは0.1〜5μmであることがもっとも好ましく、リチウムイオン電池を薄型化する場合にも好ましい。層厚が0.1μm未満であると、正極基材又は負極基材と密着性、接着性が低下するために好ましくない。接着性、密着性を向上するためにはできるだけ層厚が高いことが好ましいが、本発明のリチウムイオン二次電池用セパレーターは、層厚が5μm以下でも強固に電極機材と接着可能なため、リチウムイオン電池の薄型化をはかる上で、5μm以下とすることが好ましい。特に、0.1μm〜1μmと薄層とすることが最も好ましく、この場合、イオン伝導性が一段と向上する。
【0021】
このように形成されたフッ化ビニリデン樹脂化合物からなる多孔質層の平均孔径は、0.01〜10μmの範囲であることが好ましい。平均孔径が小さすぎると電解液の移動が阻害され、イオン伝導性が低下する。また、大きすぎると機械的強度が低下し、電解液によって膨潤したフッ化ビニリデン樹脂化合物の多孔質構造が破壊されるため好ましくない。
【0022】
また、フッ化ビニリデン樹脂化合物からなる多孔質層中には、必要に応じて、電気化学的に安定な粒子、繊維状物を含有させて機械強度、寸法安定性を向上することも可能である。このような粒子の例としては、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化マグネシウム等の無機粒子、フェノール樹脂粒子、ポリイミド樹脂粒子、ベンゾグアナミン樹脂粒子、メラミン樹脂、ポリオレフィン樹脂、フッ素樹脂粒子等の有機粒子が挙げられ、繊維状物の例としては、アパタイト繊維、酸化チタン繊維、金属酸化物のウィスカー等の無機繊維状物、アラミド繊維、ポリベンゾオキサゾール繊維などの有機繊維状物が挙げられるがこれらに限定されるのもではない。また、これらの粒子、繊維状物の形状及び粒径に特に制限はなく、適宜に選択して用いることができる。
【0023】
フッ化ビニリデン樹脂化合物を主成分とする多孔質層を形成する手段としては、例えば、相分離法、乾燥法、抽出法、発泡法等が本発明に適用される。これらの手法は、フッ化ビニリデン樹脂化合物を溶剤に溶解した溶液またはスラリーを用いて、ポリオレフィン多孔膜上にコーティングし、乾燥して膜を形成する。コーティングするための手段は、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が使用されている。例えば、乾燥法により多孔膜を形成する手法については、フッ化ビニリデン樹脂化合物の良溶媒および貧溶媒を用いて該フッ化ビニリデン樹脂化合物を溶解させることが必要であり、この時、貧溶媒の方が良溶媒に比べて高沸点のものを選択する。このようにして得られた溶液をポリオレフィン多孔膜にコーティングした後、乾燥を行うことで、良溶媒が貧溶媒より先に蒸発し、溶解度が低下した樹脂化合物が析出を開始し、貧溶媒の存在体積相当の空孔率を有する多孔質構造をとることとなる。もう一つの例として、抽出法で多孔膜を形成する手法については、用いるフッ化ビニリデン樹脂化合物の良溶媒を用いて該樹脂化合物を溶解させ、得られた溶液をポリオレフィン多孔膜にコーティングした後、当該樹脂化合物の貧溶媒となる溶媒中に浸漬し、しかるのち樹脂化合物中の良溶媒を抽出し貧溶媒と置換することで、多孔質構造を得ることができる。また、ポリオレフィン多孔膜の膜表面にフッ化ビニリデン樹脂化合物を主成分とする多孔質層を形成するための方法としては、直接、ポリオレフィン多孔膜の膜表面に溶液またはスラリーをコーティングして層を形成してもよい。更にまた、離型処理などを施したポリマーフィルムを基材に用いてコーティングし膜を形成した後、ポリオレフィン多孔膜の膜表面と貼りあわせ、平板プレス、ラミネーターロール等により2つの膜を接着し積層することも可能である。積層後、コーティングに用いた基材を剥離すれば良い。ポリオレフィン多孔膜の膜表面の両面にフッ化ビニリデン樹脂化合物からなる多孔質層を形成する場合には、片面ずつこれを形成することも可能であり、両面を同時にコーティングまたはラミネートにて一度に両面のフッ化ビニリデン樹脂化合物からなる多孔質層を形成することも可能である。
【0024】
本発明のリチウムイオン二次電池用セパレーターは、ガーレ透気度測定機を用いて測定した透気度を500sec/100cc以下とすることで、特に優れたイオン伝導性を有するセパレーターとすることができる。前記本発明のフッ化ビニリデン樹脂化合物からなる多孔質層は微細な多孔質構造であり、且つ、層厚を薄くすることが可能であるため、低い透気度を得ることが容易である。
【0025】
次に、本発明のリチウムイオン二次電池用セパレーターを用いたリチウムイオン二次電池について説明する。本発明のリチウムイオン二次電池は、前記リチウムイオン二次電池用セパレーターを、正極活物質を正極集電体に接合してなる正極と、負極活物質を負極集電体に接合してなる負極との間に配置し接合させ、リチウムイオンを含む電解液を前記セパレーター中に保持させてなるものである。このようなリチウムイオン二次電池は、積層型電池や円筒型電池などに適用される。
【0026】
前記正極活物質としては、組成式LixM、またはLiyM(ただし、Mは遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル状の空孔を有する酸化物、層構造の金属カルコゲン化合物が挙げられ、その具体例としては、LiCoO、LiNiO、LiMn、LiMn、MnO、FeO、V、V13、TiO、TiS等が挙げられる。また、有機化合物も使用でき、例えばポリアニリン、ポリアセン、ポリピロール等の導電性高分子が挙げられる。さらに無機化合物、有機化合物を問わず、上記各種活物質を混合して用いてもよい。上記リチウムを含む複合酸化物は粉末として用いられ、その平均粒子径は1〜40μmであることが好ましい。
【0027】
また、前記負極活物質としては、リチウムおよび/またはリチウムイオンを吸蔵・放出可能な物質である炭素材料、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe等の遷移金属複合酸化物、WO、MoO等の遷移金属酸化物、Li(LiN)等の窒化リチウム、および金属リチウム箔などを挙げることができ、これらは混合して用いてもよい。前記炭素材料としては、例えば、メソカーボンマイクロビーズ、天然または人造のグラファイト、樹脂焼成炭素材料、カーボンブラック、炭素繊維等から適宜選択すればよい。これらは粉末として用いられる。中でもグラファイトが好ましく、その平均粒径は1〜30μm、特に5〜25μmであることが好ましい。平均粒子径が上記範囲よりも小さすぎると、充放電サイクル寿命が短くなり、また、容量のばらつきが大きくなる傾向にある。また上記範囲よりも大きすぎると、容量のばらつきが著しく大きくなり、平均容量が小さくなってしまう。平均粒子径が大きい場合に容量のばらつきが生じるのは、グラファイトと集電体の接触やグラファイト同士の接触にばらつきが生じるためと考えられる。
【0028】
電極には、必要に応じて導電助剤が添加される。導電助剤としては好ましくは、グラファイト、カーボンブラック、炭素繊維、ニッケル、アルミニウム、銅、銀等の金属が挙げられ、特にグラファイト、カーボンが好ましい。電極の形成に用いるバインダーとしては、フッ素樹脂、フッ素ゴム等を挙げることができ、バインダーの量は電極の3〜30重量%程度の範囲が適当である。
【0029】
リチウムイオン二次電池を作製するには、まず、前記正極活物質又は負極活物質と、必要に応じて添加される導電助剤とを、ゲル電解質溶液またはバインダー溶液に分散して、電極塗布液を調整し、この電極塗布液を集電体に塗布すればよい。集電体は、電池の使用するデバイスの形状やケース内への配置方法に応じて、通常の集電体から適宜選択すればよい。一般に正極にはアルミニウム等が、負極には銅、ニッケル等が使用される。電極塗布液を集電体に塗布したあと、溶媒を蒸発させて電極を作成する。塗布厚は、50〜400μm程度とすることが好ましい。このようにして得られた正極、負極、本発明のセパレーターとを、正極、本発明のセパレーター、負極の順に積層し、圧着して電子素体を作る。圧着する際、あらかじめ、本発明のセパレーターに電解液を含浸し外装材に充填するか、或いは、積層し、圧着した後、外装材に充填し電解液を注入する。その後、電極端子、安全装置などを適宜接続した後、外装材を封入する。
【0030】
本発明のリチウムイオン二次電池に用いられる電解液としては、有機溶媒に電解質塩を溶解した混合溶液が使用される。その有機溶媒としては、高い電圧をかけた場合でも分解が起こらないものが好ましく、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトロヒドラフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、もしくはこれら溶媒の2種類以上の混合物が挙げられる。また、電解液に溶解する電解質塩としては、LiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOCF、Li(SOCFCF、LiN(COCFおよびLiN(COCFCF 等の塩、またはこれらの2種以上の混合物を使用することができる。
【0031】
【実施例】
以下に比較例および実施例を挙げ、本発明を更に具体的に説明する。
実施例1〜3
フッ化ビニリデン樹脂化合物として、重量平均分子量(以下、Mwと略す)が約13万のフッ化ビニリデンのホモポリマー、Mwが約30万のフッ化ビニリデンのホモポリマー、Mwが約40万のフッ化ビニリデンのホモポリマー及び六フッ化プロピレン(以下、HFPと略す)とフッ化ビニリデンとからなるコポリマー(HFPのモノマー比率:約12重量%、Mw:約27万)を使用した。そして、このようなフッ化ビニリデン樹脂化合物を、表1の配合量に従って1−メチル−2−ピロリドン−(以下、NMPと略す)に添加し、室温下、窒素雰囲気下で溶解した。更に、室温冷却後、得られた混合物よりなる塗布液を得た。ついで、厚さが約25μm、透気度の測定値が約100sec/100ccであるポリエチレン製延伸多孔膜の片面に、得られた塗布液をドクターブレード法によってキャストした後、メタノール中に投入し10分間浸漬した。この塗工膜をメタノール中より引き上げた後、40℃の乾燥機中で乾燥させポリエチレン製延伸多孔膜の片面に、フッ化ビニリデン樹脂化合物からなる多孔質層を有した本発明の実施例1〜3によるリチウムイオン二次電池用セパレーターを得た。また、実施例1〜においては、更に、もう一方の未塗工面に同様な方法において塗工処理を施し、ポリエチレン製延伸多孔膜の両面に、フッ化ビニリデン樹脂化合物からなる多孔質層を有したリチウムイオン二次電池用セパレーターを得た。
【0032】
【表1】

Figure 0004109522
【0033】
比較例1〜3
フッ化ビニリデン樹脂化合物として、Mwが約13万のフッ化ビニリデンのホモポリマー、Mwが約30万のフッ化ビニリデンのホモポリマー、HFPとフッ化ビニリデンとかなるコポリマー(HFPのモノマー比率:約15重量%、Mw:約10万)を用いた。そして、表1の配合量に従い、前記実施例1〜と同様にしてポリエチレン製延伸多孔膜の両面に、フッ化ビニリデン樹脂化合物からなる多孔質層を有した比較用のリチウムイオン二次電池用セパレーターを得た。
【0034】
比較例4
Mwが約13万のフッ化ビニリデンのホモポリマーをNMP溶液に溶解し、含浸用溶液を得た。この溶液中に厚さが約25μm、透気度の測定値が約100sec/100ccであるポリエチレン製延伸多孔膜を浸積後、真空含浸を行った。この膜を引き上げた後、NMPを揮発させ、ポリエチレン製延伸多孔膜の空孔内部にフッ化ビニリデン樹脂化合物を充填させたセパレーターを得た。
【0035】
比較例5
フッ化ビニリデン樹脂化合物からなる多孔質層を有さない厚さが約25μm、透気度の測定値が約100sec/100ccであるポリエチレン製延伸多孔膜をセパレーターとした。
【0036】
次に前記で得た実施例1〜及び比較例1〜のセパレーターについて下記の通り評価した。
<セパレーターの物理的特性>
前記で得られたリチウムイオン二次電池用セパレーターの各多孔質層の層厚を測定し、また透気度測定装置による透気度の測定を行った。また、得られたリチウムイオン二次電池用セパレーターを4cm×5cmに裁断して試験片を作製し、しかる後、2枚のガラス基板に挟み、150℃中10分間加熱した時の寸法変化を測定し、さらには、加熱処理を施したセパレーターの透気度を測定し、加熱時のシャットダウン性能を評価した。これらの結果を表2に記した。
なお、表2において、層厚は、「片面(1回目の積層面)の厚さ/もう一方の面(2回目の積層面)の厚さ」を示し、透気度は王研式透気度測定装置による測定値である。また、寸法維持率は、下記式により算出した。
寸法維持率(%)=X/Y×100
但し、Yは加熱処理前の試験片の面積、Xは加熱処理後の試験片の面積である。
更にまた、シャットダウン性能の評価基準は下記の通りである。○:加熱処理後の透気度が10万sec/100cc以上で寸法維持率が80%以上、△:加熱処理後の透気度が10万sec/100cc以上で寸法維持率が80%未満、
×:加熱処理後の透気度が10万sec/100cc未満。
【0037】
【表2】
Figure 0004109522
【0038】
上記表2の結果から明らかなとおり、実施例1〜のセパレーターは低い透気度を示し、このような透気度を示すセパレーターは電解液の通液性が良好であるため、電解液注入時の含浸が容易であり、その含浸量も増大させることができるばかりか、電解液の移動が容易となり高いイオン伝導性を発現させることが可能となる。一方、比較例4のセパレーターでは、透気度が高く、このような透気度を示すセパレーターは、電解液通液性が悪く、高いイオン伝導度を得ることは困難である。また、実施例1〜および比較例1〜3のセパレーターは、セパレーターの表面に存在するフッ化ビニリデン樹脂化合物がガラス基材との密着性・接着性を発揮した結果、加熱処理時の寸法変化において高い寸法維持性を有する。これは、二次電池用電極との密着性・接着性においても同様の効果を発揮し、二次電池が異常昇温した場合において、電極間の絶縁性を保持するために重要なことであり、安全性がより高くなる。更に、実施例1〜および比較例1〜3のセパレーターは、ポリエチレン製延伸多孔膜の有するシャットダウン性(高温時に溶融して多孔質構造が消失し、高い絶縁性を発揮する性能)を維持するばかりか、電極との密着性が高いため、より絶縁信頼性の高いシャットダウン性を有するセパレーターとなる。一方、比較例4および5のセパレーターは、実施例1〜および比較例1〜3のセパレーターと比較して、加熱時の寸法維持率が低く、シャットダウン性においても充分とはいえず、二次電池の安全性が劣るものとなる。
【0039】
<電気化学的特性>
次に、前記のリチウムイオン二次電池用セパレーターの多孔質層内部に、1MLiPFを溶解したエチレンカーボネート(EC)+プロピレンカーボネート(PC)(容積比:EC/PC=1/2)の電解液を含浸させた。さらに、この電解液を含むセパレーターを、2枚のステンレス電極に挟み、25℃におけるイオン伝導度を交流インピーダンス法において測定した。尚、この測定はアルゴンガスを充満したグローブボックス内で行った。一方、同様にして得られた電解液を含むセパレーターを密閉できる容器に移し、80℃の高温層中で10日間保存した後、寸法変化、重量変化を保存前と比較して測定した。さらに、上記と同様に保存後のセパレーターのイオン伝導度を測定した。これらの結果を表3に記した。
なお、表3において、イオン伝導度は交流インピーダンス法により測定した。また、寸法維持率及び重量維持率は下記式により算出した。
寸法維持率(%)=α/β×100
但し、βは保存前の試験片の面積、αは保存後の試験片の面積である。
重量維持率(%)=γ/δ×100
但し、δは保存前の試験片の重量、γは保存後の試験片の重量である。
【0040】
【表3】
Figure 0004109522
【0041】
上記表3の結果は二次電池の容量特性、サイクル特性、充放電特性の目安となる電気化学的特性の評価結果であって、表3の結果から、実施例のものは二次電池として充分な性能を有していることが確認された。特に実施例2〜3においては、高いイオン伝導度を有しており、優れた二次電池を製造することが可能である。一方、長期使用を想定した加速試験において、80℃保存後の各実施例および各比較例のセパレーターを比較すると、寸法維持率は何れのセパレーターにおいても充分満足するといえるが、重量維持率において、実施例のセパレーターは測定誤差範囲でほぼ100%であるのに対して、比較例1〜4のセパレーターは重量が低下していた。これは、用いたフッ化ビニリデン樹脂化合物が長時間電解液に浸されることで、僅かにでも溶解してしまうことを意味している。比較例5において重量減少が確認されるのは、含浸した電解液の保液性が低いため、電解液がしみ出してしまうためと考えられる。結果的に、保存後のイオン伝導度は、実施例において初期値をほぼ維持しているのに対して、比較例1〜3においては、初期値からの著しい低下が確認された。
以上、表2及び表3から明らかな通り、本発明によるセパレーターは、物理的特性と電気化学的特性を両立して満足するものであるのに対し、比較用のセパレーターは、本発明の目的を達成できないものであった。
【0042】
【発明の効果】
以上のように、本発明のリチウムイオン二次電池用セパレーターは、電解液の保持性・通液性が良好であることに起因する高いイオン伝導度を有し、電極等の基材に対する密着性・接着性が向上されることにより、イオン伝導度の向上及び電極との界面抵抗を低下させ、さらに安全性を向上し、且つ、シャットダウン性を阻害することがない。加えて、長期使用に対するイオン伝導度の低下も少ない。したがって、本発明のリチウムイオン二次電池用セパレーターを用いたリチウムイオン二次電池は、優れた、容量特性、サイクル特性、充放電特性、安全性、信頼性を有する二次電池となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator for a lithium ion secondary battery and a lithium ion secondary battery using the separator.
[0002]
[Prior art]
Recently, various information terminal devices such as notebook computers, mobile phones, video cameras, etc. have been drastically reduced in size, weight, thinned and popularized, and hybrid vehicles, fuel cell vehicles, etc. have been popularized and put into practical use. The demand for high energy density secondary batteries as power sources is increasing. In particular, a lithium ion secondary battery using a nonaqueous electrolyte is a battery having a high operating voltage and a high energy density, and has already been put into practical use. This lithium ion secondary battery generally has a predetermined non-aqueous electrolysis in a battery can that also serves as a negative electrode terminal as an electrode group formed by interposing a separator having electrical insulation and liquid retention between a positive electrode and a negative electrode. The battery can is accommodated together and the opening of the battery can is sealed with an insulating gasket with a sealing plate provided with a positive terminal. By the way, in the lithium ion battery using this non-aqueous electrolyte, since the organic electrolyte is used, there is a problem that the electrolyte easily leaks, and the manufacturing method such as the battery sealing method is complicated. there were. In addition, since it is a volatile organic solvent, there is a risk of ignition during overcharging, which is disadvantageous compared to other batteries in terms of safety, and its use is limited to automobile applications. In addition, there is an increasing demand for higher energy density and longer charge / discharge cycle life.
[0003]
By the way, as a separator in such a lithium ion secondary battery, a polyolefin resin porous film having low reactivity with an organic solvent is used. Examples of polyolefin resins include polyethylene and polypropylene. These polyolefin resin porous films stop the reaction between electrodes by changing the porous structure to a non-porous structure by heat melting in the heated state inside the battery in an overcharged and abnormally short-circuited state. It has a so-called shutdown characteristic that prevents ignition, and has an important characteristic for ensuring the safety of a lithium ion battery. However, since these porous films have low affinity with the electrolytic solution, when the electrolytic solution is held, the electrolytic solution is merely filled in the pores, and the electrolytic solution is poorly retained. was there. This has been a cause of problems such as a decrease in battery capacity, deterioration in cycle characteristics, and limitation of operating temperature. Furthermore, since the polyolefin-based resin has poor adhesion to other resins and other materials, it easily causes a gap at the interface with the electrode, which leads to a decrease in battery capacity and deterioration of charge / discharge characteristics.
[0004]
On the other hand, in order to solve such a problem, a separator using a vinylidene fluoride resin compound instead of the polyolefin resin separator has been studied. The vinylidene fluoride resin compound has an advantage that the affinity with the electrolytic solution is improved, so that the liquid retaining property of the electrolytic solution is excellent and the adhesiveness with the electrode is excellent. On the other hand, since the vinylidene fluoride resin compound holding the electrolytic solution is in a swollen state, it tends to cause a dimensional change and further becomes an important factor for reducing the ionic conductivity. Therefore, as another separator, a composite resin membrane in which a vinylidene fluoride resin compound is used as a reinforcing layer for a polyolefin resin non-woven fabric or a polyolefin resin porous membrane, and a reinforcing resin layer filled with a vinylidene fluoride resin compound is proposed. (For example, refer to Patent Document 1). In such an example, although the dimensional change resulting from the swelling of the polyvinylidene fluoride resin by the electrolytic solution is suppressed, the filled vinylidene fluoride resin compound swells uniformly, so that the fluidity of the electrolytic solution is significantly reduced, Therefore, ion conductivity is reduced, which leads to a reduction in battery capacity. Furthermore, the shutdown characteristics of the porous film are hindered by the filled vinylidene fluoride resin compound, making it difficult to ensure sufficient safety. For this reason, the separator used in this example is limited in its use as a battery separator. In addition, it has been proposed that a polymer layer is scattered at a surface coverage of 50% or less on at least one surface of a polyolefin resin porous membrane (see, for example, Patent Document 2). In such an example, there is no risk of impairing the above-described shutdown characteristics, and it is possible to have high ionic conductivity. However, since the polymer layer does not cover the surface uniformly, the ionic conductivity is localized. Produces high and low parts. In an actual battery, when a difference in ionic conductivity occurs, the movement of ions concentrates on a portion having a low ionic conductivity, which causes a problem of local electrode dendrite generation and internal short circuit.
[0005]
[Patent Document 1]
JP 2001-176482 A
[Patent Document 2]
JP 2001-118558 A
[0006]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to solve the above-mentioned problems in separators used in lithium ion secondary batteries, and to maintain electrolyte solution, dimensional stability, heat resistance, adhesion / adhesion with electrodes, and thus ions. An object of the present invention is to provide a separator for a lithium ion secondary battery excellent in improving conductivity and reducing interface resistance. Another object of the present invention is to provide a lithium ion secondary battery excellent in capacity characteristics, charge / discharge characteristics, cycle characteristics, and safety obtained by using the separator.
[0007]
[Means for Solving the Problems]
In the present invention, a porous layer mainly composed of a vinylidene fluoride resin compound is laminated on both surfaces of a polyolefin porous film having an air permeability of 1000 sec / 100 cc or less, and the porous layer has a weight average molecular weight. Is 150,000 to 500,000Homopolymer of vinylidene fluoride50% by weight or more in the total vinylidene fluoride resin compoundAnd a copolymer of propylene hexafluoride and vinylidene fluoride or a low molecular weight vinylidene fluoride resin compound having a weight average molecular weight of less than 150,000A separator for a lithium ion secondary battery, wherein the separator has an air permeability of 500 sec / 100 cc or less.
[0008]
A thickness of the polyolefin porous membrane of 5 to 50 μm is preferable when the lithium ion battery is thinned.
[0009]
The vinylidene fluoride resin compound is a homopolymer of vinylidene fluoride, a copolymer comprising at least one of ethylene tetrafluoride, propylene hexafluoride, and ethylene and vinylidene fluoride, or the homopolymer and the copolymer. Being a mixture can sufficiently exhibit the characteristics of the separator for a lithium ion secondary battery in the present invention, and is preferably used from the viewpoint of electrolyte solution retention, heat resistance, and the like.
[0010]
The layer thickness of the porous layer made of the vinylidene fluoride resin compound is preferably 0.1 to 5 μm from the viewpoint of ionic conductivity, and is preferable when the lithium ion battery is thinned.
[0011]
Furthermore, the separator for a lithium ion secondary battery of the present invention is disposed between a positive electrode formed by bonding a positive electrode active material to a positive electrode current collector and a negative electrode formed by bonding a negative electrode active material to a negative electrode current collector. A lithium ion secondary battery obtained by bonding and holding an electrolytic solution containing lithium ions in the separator is excellent in capacity characteristics, charge / discharge characteristics, cycle characteristics, and safety.
[0012]
The separator for a lithium ion secondary battery of the present invention has a porous layer mainly composed of a vinylidene fluoride resin compound on at least one surface of the polyolefin porous membrane. In this respect, this is essentially different from the aforementioned published patent publication 2001-176482 in which the polyolefin porous membrane is filled with a vinylidene fluoride resin compound. The fact that the polyolefin porous membrane is not filled with the vinylidene fluoride resin compound is important in order not to inhibit the shutdown performance of the polyolefin porous membrane. On the other hand, the porous layer made of the vinylidene fluoride resin compound of the present invention uniformly coats the membrane surface of the polyolefin porous membrane, and therefore forms a dotted polymer layer as described in the aforementioned published patent publication 2001-118558. The problems of the separators can be avoided. In addition, since the vinylidene fluoride resin compound layer provided on the surface has a porous structure, the electrolyte can be easily taken into the polyolefin porous membrane and the vinylidene fluoride resin compound layer, and the retention of the electrolyte can be expressed. Not only is it important, it is possible to improve the ionic conductivity. Furthermore, the presence of the vinylidene fluoride resin compound having good adhesion and adhesion to the positive electrode substrate or the negative electrode substrate is not only improved in ion conductivity and reduced internal resistance, but also in gas generation inside the battery. This can be prevented from peeling between the electrodes, and the cycle life of the lithium ion secondary battery can be improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the separator and the secondary battery of the present invention will be described in detail. The polyolefin porous film used in the present invention is an electrochemically stable material and may be any polymer that can be used in a lithium ion secondary battery, but polyethylene, polypropylene, or a copolymer thereof, or What consists of the mixture which combined them is preferable. There are no particular restrictions on the method for producing the porous film using these materials. For example, polyethylene is mixed with a plasticizer or, if necessary, organic or inorganic fine particles, formed into a film, extracted, dried, and further stretched. Etc., a porous film having a fine void structure can be produced.
[0014]
There is no restriction | limiting in particular in the film thickness of the polyolefin porous membrane used for this invention, If it is 200 micrometers or less, it can be used. A film thickness of 200 μm or more is not preferable because the distance between the electrodes becomes too large, leading to an increase in internal resistance. In particular, the thickness is preferably 5 to 50 μm. A thin film of 50 μm or less is preferable when thinning a lithium ion battery, but if it is less than 5 μm, the film strength is reduced, so the productivity of the separator of the present invention and the productivity of the lithium ion secondary battery are reduced. Furthermore, safety is not sufficient. Most preferred is 15 to 25 μm, which is excellent in battery safety and shutdown performance.
[0015]
Moreover, there exists the air permeability measured using the Gurley air permeability measuring machine as an item which shows the physical property of such a polyolefin porous membrane. The lower the measured value of the air permeability, the better the liquid permeability, so that the electrolyte solution can be easily moved and the ionic conductivity is improved. Although there is no restriction | limiting in particular in the measured value of the air permeability of the polyolefin porous membrane used in this invention, If it is 1000 sec / 100cc or less, it can be used without a problem. Since the layer made of the vinylidene fluoride resin compound of the present invention is a porous layer and a thin layer, it does not impair the excellent air permeability of the polyolefin porous membrane, so that the ion conductivity is good and the lithium ion It is suitable as a separator for a secondary battery. On the other hand, the porosity of the polyolefin porous membrane having such air permeability is preferably 20 to 80% by volume.
[0016]
In the present invention, the porous layer mainly composed of vinylidene fluoride resin compound is formed on the membrane surface of the polyolefin porous membrane.Both sidesIs formed. In particular, since the separator of the present invention has good adhesion in both the positive electrode substrate and the negative electrode substrate, the ion conductivity can be most improved when formed on both surfaces.
[0017]
As the vinylidene fluoride resin compound constituting the present invention, it is necessary to contain one or more types of vinylidene fluoride resin compounds having a weight average molecular weight of 150,000 to 500,000. The definition of the molecular weight of the vinylidene fluoride resin compound is important in carrying out the present invention. This is because the molecular weight of the vinylidene fluoride resin compound not only affects the solubility and swellability of the electrolyte used in the lithium ion secondary battery described later, but also affects the heat resistance. When the weight average molecular weight is less than 150,000, the solvent resistance to the electrolytic solution is low, so that partial dissolution occurs, resulting in a difference in ionic conductivity within the battery. Moreover, it leads to an internal short circuit. Furthermore, the weight average molecular weight is most preferably 300,000 to 500,000 in order to maintain the resistance of the resin to the electrolytic solution in a heated state such as in an overcharged state. When the weight average molecular weight is larger than 500,000, the affinity between the vinylidene fluoride resin compound and the electrolytic solution decreases, and the resin compound hardly swells. It only fills the inside, and the retention of the electrolyte is low, resulting in poor cycle characteristics. That is, it is preferable that the vinylidene fluoride resin compound filled with the electrolytic solution is in a swollen state only on the outermost surface in contact with the electrolytic solution. In order to obtain such a swollen state, the weight average molecular weight is 150,000-50. The vinylidene fluoride resin compound should contain 50% by weight or more. When the vinylidene fluoride resin compound having a weight average molecular weight of 150,000 to 500,000 is less than 50% by weight, the resin having a molecular weight of less than 150,000 is reduced in dissolution resistance or greater than 500,000. Due to the molecular weight of the resin, the electrolyte retainability is reduced.
The weight average molecular weight can be determined by a gel permeation chromatograph (GPC) measurement method. A solvent in which a polymer dissolves, in the present invention, for example, a vinylidene fluoride resin compound is dissolved in a solvent such as N, N-dimethylacetamide, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, etc. After preparing a calibration curve using a known standard polystyrene mixed solution as a standard sample, the sample is measured and determined by a relative molecular weight (polystyrene equivalent molecular weight) with respect to polystyrene.
[0018]
The vinylidene fluoride resin compound used in the present invention is a homopolymer of vinylidene fluoride, a copolymer comprising at least one of ethylene tetrafluoride, hexafluoropropylene, and ethylene and vinylidene fluoride, or the above homopolymer A mixture of styrene and a copolymer is preferred. These polymers are electrochemically stable and have a sufficient potential window between the electrode potentials of the lithium ion secondary battery. Therefore, these homopolymers or copolymers may be used alone, respectively, and the present invention can be suitably carried out with a mixture of two or more kinds. In particular, a homopolymer of vinylidene fluoride is preferable because it has high heat resistance and high heat resistance in an electrolyte solution holding state. On the other hand, since a copolymer of propylene hexafluoride and vinylidene fluoride has a lower melting point than a homopolymer of vinylidene fluoride, a positive electrode or a negative electrode when a battery is produced using the separator for a lithium ion secondary battery of the present invention In the joining hot pressing step, heat melting is facilitated, and there is an advantage that the adhesiveness to each electrode is strengthened. Furthermore, in this case, it is preferable to use a homopolymer of vinylidene fluoride, a copolymer of propylene hexafluoride and vinylidene fluoride in combination, and it is possible to prevent a decrease in heat resistance in the electrolyte solution holding state. The copolymerization ratio in the case of using a copolymer is not particularly limited, but it is preferably a copolymer having a vinylidene fluoride compound monomer ratio of 50% by weight or more in consideration of the electrolytic solution resistance and heat resistance. The low molecular weight vinylidene fluoride resin compound having a weight average molecular weight of less than 150,000 has a high affinity with the electrolyte and improves the electrolyte retention, so that the range is less than 50% by weight with respect to the total vinylidene fluoride resin compound. Can be used together.
[0019]
A method for producing a homopolymer or copolymer of the vinylidene fluoride resin compound used in the present invention will be described below. These vinylidene fluoride resin compounds are usually performed in a heterogeneous polymerization system such as an emulsion polymerization method or a suspension polymerization method. In general, the emulsion polymerization method is considered excellent in terms of economy and productivity, and is preferably used. This emulsion polymerization reaction uses a water-soluble inorganic peroxide such as ammonium persulfate or a redox system of it and a reducing agent as a catalyst, and uses ammonium perfluorooctanoate, ammonium perfluoroheptanoate, ammonium perfluorononanoate as an emulsifier. Then, it is performed under conditions under pressure and heating. In the present invention, the polymerization method is not particularly limited, and the polymerization method and polymerization conditions may be appropriately selected.
[0020]
Further, the layer thickness of the porous layer made of the vinylidene fluoride resin compound is not particularly limited, but is most preferably 0.1 to 5 μm from the viewpoint of ionic conductivity, and when thinning the lithium ion battery. Is also preferable. When the layer thickness is less than 0.1 μm, adhesion to the positive electrode base material or the negative electrode base material and adhesiveness are not preferable. The layer thickness is preferably as high as possible in order to improve the adhesion and adhesion, but the lithium ion secondary battery separator of the present invention can be firmly bonded to electrode equipment even when the layer thickness is 5 μm or less. In order to reduce the thickness of the ion battery, it is preferably 5 μm or less. In particular, a thin layer of 0.1 μm to 1 μm is most preferable, and in this case, ion conductivity is further improved.
[0021]
The average pore diameter of the porous layer made of the vinylidene fluoride resin compound thus formed is preferably in the range of 0.01 to 10 μm. If the average pore size is too small, the movement of the electrolytic solution is hindered and the ionic conductivity is lowered. On the other hand, if it is too large, the mechanical strength is lowered, and the porous structure of the vinylidene fluoride resin compound swollen by the electrolytic solution is destroyed, which is not preferable.
[0022]
In addition, in the porous layer made of the vinylidene fluoride resin compound, it is possible to improve the mechanical strength and dimensional stability by containing electrochemically stable particles and fibrous materials, if necessary. . Examples of such particles include inorganic particles such as silicon oxide, aluminum oxide, titanium oxide, and magnesium oxide, organic particles such as phenol resin particles, polyimide resin particles, benzoguanamine resin particles, melamine resin, polyolefin resin, and fluorine resin particles. Examples of fibrous materials include inorganic fibrous materials such as apatite fibers, titanium oxide fibers, metal oxide whiskers, and organic fibrous materials such as aramid fibers and polybenzoxazole fibers. It is not limited. Moreover, there is no restriction | limiting in particular in the shape and particle size of these particle | grains and a fibrous material, It can select suitably and can be used.
[0023]
For example, a phase separation method, a drying method, an extraction method, a foaming method, or the like is applied to the present invention as a means for forming a porous layer mainly composed of a vinylidene fluoride resin compound. In these methods, a polyolefin porous film is coated using a solution or slurry in which a vinylidene fluoride resin compound is dissolved in a solvent and dried to form a film. As a means for coating, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, or the like is used. For example, for the method of forming a porous film by a drying method, it is necessary to dissolve the vinylidene fluoride resin compound using a good solvent and a poor solvent of the vinylidene fluoride resin compound. However, those having higher boiling points than those of good solvents are selected. After coating the solution thus obtained on the polyolefin porous membrane, drying is performed, the good solvent evaporates before the poor solvent, and the resin compound having reduced solubility starts to precipitate, and the presence of the poor solvent A porous structure having a porosity corresponding to the volume will be taken. As another example, for the technique of forming a porous film by an extraction method, the resin compound is dissolved using a good solvent for the vinylidene fluoride resin compound to be used, and the resulting solution is coated on the polyolefin porous film. A porous structure can be obtained by immersing in a solvent that is a poor solvent for the resin compound, and then extracting the good solvent in the resin compound and replacing it with the poor solvent. In addition, as a method for forming a porous layer mainly composed of a vinylidene fluoride resin compound on the membrane surface of the polyolefin porous membrane, a layer is formed by directly coating a solution or slurry on the membrane surface of the polyolefin porous membrane. May be. Furthermore, after a polymer film that has been subjected to a release treatment is coated on the base material to form a film, the film is bonded to the surface of the polyolefin porous film, and the two films are bonded together using a flat plate press, laminator roll, etc. It is also possible to do. After lamination, the substrate used for coating may be peeled off. When a porous layer made of a vinylidene fluoride resin compound is formed on both surfaces of the polyolefin porous membrane, it is possible to form one surface at a time. It is also possible to form a porous layer made of a vinylidene fluoride resin compound.
[0024]
The separator for a lithium ion secondary battery of the present invention is measured using a Gurley air permeability measuring machine.ToruBy setting the temper to 500 sec / 100 cc or less, a separator having particularly excellent ion conductivity can be obtained. Since the porous layer made of the vinylidene fluoride resin compound of the present invention has a fine porous structure and the layer thickness can be reduced, it is easy to obtain a low air permeability.
[0025]
Next, a lithium ion secondary battery using the lithium ion secondary battery separator of the present invention will be described. The lithium ion secondary battery of the present invention comprises a separator for a lithium ion secondary battery, a positive electrode formed by bonding a positive electrode active material to a positive electrode current collector, and a negative electrode formed by bonding a negative electrode active material to a negative electrode current collector. And an electrolyte solution containing lithium ions is held in the separator. Such a lithium ion secondary battery is applied to a laminated battery or a cylindrical battery.
[0026]
As the positive electrode active material, a composition formula LixM2O2Or LiyM2O2(Wherein M is a transition metal, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2), oxides having tunnel-like vacancies, and metal chalcogen compounds having a layer structure are mentioned. As an example, LiCoO2, LiNiO2, LiMn2O4, Li2Mn2O4, MnO2, FeO2, V2O5, V6O13TiO2TiS2Etc. Organic compounds can also be used, and examples thereof include conductive polymers such as polyaniline, polyacene, and polypyrrole. Furthermore, the above various active materials may be mixed and used regardless of whether they are inorganic compounds or organic compounds. The composite oxide containing lithium is used as a powder, and the average particle size is preferably 1 to 40 μm.
[0027]
Further, as the negative electrode active material, a carbon material which is a substance capable of inserting and extracting lithium and / or lithium ions, an alloy of lithium with Al, Si, Pb, Sn, Zn, Cd, etc., LiFe2O3Transition metal composite oxides such as WO2, MoO2Transition metal oxides such as Li5(Li3Examples thereof include lithium nitride such as N) and metal lithium foil, and these may be used in combination. The carbon material may be appropriately selected from, for example, mesocarbon microbeads, natural or artificial graphite, resin-fired carbon material, carbon black, carbon fiber, and the like. These are used as powders. Among them, graphite is preferable, and the average particle diameter is preferably 1 to 30 μm, particularly preferably 5 to 25 μm. When the average particle size is too smaller than the above range, the charge / discharge cycle life is shortened and the variation in capacity tends to be large. On the other hand, if it is larger than the above range, the variation in capacity becomes remarkably large and the average capacity becomes small. The reason why the variation in capacity occurs when the average particle size is large is thought to be because the contact between graphite and the current collector or the contact between graphites varies.
[0028]
A conductive additive is added to the electrode as necessary. Preferable examples of the conductive assistant include graphite, carbon black, carbon fiber, nickel, aluminum, copper, silver, and the like, and graphite and carbon are particularly preferable. Examples of the binder used for forming the electrode include a fluororesin and fluororubber, and the amount of the binder is suitably in the range of about 3 to 30% by weight of the electrode.
[0029]
In order to produce a lithium ion secondary battery, first, the positive electrode active material or the negative electrode active material and a conductive additive added as necessary are dispersed in a gel electrolyte solution or a binder solution, and an electrode coating solution is obtained. The electrode coating solution may be applied to the current collector. The current collector may be appropriately selected from ordinary current collectors according to the shape of the device used by the battery and the arrangement method in the case. Generally, aluminum or the like is used for the positive electrode, and copper, nickel, or the like is used for the negative electrode. After the electrode coating solution is applied to the current collector, the solvent is evaporated to form an electrode. The coating thickness is preferably about 50 to 400 μm. The positive electrode, the negative electrode, and the separator of the present invention thus obtained are laminated in the order of the positive electrode, the separator of the present invention, and the negative electrode, and are bonded together to make an electronic element body. When the pressure bonding is performed, the separator of the present invention is impregnated with the electrolytic solution in advance and filled into the exterior material, or after being laminated and pressure bonded, the exterior material is filled and the electrolytic solution is injected. After that, electrode terminals, safety devices, and the like are appropriately connected, and then an exterior material is sealed.
[0030]
As the electrolytic solution used in the lithium ion secondary battery of the present invention, a mixed solution in which an electrolyte salt is dissolved in an organic solvent is used. The organic solvent is preferably one that does not decompose even when a high voltage is applied. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1 , 2-dimethoxyethane, 1,2-diethoxyethane, tetrohydrafuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate and the like, or a mixture of two or more of these solvents. In addition, as an electrolyte salt dissolved in the electrolytic solution, LiClO4, LiPF6, LiBF4, LiAsF6, LiCF6, LiCF3CO2, LiPF6SO3, LiN (SO3CF3)2, Li (SO2CF2CF3)2, LiN (COCF3)2And LiN (COCF2CF3)2  Etc., or a mixture of two or more of these.
[0031]
【Example】
Hereinafter, the present invention will be described more specifically with reference to comparative examples and examples.
Examples 1-3
As a vinylidene fluoride resin compound, a homopolymer of vinylidene fluoride having a weight average molecular weight (hereinafter abbreviated as Mw) of about 130,000, a homopolymer of vinylidene fluoride having an Mw of about 300,000, and a fluoride having an Mw of about 400,000 A homopolymer of vinylidene and a copolymer of propylene hexafluoride (hereinafter abbreviated as HFP) and vinylidene fluoride (HFP monomer ratio: about 12% by weight, Mw: about 270,000) were used. Then, such a vinylidene fluoride resin compound was added to 1-methyl-2-pyrrolidone- (hereinafter abbreviated as NMP) according to the blending amount shown in Table 1, and dissolved in a nitrogen atmosphere at room temperature. Furthermore, the coating liquid which consists of an obtained mixture was obtained after room temperature cooling. Next, the obtained coating solution was cast on one side of a polyethylene stretched porous membrane having a thickness of about 25 μm and an air permeability measurement value of about 100 sec / 100 cc by the doctor blade method, and then poured into methanol. Immerse for a minute. The coated film was pulled up from methanol and then dried in a dryer at 40 ° C. to have a porous layer made of a vinylidene fluoride resin compound on one side of a polyethylene stretched porous film.Examples 1 to 3 of the present inventionA lithium ion secondary battery separator was obtained. Examples 1 to3In addition, the other uncoated surface is coated in the same manner, and a lithium-ion secondary battery having a porous layer made of a vinylidene fluoride resin compound on both sides of a polyethylene stretched porous membrane A separator was obtained.
[0032]
[Table 1]
Figure 0004109522
[0033]
Comparative Examples 1-3
As a vinylidene fluoride resin compound, a homopolymer of vinylidene fluoride having an Mw of about 130,000, a homopolymer of vinylidene fluoride having an Mw of about 300,000, and a copolymer of HFP and vinylidene fluoride (monomer ratio of HFP: about 15 weight) %, Mw: about 100,000). And according to the compounding quantity of Table 1, the said Examples 1-3In the same manner as above, a comparative lithium ion secondary battery separator having a porous layer made of a vinylidene fluoride resin compound on both surfaces of a stretched polyethylene porous membrane was obtained.
[0034]
Comparative Example 4
A homopolymer of vinylidene fluoride having an Mw of about 130,000 was dissolved in the NMP solution to obtain an impregnation solution. A polyethylene stretched porous membrane having a thickness of about 25 μm and a measured value of air permeability of about 100 sec / 100 cc was immersed in this solution, followed by vacuum impregnation. After pulling up the membrane, NMP was volatilized to obtain a separator in which the pores of the polyethylene stretched porous membrane were filled with the vinylidene fluoride resin compound.
[0035]
Comparative Example 5
A polyethylene stretched porous membrane having a thickness of about 25 μm and a measured value of air permeability of about 100 sec / 100 cc without a porous layer made of a vinylidene fluoride resin compound was used as a separator.
[0036]
Next, Examples 1 to 1 obtained above3And Comparative Examples 1 to5The separator was evaluated as follows.
<Physical characteristics of separator>
The layer thickness of each porous layer of the lithium ion secondary battery separator obtained above was measured, and the air permeability was measured with an air permeability measuring device. In addition, the obtained lithium ion secondary battery separator was cut into 4 cm × 5 cm to prepare a test piece, and then measured for dimensional change when sandwiched between two glass substrates and heated at 150 ° C. for 10 minutes. Furthermore, the air permeability of the separator subjected to the heat treatment was measured, and the shutdown performance during heating was evaluated. These results are shown in Table 2.
In Table 2, the layer thickness indicates “thickness of one surface (first laminated surface) / thickness of the other surface (second laminated surface)”, and the air permeability is Oken-style air permeability. It is a measured value by a degree measuring device. Moreover, the dimension maintenance factor was computed by the following formula.
Dimension maintenance ratio (%) = X / Y × 100
However, Y is the area of the test piece before heat treatment, and X is the area of the test piece after heat treatment.
Furthermore, the evaluation criteria for the shutdown performance are as follows. ○: Air permeability after heat treatment is 100,000 sec / 100 cc or more and dimensional maintenance ratio is 80% or more, Δ: Air permeability after heat treatment is 100,000 sec / 100 cc or more and dimensional maintenance ratio is less than 80%,
X: Air permeability after heat treatment is less than 100,000 sec / 100 cc.
[0037]
[Table 2]
Figure 0004109522
[0038]
As is apparent from the results in Table 2 above, Examples 1 to3This separator has low air permeability, and the separator having such air permeability has good liquid permeability of the electrolytic solution, so that it is easy to impregnate when injecting the electrolytic solution, and the amount of impregnation is increased. In addition, the electrolyte can be easily moved and high ion conductivity can be exhibited. On the other hand, the separator of Comparative Example 4 has high air permeability, and the separator exhibiting such air permeability has poor electrolyte solution permeability and it is difficult to obtain high ionic conductivity. Examples 1 to3The separators of Comparative Examples 1 to 3 have high dimensional maintainability in dimensional changes during heat treatment as a result of the vinylidene fluoride resin compound present on the separator surface exhibiting adhesion and adhesion to the glass substrate. . This also shows the same effect in adhesion and adhesion with the electrode for the secondary battery, and is important for maintaining the insulation between the electrodes when the secondary battery is abnormally heated. , Safety is higher. Furthermore, Examples 1 to3In addition, the separators of Comparative Examples 1 to 3 not only maintain the shutdown property of the polyethylene stretched porous membrane (the ability to melt at a high temperature and lose the porous structure and exhibit high insulation properties), but also to adhere to the electrode Therefore, the separator has a shutdown property with higher insulation reliability. On the other hand, the separators of Comparative Examples 4 and 5 were used in Examples 1 to3And compared with the separator of Comparative Examples 1-3, the dimension maintenance rate at the time of a heating is low, and it cannot be said that shutdown property is enough, and the safety | security of a secondary battery will be inferior.
[0039]
<Electrochemical characteristics>
Next, inside the porous layer of the lithium ion secondary battery separator, 1M LiPF6Was impregnated with an electrolyte solution of ethylene carbonate (EC) + propylene carbonate (PC) (volume ratio: EC / PC = 1/2). Further, the separator containing the electrolytic solution was sandwiched between two stainless steel electrodes, and the ionic conductivity at 25 ° C. was measured by an AC impedance method. This measurement was performed in a glove box filled with argon gas. On the other hand, after the separator containing the electrolytic solution obtained in the same manner was transferred to a container that could be sealed and stored in a high-temperature layer at 80 ° C. for 10 days, the dimensional change and weight change were measured in comparison with before storage. Furthermore, the ionic conductivity of the separator after storage was measured in the same manner as described above. These results are shown in Table 3.
In Table 3, the ionic conductivity was measured by the AC impedance method. Moreover, the dimension maintenance rate and the weight maintenance rate were calculated by the following formula.
Dimension maintenance ratio (%) = α / β × 100
Where β is the area of the test piece before storage, and α is the area of the test piece after storage.
Weight retention rate (%) = γ / δ × 100
Where δ is the weight of the test piece before storage, and γ is the weight of the test piece after storage.
[0040]
[Table 3]
Figure 0004109522
[0041]
The results in Table 3 above are evaluation results of electrochemical characteristics that serve as a standard for capacity characteristics, cycle characteristics, and charge / discharge characteristics of the secondary battery. From the results in Table 3, the examples are sufficient as secondary batteries. It was confirmed that it has a good performance. Examples2-3Has a high ionic conductivity and can produce an excellent secondary battery. On the other hand, in the accelerated test assuming long-term use, when comparing the separators of each Example and each Comparative Example after storage at 80 ° C., it can be said that the dimensional maintenance ratio is sufficiently satisfactory in any separator, but the weight maintenance ratio is The separators of the examples were almost 100% in the measurement error range, whereas the separators of Comparative Examples 1 to 4 were reduced in weight. This means that the used vinylidene fluoride resin compound dissolves even a little when immersed in the electrolyte for a long time. The reason why the weight reduction is confirmed in Comparative Example 5 is considered to be because the electrolyte solution oozes out because the impregnated electrolyte solution has low liquid retention. As a result, the ionic conductivity after storage almost maintained the initial value in the examples, whereas in Comparative Examples 1 to 3, a marked decrease from the initial value was confirmed.
As described above, as is clear from Tables 2 and 3, the separator according to the present invention satisfies both physical properties and electrochemical properties while the comparative separator achieves the object of the present invention. It was not achievable.
[0042]
【The invention's effect】
As described above, the separator for a lithium ion secondary battery of the present invention has high ionic conductivity resulting from good retention and liquid permeability of the electrolyte, and adhesion to substrates such as electrodes. -By improving the adhesiveness, the ionic conductivity is improved and the interface resistance with the electrode is lowered, the safety is further improved, and the shutdown property is not hindered. In addition, there is little decrease in ionic conductivity for long-term use. Therefore, the lithium ion secondary battery using the separator for lithium ion secondary batteries of the present invention is a secondary battery having excellent capacity characteristics, cycle characteristics, charge / discharge characteristics, safety, and reliability.

Claims (7)

透気度が1000sec/100cc以下であるポリオレフィン多孔膜の両面に、フッ化ビニリデン樹脂化合物を主成分とする多孔質層を積層してなり、且つ前記多孔質層が、重量平均分子量が15万〜50万であるフッ化ビニリデンのホモポリマーを全フッ化ビニリデン樹脂化合物中に50重量%以上含有し、六フッ化プロピレンとフッ化ビニリデンのコポリマーまたは重量平均分子量が15万未満の低分子量フッ化ビニリデン樹脂化合物を含有するセパレーターであり、前記セパレーターの透気度が500sec/100cc以下であることを特徴とするリチウムイオン二次電池用セパレーター。A porous layer mainly composed of a vinylidene fluoride resin compound is laminated on both sides of a polyolefin porous membrane having an air permeability of 1000 sec / 100 cc or less, and the porous layer has a weight average molecular weight of 150,000 to A vinylidene fluoride homopolymer of 500,000 is contained in a total vinylidene fluoride resin compound in an amount of 50% by weight or more , and a copolymer of propylene hexafluoride and vinylidene fluoride or a low molecular weight vinylidene fluoride having a weight average molecular weight of less than 150,000 A separator containing a resin compound , wherein the separator has an air permeability of 500 sec / 100 cc or less. 前記ポリオレフィン多孔膜の膜厚が5〜50μmであることを特徴とする請求項1に記載のリチウムイオン二次電池用セパレーター。The separator for a lithium ion secondary battery according to claim 1, wherein the polyolefin porous membrane has a thickness of 5 to 50 µm. 前記ポリオレフィン多孔膜の空孔率が20〜80体積%であることを特徴とする請求項1に記載のリチウムイオン二次電池用セパレーター。The separator for a lithium ion secondary battery according to claim 1, wherein the porosity of the polyolefin porous membrane is 20 to 80% by volume. 前記フッ化ビニリデン樹脂化合物が、フッ化ビニリデンのホモポリマー、又は四フッ化エチレン、六フッ化プロピレン、エチレンのいずれか1種類以上とフッ化ビニリデンとからなるコポリマー、又は前記ホモポリマーとコポリマーとの混合物であることを特徴とする請求項1に記載のリチウムイオン二次電池用セパレーター。The vinylidene fluoride resin compound is a homopolymer of vinylidene fluoride, a copolymer composed of one or more of ethylene tetrafluoride, propylene hexafluoride, and ethylene and vinylidene fluoride, or the homopolymer and the copolymer. It is a mixture, The separator for lithium ion secondary batteries of Claim 1 characterized by the above-mentioned. 前記フッ化ビニリデン樹脂化合物を主成分とする多孔質層の層厚が0.1〜5μmであることを特徴とする請求項1に記載のリチウムイオン二次電池用セパレーター。2. The separator for a lithium ion secondary battery according to claim 1, wherein the porous layer mainly composed of the vinylidene fluoride resin compound has a thickness of 0.1 to 5 μm. 前記フッ化ビニリデン樹脂化合物を主成分とする多孔質層の平均孔径が0.01〜10μmであることを特徴とする請求項1に記載のリチウムイオン二次電池用セパレーター。2. The separator for a lithium ion secondary battery according to claim 1, wherein an average pore diameter of the porous layer mainly composed of the vinylidene fluoride resin compound is 0.01 to 10 μm. 請求項1ないし6のいずれか1項に記載のリチウムイオン二次電池用セパレーターを、正極活物質を正極集電体に接合してなる正極と、負極活物質を負極集電体に接合してなる負極との間に配置し接合させ、リチウムイオンを含む電解液を前記セパレーター中に保持させてなることを特徴とするリチウムイオン二次電池。The lithium ion secondary battery separator according to any one of claims 1 to 6, wherein a positive electrode formed by bonding a positive electrode active material to a positive electrode current collector and a negative electrode active material are bonded to a negative electrode current collector. The lithium ion secondary battery is characterized by being placed between and bonded to a negative electrode, and holding an electrolyte containing lithium ions in the separator.
JP2002270620A 2002-09-17 2002-09-17 Lithium ion secondary battery separator and lithium ion secondary battery using the same Expired - Fee Related JP4109522B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002270620A JP4109522B2 (en) 2002-09-17 2002-09-17 Lithium ion secondary battery separator and lithium ion secondary battery using the same
KR1020030063151A KR100573358B1 (en) 2002-09-17 2003-09-09 Separators for lithium ion secondary batteries and lithium ion secondary batteries including the same
US10/659,358 US7311994B2 (en) 2002-09-17 2003-09-11 Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
EP03020464A EP1401037B1 (en) 2002-09-17 2003-09-15 Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
CNB031255019A CN1240147C (en) 2002-09-17 2003-09-15 Separator plate for lithium ion secondary battery and lithium ion secondary battery with said separator plate
DE60331622T DE60331622D1 (en) 2002-09-17 2003-09-15 Separator for lithium ion secondary battery and a lithium ion secondary battery equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270620A JP4109522B2 (en) 2002-09-17 2002-09-17 Lithium ion secondary battery separator and lithium ion secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2004111160A JP2004111160A (en) 2004-04-08
JP4109522B2 true JP4109522B2 (en) 2008-07-02

Family

ID=32268193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270620A Expired - Fee Related JP4109522B2 (en) 2002-09-17 2002-09-17 Lithium ion secondary battery separator and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4109522B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431638B2 (en) 2011-10-21 2016-08-30 Teijin Limited Non-aqueous secondary battery separator and non-aqueous secondary battery
US10096811B2 (en) 2011-10-21 2018-10-09 Teijin Limited Separator for a non-aqueous secondary battery and non-aqueous secondary battery
US10115948B2 (en) 2011-10-21 2018-10-30 Teijin Limited Separator for a non-aqueous secondary battery and non-aqueous secondary battery
US10811657B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
US11949097B2 (en) 2018-08-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986009B2 (en) 2005-04-04 2012-07-25 ソニー株式会社 Secondary battery
EP2741345B1 (en) * 2006-04-28 2017-09-13 LG Chem, Ltd. Separator for battery with gel polymer layer
KR100903180B1 (en) * 2006-05-22 2009-06-17 주식회사 엘지화학 Coating amount control method of separator for lithium ion polymer battery
JP5059643B2 (en) * 2008-02-04 2012-10-24 ソニー株式会社 Non-aqueous electrolyte battery
JP4801706B2 (en) * 2008-09-03 2011-10-26 三菱樹脂株式会社 Laminated porous film for separator and method for producing the same
JP5495210B2 (en) * 2010-07-21 2014-05-21 東レバッテリーセパレータフィルム株式会社 Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
KR101297769B1 (en) 2011-04-08 2013-08-20 데이진 가부시키가이샤 Nonaqueous secondary battery separator and nonaqueous secondary battery
KR101429580B1 (en) * 2011-10-21 2014-08-12 데이진 가부시키가이샤 Nonaqueous secondary battery separator and non-aqueous secondary battery
CN103947009B (en) 2011-11-15 2016-03-09 帝人株式会社 Diaphragm for non-water system secondary battery and manufacture method thereof and non-aqueous secondary battery
JP2012074403A (en) * 2012-01-19 2012-04-12 Sony Corp Secondary battery
JP5837437B2 (en) * 2012-02-07 2015-12-24 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
KR101488918B1 (en) 2012-02-29 2015-02-03 제일모직 주식회사 Separator comprising density-controlled coating layer, and battery using the separator
KR101423103B1 (en) * 2012-04-13 2014-07-25 도레이 배터리 세퍼레이터 필름 주식회사 Battery separator, and method for producing same
CN103579561B (en) 2012-07-25 2017-08-15 三星Sdi株式会社 For the dividing plate of lithium rechargeable battery and the lithium rechargeable battery including it
US9692028B2 (en) * 2012-07-30 2017-06-27 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
WO2014021289A1 (en) 2012-07-30 2014-02-06 帝人株式会社 Non-aqueous electrolyte battery separator, non-aqueous electrolyte battery, and manufacturing method of non-aqueous electrolyte battery
CN104508864B (en) 2012-07-30 2017-04-19 帝人株式会社 Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery
KR101794264B1 (en) 2012-07-31 2017-12-01 삼성에스디아이 주식회사 Separator, Lithium battery comprising the separator, and method of preparing the separator
JP6093636B2 (en) * 2013-04-24 2017-03-08 三菱樹脂株式会社 Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US9761854B2 (en) 2013-12-13 2017-09-12 Samsug SDI Co., Ltd. Spirally-wound electrode assembly for rechargeable lithium battery and rechargeable lithium battery including same
CN106463774A (en) * 2014-06-05 2017-02-22 索尼公司 Secondary cell electrolyte, secondary cell, cell pack, electric vehicle, electric power-storing system, electric tool, and electronic device
JP2014160684A (en) * 2014-06-10 2014-09-04 Sony Corp Secondary battery separator and secondary battery
JP6226055B2 (en) * 2016-10-19 2017-11-08 ソニー株式会社 Separator and battery
CN113871794B (en) * 2021-09-14 2023-07-11 中国科学院上海硅酸盐研究所 Lithium-containing cyanamide compound/organic polymer composite electrochemical energy storage device diaphragm, and preparation method and application thereof
CN114527178B (en) * 2022-03-17 2024-03-29 星恒电源股份有限公司 Porous reference electrode and preparation method thereof, battery and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431638B2 (en) 2011-10-21 2016-08-30 Teijin Limited Non-aqueous secondary battery separator and non-aqueous secondary battery
US10096811B2 (en) 2011-10-21 2018-10-09 Teijin Limited Separator for a non-aqueous secondary battery and non-aqueous secondary battery
US10115948B2 (en) 2011-10-21 2018-10-30 Teijin Limited Separator for a non-aqueous secondary battery and non-aqueous secondary battery
US10811657B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
US11949097B2 (en) 2018-08-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2004111160A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4109522B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
US7311994B2 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
CA2545174C (en) Functional polymer film-coated electrode and electrochemical device using the same
US7651820B2 (en) Gel electrolyte and gel electrolyte battery
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
JP4414165B2 (en) Electronic component separator and electronic component
US11764358B2 (en) Method for manufacturing all solid-state battery comprising polymeric solid electrolyte and all solid-state battery obtained thereby
JP2006506775A5 (en)
JP2003086162A (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2006506775A (en) Electrode covered with a thin film obtained from an aqueous solution containing a water-soluble binder, its production method and use
JP4606705B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
EP1176660A2 (en) Non-Aqueous electrolyte secondary battery
JP2005019156A (en) Electronic component separator and electronic component
JP2001210377A (en) Polymer electrolyte composition, its manufacturing method and lithium secondary battery which utilizes it
JP4490055B2 (en) Separator for lithium ion secondary battery or polymer lithium battery
WO2024143017A1 (en) Non-aqueous electrolyte secondary battery and positive electrode using same
JP2002025620A (en) Nonaqueous electrolyte secondary battery
EP1089368A1 (en) Solid electrolyte, electrochemical device, lithium ion secondary battery and electric double-layer capacitor
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using the same
JP2001319690A (en) Polymer electrolyte battery and method of manufacturing the same
CN1194278A (en) Polymer electrolyte and lithium-polymer cell using said electrolyte
JP2002158037A5 (en)
JP4990447B2 (en) POLYMER FILM FOR SOLID ELECTROLYTE AND METHOD FOR PRODUCING THE SAME, SOLID ELECTROLYTE FILM, AND LITHIUM ION SECONDARY BATTERY
WO2024143012A1 (en) Nonaqueous electrolyte secondary battery and positive electrode used in same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4109522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees